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The low rates of treatment response still exist in the pharmacological therapy of major
depressive disorder (MDD). Exploring an optimal neurological predictor of symptom
improvement caused by pharmacotherapy is urgently needed for improving response
to treatment. The amygdala is closely related to the pathological mechanism of MDD
and is expected to be a predictor of the treatment. However, previous studies ignored
the heterogeneousness and lateralization of amygdala. Therefore, this study mainly
aimed to explore whether the right amygdala subregion function at baseline can
predict symptom improvement after 12-week pharmacotherapy in MDD patients. We
performed granger causality analysis (GCA) to identify abnormal effective connectivity
(EC) of right amygdala subregions in MDD and compared the EC strength before and
after 12-week pharmacological therapy. The results show that the abnormal EC mainly
concentrated on the frontolimbic circuitry and default mode network (DMN). With relief
of the clinical symptom, these abnormal ECs also change toward normalization. In
addition, the EC strength of right amygdala subregions at baseline showed significant
predictive ability for symptom improvement using a regularized least-squares regression
predict model. These findings indicated that the EC of right amygdala subregions may
be functionally related in symptom improvement of MDD. It may aid us to understand the
neurological mechanism of pharmacotherapy and can be used as a promising predictor
for symptom improvement in MDD.
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INTRODUCTION

Major depressive disorder (MDD) is a widespread and serious
mental disease with a range of depressive symptoms and impaired
emotional functions as its symbolic features (Hasin et al., 2018;
Tottenham et al., 2021). While pharmacological antidepressant
therapy is clearly effective, the treatment response is always low
and is often hindered by several unsuccessful trials (Saveanu
et al., 2015; Kautzky et al., 2021). Considering that treatment
prescription based on clinical experience exerts negative effects
on occupation, social relationships, and physical health of
patients, it is critical that we identify a reliable biological predictor
of pharmacotherapy to improve clinical outcome and reduce
medical costs (Lam et al., 2016; Fonseka et al., 2018).

Altered functional activities of amygdala were involved in
clinical symptoms of MDD, including emotional perception,
memory, and reaction, as reported by some meta-analyses
(Sergerie et al., 2008; Diener et al., 2012; Miller et al., 2015).
As the core of the emotional circuitry in the brain, the
amygdala plays a key role in the pathway among emotional
feelings and responses (LeDoux, 2000). Various neuroimaging
studies have focused on ascertaining the relationship between
the functional changes of the amygdala and the changes
of clinical symptoms in MDD patients (Arnone, 2019).
According to a facial emotion recognition paradigm-based
functional magnetic resonance imaging (fMRI) study, MDD
patients showed low reactivity in amygdala compared to
controls at baseline and increased toward “normalization” after
treatment (Ruhé et al., 2012). A resting-state fMRI (R-fMRI)
study also reported that antidepressant treatment changed the
amygdala abnormal functional connectivity (FC) in adolescents
with MDD (Cullen et al., 2016). Notably, these literatures
suggested that changes of the amygdala functions may signify
neural changes behind pharmacotherapy in MDD, but they
ignored the heterogeneousness and lateralization of amygdala
(Sah et al., 2003).

Based on cytoarchitectonic characteristics, some researchers
(LeDoux, 2000, 2007; Amunts et al., 2005) suggest that the
amygdala is composed of three subdivisions: centromedial
amygdala (CM), laterobasal amygdala (LB), and superficial
amygdala (SF). Recent neurobiological studies have revealed that
these three amygdala subregions may have unique connectivity
and distinct functional profiles (McGaugh, 2004; Hofmann and
Straube, 2019; Michely et al., 2020). The LB subregion is usually
viewed as the sensory interface of the amygdala, which is
responsible for receiving the sensory input from the thalamus and
auditory cortex, mainly including the auditory inputs (LeDoux,
2003). The CM is regarded as the output regions, which play an
important role in generating the behavior response for emotion
stimulation (Phelps and LeDoux, 2005). It has been found that
the SF in the amygdala has connections with the hypothalamus,
frontal cortex, and hippocampus and appears to regulate the
visceral function related to emotional stimulation (Price, 2003).
A study of amygdala subregion function demonstrated that
both LB-prefrontal cortex and CM/SF-brainstem connectivity
abnormalities exist in MDD (Tang et al., 2019). In another
study, MDD exhibited dysfunctional amygdala subregions to

frontal cortex circuitry, but no difference was found when using
the whole amygdala as seeds (Qiu et al., 2018). These finding
indicates that the amygdala has partially separated information
processing between amygdala subregions, and it is necessary
to divide the amygdala into different subregions. On the other
hand, a growing body of studies have emphasized the different
roles for the right and left amygdala in emotion processing; that
is, there is a lateralized activity pattern of the amygdala (Baas
et al., 2004). For instance, some researchers suggested that the
right amygdala may be more involved in the analysis of visual
information, and it will be activated more strongly when visual
stimulation appeared (Markowitsch, 1998). Moreover, the right
amygdala is faster, shallower, and more automated than the left
amygdala in processing information (Baas et al., 2004). The right
amygdala may be the first to participate in emotional analysis
and then quickly becomes habituated for negative stimulation
(Wright et al., 2001). The main function of habituation is to limit
the use of attention resources to stimulations; impaired habitual
function will easily lead to depression-related sustained negative
emotions and thinking rumination due to a number of negative
emotional experiences that cannot be habituated (Wright et al.,
2001). Intriguingly, previous studies have revealed more effect on
the right amygdala after treatment, hence implying the clinical
potential of the right amygdala in therapy (Suslow et al., 2010).
To some extent, the aforementioned findings indicate that the
analysis of right amygdala subregions is more promising for
elucidating the mechanisms of pharmacotherapy.

Effective connectivity (EC) is an effective technique to
characterize the brain information flow in the interacting
brain regions; furthermore, EC can detect the direction of
information and describe the casual influences exerted among
different brain regions, which have facilitated the identification
of abnormal intrinsic brain activity in various neurological and
neuropsychiatric diseases (Deshpande and Hu, 2012). Granger
causality analysis (GCA) is a popular method to estimate EC
using responses from time-series data in different regions to infer
the direction and intensity of the causal influence of regional
neural activity (Goebel et al., 2003; Hamilton et al., 2011). Prior
studies in MDD treatment have taken advantage of the GCA
technique to investigate the effect of electroconvulsive therapy
(ECT), and the result indicated that the amygdala subregion EC
can be used as a predictor of the treatment effect of ECT (Wang
et al., 2017). The information flow of amygdala subregions may
underlie the clinical symptom improvement of MDD. Exploring
MDD symptom improvement caused by pharmacotherapy in EC
of amygdala subregions is clinically meaningful and provides
directional information of brain function, which cannot be
detected by FC. However, very few studies investigate whether
the EC of right amygdala subregions at baseline can predict
medication efficacy.

Here, we have three aims: (1) to determine the abnormal EC
of right amygdala subregions in MDD patients; (2) to explore
the relationship between the variance in EC and symptom
improvement before and after 12-week pharmacological
treatment using longitudinal analysis; and (3) to predict
symptom improvement using the EC strength of right amygdala
subregions at baseline. As far as we know, few studies have
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focused on the subregions of the right amygdala and using
the GCA to investigate whether the EC can effectively predict
the symptom improvement in MDD patients. Given some
previous evidence in the analysis of the amygdala implicating
that the function of the amygdala is linked with antidepressant
interventions (Fonseka et al., 2018), we thus hypothesized
that pharmacotherapy would normalize the abnormalities
in EC of right amygdala subregions, and right amygdala
subregion-based EC strength at baseline is able to predict
the symptom improvement of MDD patients after 12-week
pharmacotherapy.

MATERIALS AND METHODS

Participants and Study Design
A total of 70 MDD patients (age: 26.93 ± 9.14 years, 21
males/49 females) and 43 sex- and age-matched healthy controls
(HCs) (age: 29.42 ± 12.56 years, 16 males/27 females) were
recruited from the Department of Psychiatry of Hangzhou
Seventh People’s Hospital and the Department of Psychiatry at
The Affiliated Hospital of Hangzhou Normal University. More
detailed information of the participants was summarized in
Table 1. All patients were interviewed by certified psychiatrists,
and 24-item Hamilton Rating Scale for Depression (HAMD) was
used to assess the severity of depression symptoms. All patients
met the following exclusion criteria: (1) currently pregnant
or lactating; (2) serious suicidal tendency; (3) severe medical
or neurological illness; (4) material dependence, including
tobacco, alcohol, or other psychoactive substances; or (5) metallic
implants or other contraindications to MRI. All the research
procedures were carried out in accordance with the Helsinki
Declaration of Ethical Principles and approved by the local
Institutional Review Boards of Hangzhou Normal University.

TABLE 1 | Demographic data and group differences.

Characteristics MDD
(Mean ± SD)

HC
(Mean ± SD)

t/χ2 value p-value

Sex (M/F) 70 (21/49) 43 (16/27) 0.63 0.43a

Age (years) 26.93 ± 9.14 29.42 ± 12.56 −1.22 0.23b

HAMD scores 28.06 ± 6.67
(70)

11.41 ± 7.09 11.76 <0.001b

Before
pharmacotherapy

27.78 ± 6.70
(36)

After pharmacotherapy 11.42 ± 7.09
(36)

Durations of illness
(months)

7.56 ± 12.74

On-medication (n
patients)

SSRIs 36

MDD, major depressive disorder; HC, healthy control; SD, standard deviation; M,
male; F, female; HAMD, 24-item Hamilton Rating Scale for Depression; SSRIs,
selective serotonin reuptake inhibitors.
aThe p-value was obtained by a chi-square test.
bThe p-value was obtained by a two-tailed two-sample t-test.

All subjects provided written informed IRB-approved consent
before participating.

The study design flowchart is shown in Figure 1. The
assessment of MDD patients included R-fMRI neural and
scale symptom assessment in the current study. Before
pharmacotherapy, all patients with MDD and HCs completed
resting-state fMRI scan and HAMD scale to get the time series
of each voxel in the whole brain and HAMD scores; meanwhile,
we used GCA to calculate the EC between the time series of
three amygdala subregions and whole brain voxels, and to
explore the abnormal EC of right amygdala subregions in the
MDD group through between-group comparison. After pretests,
MDD patients then began to receive antidepressant treatment
with typical selective serotonin reuptake inhibitors (SSRIs). The
medication doses were prescribed and adjusted by the treating
clinicians according to routine clinical practice and followed the
recommended dose ranges. It is worth nothing that we chose
the same kind of drugs (SSRIs) to reduce the heterogeneity
of antidepressant drugs, which are recognized and close to
homogeneous interventions in scientific research. After 12 weeks
of treatment, the remaining 36 (51.43%) of the 70 MDD patients
were invited to return to enter another identical fMRI scan and
HAMD scale; the EC strength and HAMD scores of the MDD
group were obtained again, and we performed a longitudinal
analysis to explore the changes of EC strength and HAMD
scores in pre- and post-test of treatment, respectively. Finally,
we used the voxel-wise EC strength of between right amygdala
subregions at baseline to predict symptom improvement,
which was defined as the changes of HAMD scores (HAMD
scores in pre-test – HAMD scores in post-test), through a
regularized least-squares regression using the Least Absolute
Shrinkage and Selection Operator (LASSO) algorithms-based
machine learning approach, and Spearman’s rank correlation
analysis was used to evaluate the model predictive power. The
HC participants did not take any medicine and received only
one fMRI scanning.

Image Acquisition and Preprocessing
Baseline imaging data for 70 MDD patients and 43 HCs were
collected before pharmacotherapy to determine neural alterations
in depressed individuals, and follow-up images of 36 (51.43%)
MDD patients were acquired after 12-week pharmacological
therapy. Baseline and follow-up imaging data were obtained
by a Siemens MAGNETOM Allegra syngo 3.0T MR Scanner
(Siemens AG, Medical Solutions, Erlangen, Germany) at the
Center for Cognition and Brain Disorders at Hangzhou Normal
University. Functional images were collected by using a T2∗-
weighted gradient-recalled echo-planar-imaging (EPI) sequence,
which has the following parameters: 33 axial slices with a slice
thickness = 3 mm, repetition time (TR) = 2,000 ms, echo time
(TE) = 30 ms, field of view (FOV) = 220 mm × 220 mm, flip
angle = 90◦, matrix = 64 × 64, and number of total volumes = 240.
A high-resolution T1-weighted structural image in the sagittal
orientation is obtained by using magnetization-prepared rapid
gradient echo (MPRAGE) sequence. The participants were told
to relax with their eyes closed but not fall asleep, and keep
motionless during the scanning as much as possible.
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FIGURE 1 | Study flowchart of current research. (A) Two different MDD assessment methods were used in the present study. (B) The EC analysis of right amygdala
subregions using Granger causality analysis. We explore abnormal right amygdala subregion-based EC in MDD patients by the comparison of R-fMRI data between
MDD and HCs. (C) The contrast of the variance of EC strength and the changes of HAMD scores of MDD patients before and after pharmacotherapy, respectively.
(D) The voxel-wise EC strength of right amygdala subregions at baseline is taken as feature sets to predict the changes of HAMD scores in MDD patients. The
Spearman’s rank correlation between predicted HAMD scores changes and observed HAMD scores changes is used to evaluate the prediction power of current
predictors. MDD, major depressive disorder; HC, healthy controls; R-fMRI, resting-state functional magnetic resonance imaging; CM, centromedial amygdala; LB,
basolateral amygdala; SF, superficial amygdala; EC, effective connectivity; HAMD, 24-item Hamilton Rating Scale for Depression; L, left hemisphere; R, right
hemisphere. Different color arrows indicate the change direction of studied indicators compared with the previous stage: cool colors indicate decrease and warm
colors indicate increase. ****p < 0.0001.

The preprocessing of image data was conducted using a
combination of the DPABI software1 (Yan et al., 2016) and
a custom code written in MATLAB (The MathWorks, Inc.,
Natick, MA, United States). The first 10 functional volumes
were discarded to stabilize the scanner signals and ensure
that the participants adapt themselves to the circumstances.
The remaining 230 images were performed by slice timing
correction and then realigned to the first volume for head
motion correction. The head motion information is recorded by
estimating the translations in each direction and the rotations
in angular motion about each axis for each of the consecutive
volumes. All participants exhibited a maximum displacement
of less than 2.5 mm in the x, y, or z directions and an
angular motion of less than 2.5◦ for each axis. To further
control the confounding influence of head motion, the framewise
displacement (FD) across time points was calculated for further
analysis (Power et al., 2012). The residual effects of Friston-24
motion parameters and signals of white matter and cerebrospinal
fluid were controlled by linear regression. The corrected images
were normalized into standard Montreal Neurological Institute
space (resampling voxel size = 3 mm × 3 mm × 3 mm).

1http://www.rfmri.org/

The images were smoothed with a 6-mm full-width at half-
maximum Gaussian kernel. To reduce the effect of the
physiological artifacts, we removed several sources of nuisance
signals [six motion parameters, white matter signal, and
cerebrospinal fluid (CSF) signal] from the smoothed images
through linear regression. After band-pass filtering (0.01–0.1 Hz),
the “scrubbing” cut method was employed to remove the “bad”
time points using Piecewise Cubic Hermite interpolation, and the
threshold is 0.5 mm (Liao et al., 2018).

Effective Connectivity Analysis of Right
Amygdala Subregions
Following some existing literatures, we defined three right
amygdala subregions by using cytoarchitectonically defined
probabilistic maps and select the masks of regions of interest
(ROIs), including CM, LB, and SF as provided within the SPM
Anatomy toolbox. All ROI masks of amygdala subregions will
serve as the seeds for subsequent EC analysis. The detailed
locations of the selected ROIs are shown in Figure 2A. The right
amygdala subregions were showed using the BrainNet Viewer
package (Xia et al., 2013).
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FIGURE 2 | The results of effective connectivity analysis of right amygdala subregions. (A) The subregions of the right amygdala: the centromedial amygdala (CM;
yellow), laterobasal amygdala (LB; purple), and superficial amygdala (SF; red). (B–D) Represent the illustration of the abnormal effective connectivity of MDD in three
different right amygdala subregions, respectively: CM, LB, and SF. The cool color arrows indicate significant decreased information flow of target brain regions in
MDD. The gray indicates the specific abnormal brain regions, and the yellow/purple/red represents right CM/LB/SF, respectively. EC, effective connectivity; CM,
centromedial amygdala; LB, basolateral amygdala; SF, superficial amygdala; PCUN, precuneus; IFGoperc, opercular part of inferior frontal gyrus; mSFG, medial
superior frontal gyrus; PCC, posterior cingulate cortex; L, left hemisphere; R, right hemisphere.

In order to acquire the resting-state EC map of each subregion
of the right amygdala, the GCA method was used to describe the
EC. The GCA is a method based on multiple linear regression,
which is used to study whether the current value of time series
Y is correctly predicted by a past value of another time series
X, and if the combination of the time series X and Y past value
could more accurately estimate the time series Y current value
than the time series Y past value alone, then time series X has
a Granger casual influence on series time Y (Roebroeck et al.,
2005). In the present study, voxel-wise GCA was implemented
by the DynamicBC toolbox (Liao et al., 2014). The time series of
the three right amygdala subregions was defined as the seed time
series X, and the time series Y represents the time series of the
rest of brain voxels. The residual-based GCA model was carried
out to investigate the EC between amygdala subregions and each
voxel of the whole brain. Finally, residual-based F was normalized
to a Z score using a custom code written in MATLAB for each
voxel to improve the normality of F for further statistical analysis
(Zang et al., 2012).

Predictive Model Definition and
Evaluation
To explore whether the effective connectivity of right
amygdala subregions might serve as useful predictors for
symptom improvement in MDD, a regularized least-squares

regression using LASSO algorithms combining with a nested
cross-validation predicted model was employed. We repeatedly
analyzed our current data using two different cross-validation
strategies, leave-one-out cross-validation (LOOCV) and 10-fold
cross-validation (10-fold CV), for internal validation, and
added it to the predicted model to improve robustness and
repeatability of our conclusions. The predicted model was
carried out by using MATLAB; the dependent variable is the
HAMD changes, and the independent variables included the
EC between one right amygdala subregion and all voxels in the
other two subregions at baseline. The LASSO regularization
uses the method based on the L1 constraint to perform the
selection of correlated variables and prevent unimportant
features from resulting in an overfitting problem (Witten and
Tibshirani, 2011), and the cross-validation strategy was adopted
to improve the generalization ability of the model. The model
was fit to the relationship between the EC strength of right
amygdala subregions and HAMD changes in each feature
set of n participants (where n is the number of participants,
n = 36 in this study), which was repeated k times (where
k is the number of the fold in cross-validation, including
36 and 10 in the current study). In each cross-validation
fold, we set the values of alpha = 1 and use the internal 10-
fold CV to select the best LASSO regularization parameter
lambda (λ), which controls the number of features selected,
and calculated the predicted HAMD changes of the left-out
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subject. After the cross-validation, the predicted HAMD
changes were achieved, and a Spearman’s rank correlation
between observed HAMD changes and predicted HAMD
changes was used to evaluate the model predictive performance.
The non-parametric p-value was calculated based on 10,000
permutation tests.

Statistical Analysis
In baseline MDD patients and HCs, through independent-sample
t-test and regressed covariates of age, sex, and head motion, the
differences of EC strength in right amygdala subregions between
MDD and HC groups were examined. To reduce the type I error,
the family-wise error (FWE) correction was conducted using
the Gaussian random field (GRF) theory, and the significance
threshold of FWE correction was set to p < 0.001 at the voxel level
and FWE correction at the cluster level to p < 0.0167 (0.05/3)
through Bonferroni correction.

To obtain the symptom change after pharmacotherapy,
we utilized paired-sample t-test to compare the HAMD
scores of MDD patients in before and after treatment, and
the threshold for significance was set as p < 0.05. The
HAMD scores of these patients will be used as an index
to evaluate the clinical symptom improvement of MDD.
Paired-sample t-test was also used to assess the variance
of abnormal EC strength in right amygdala subregions
found in between-group comparison before and after
pharmacotherapy. The statistical threshold was set at
p = 0.05 and using false discovery rate (FDR) correction
for multiple comparisons.

To further determine whether the neural changes are related
to symptom improvement and make further analysis meaningful,
we performed Pearson’s r correlation analysis between the
variance of abnormal EC strength and HAMD score changes
in the MDD group. The significance level threshold was set at
p < 0.05.

TABLE 2 | Brain regions with significant differences in right amygdala subregions
seeded-EC between MDD and HC.

Seed region Anatomical
region

Cluster size
(voxels)

Peak T-value MNI (XYZ)
coordinates

Right CM

Input regions PCUN.L 55 −3.99 0, −54, 33

Right LB

Output regions IFGoperc.R 48 −4.48 39, 0, 21

Right SF

Input regions mSFG.R 41 −3.99 9, 48, 21

Output regions PCC.R 48 −4.41 15, −42, 27

The statistical threshold used the GRF theory [single-tailed, voxel-level p < 0.001,
cluster-level p < 0.0167 (0.05/3, Bonferroni correction)]. MNI, Montreal
Neurological Institute; CM, centromedial amygdala; LB, basolateral amygdala; SF,
superficial amygdala; PCUN, precuneus; IFGoperc, opercular part of inferior frontal
gyrus; mSFG, medial superior frontal gyrus; PCC, posterior cingulate cortex; L, left
hemisphere; R, right hemisphere.

RESULTS

Effective Connectivity Analysis
As shown in Figure 2 and Table 2, compared with the healthy
controls, the patients with MDD showed attenuation of EC
strength, mainly including three inhibitory pathways: (1) from
the left precuneus (PCUN) to the right CM, (2) from the
right LB to the right opercular part of the inferior frontal
gyrus (IFGoperc), and (3) from the right medial superior
frontal gyrus (mSFG) to the right SF to the right posterior
cingulate cortex (PCC). There were no significant between-group
differences in the causal outflow from the right CM to other
brain regions and the causal inflow from other brain regions
to the right LB.

Longitudinal EC Analyses Following
12-Week Pharmacotherapy
In the MDD group, 36 (51.42%) patients completed both
before and after treatment clinical assessment and MRI
scanning. The primary clinical symptom improvement was
assessed by 24-item HAMD scores before and after 12-week
pharmacological treatment. Following antidepressant treatment,
the results showed that the symptom of MDD has a significant
improvement (t = 11.764, p < 0.0001, paired-sample t-test) after
the pharmacotherapy.

The longitudinal results showed the variance of EC strength
between pre- and post-test of pharmacotherapy. As shown
in Figure 3A, through paired-sample t-test, we have found
that all abnormal EC of right amygdala subregions had a
normalizing effect after treatment. The EC from the right
LB to the right IFGoperc (t = 2.444, p = 0.020) and
the EC from the right SF to the right PCC (t = 2.639,
p = 0.012) showed significant differences in pretest and
post-test. The variance of EC strength in the remaining
connectivity approached significance, which is the EC from
the left PCUN to the right CM (t = 1.942, p = 0.060)
and from the right mSFG to the right SF (t = 1.941,
p = 0.060), respectively.

Correlation analysis between the variance of mean EC strength
and HAMD score changes is illustrated in Figure 3B. We found
that improvement in symptoms after 12-week treatment was
significantly correlated with the variance of mean EC strength in
the EC from the left PCUN to the right CM (r = −0.357, p = 0.038)
and the EC from the right mSFG to the right SF (r = −0.358,
p = 0.032). There was no significant correlation in the EC from
the right LB to the right IFGoperc (r = −0.144, p = 0.402) and
the EC from the right SF to the right PCC (r = −0.203, p = 0.234),
but the change direction of them is still consistent with the change
direction of symptom improvement.

Predictive Accuracy
Based on the EC of right amygdala subregions at baseline
as features, the predicted model yielded significant prediction
power. As Figure 4 shows, the model analysis revealed that the
EC in right amygdala subregions exhibited excellent performance
in predicting symptom improvement in MDD patients; the
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FIGURE 3 | The association of the changes in two different assessment methods between pre- and post-test of pharmacotherapy. (A) The histogram shows the
variance in the EC strength between pre- and post-test of pharmacotherapy (FDR correction at p < 0.05), including the EC from the left PCUN to the right CM
(t = 1.942, p = 0.060), the EC from the right LB to the right IFGoperc (t = 2.444, p = 0.020), the EC from the right mSFG to the right SF (t = 1.941, p = 0.060), and
the EC from the right SF to the right PCC (t = 2.639, p = 0.012). *p < 0.05. (B) Scatter plots for the relationship between HAMD scores changes and the variance of
EC strength. The significant correlation was found in the EC from the left PCUN to the right CM (r = –0.357, p = 0.038) and the EC from the right mSFG to the right
SF (r = –0.358, p = 0.032). *p < 0.05. EC, effective connectivity; PCUN, precuneus; CM, centromedial amygdala; LB, basolateral amygdala; IFGoperc, opercular
part of inferior frontal gyrus; mSFG, medial superior frontal gyrus; SF, superficial amygdala; PCC, posterior cingulate cortex; HAMD, 24-item Hamilton Rating Scale
for Depression; L, left hemisphere; R, right hemisphere.

FIGURE 4 | Prediction results based on the EC of right amygdala subregions at baseline for symptom improvement. Scatter plots show the Spearman’s rank
correlations between the observed HAMD scores changes and predicted HAMD scores changes of all participants in (A) LOOCV: r = 0.443, permutation p = 0.007,
and (B) 10-fold CV: r = 0.525, permutation p = 0.001, respectively. **p < 0.01. LOOCV, Leave-one-out cross-validation; 10-fold CV, 10-fold cross-validation; HAMD,
24-item Hamilton Rating Scale for Depression.
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predicted HAMD changes had a Spearman’s rank correlation
of r = 0.443 with the observed HAMD changes with a
nested LOOCV (permutation p = 0.007), and Spearman’s rank
correlation is r = 0.525 in a nested 10-fold CV (permutation
p = 0.001).

DISCUSSION

In the current study, we investigated the abnormal EC patterns
of right amygdala subregions in MDD based on GCA. Three
abnormal EC pathways of right amygdala subregions were
identified in baseline MDD patients. With the relief of symptoms,
these abnormal connections are also normalized following 12-
week pharmacological therapy, and correlation analysis results
revealed that the variance of EC strength is related to the change
of HAMD scores. More importantly, individual depressive
symptom improvement can be predicted using the EC of right
amygdala subregions at baseline.

Abnormal Effective Connectivity
The GCA provided a new tool for exploring the EC, and emerging
reports have suggested that GCA can effectively identify the
directed functional interactions between brain regions (Chen
et al., 2009). We found the abnormal EC of depressed individuals
mainly in three significant inhibitory pathways, that is, from
the left PCUN to the right CM, from the right LB to the
right opercular part of IFG, and from the right mSFG to
the right SF to the right PCC. These abnormal brain regions
provided preliminary evidence for the neural substrate of clinical
symptom, which promotes further analysis.

Previous evidence suggested that the mSFG plays an
important role in emotional processing and response and has
been implicated in some emotional disorders (Phan et al., 2003).
For example, our previous research found that the FC between
mSFG and medial orbitofrontal cortex (mOFC) subregions is
correlated with anxiety in healthy male adults (Xue et al., 2018).
The activity of the mSFG is related to the amygdala, which
suggested that the extent of coupling between the mSFG and
the amygdala associated with emotional response to negative
scenes (Wu et al., 2016). The SF of the amygdala is also
considered to be involved in social and affective information
processing (Adolphs, 2008). The finding of inhibitory connection
from the mSFG to the SF supported the existing theories
suggesting that the neural mechanism of depression has extensive
involvement within frontolimbic circuitry (Lai, 2019). Besides,
our results also found that the function of PCC is inhibited by
the right SF, and the right CM is inhibited by the PCUN in
MDD patients. The PCC and the adjacent PCUN are the main
components of the default mode network (DMN), a network
of brain regions that are more active when the brain is at rest.
A large number of neuroimaging studies pointed out that the
DMN is closely associated with neuropathological mechanism
of MDD (Kaiser et al., 2015). Consistent with our results, the
abnormal connectivity between the amygdala and the PCC
or the PCUN has been found in different MDD populations
(Cullen et al., 2016). Furthermore, similar to the function of

the right amygdala, the PCC and the PCUN also have the
advantages in visual imaging processing (Shen et al., 2015). Due
to the fact that the right CM mediates behavioral responses to
potentially harmful stimuli, taken together, one interpretation of
our findings is that the damage of frontolimbic circuitry may
inhibit the normal function of the DMN in emotional processing
for external stimulus, and then inhibiting the CM nucleus of the
right amygdala makes correct emotional responses and cannot
habituate from a negative emotional stimulus up to wrong
emotional responses, such as sustaining negative emotions and
thinking rumination. Additionally, the IFG is involved in relaying
top-down cognitive inputs, which was shown to be involved
in the updating of task representations and to be activated
commonly in multiple cognitive tasks (Derrfuss et al., 2005;
Hampshire et al., 2010). The IFG has connected with the limbic
system and played a key role in cognitive-emotional integration
and continuous behavioral monitoring (Gao et al., 2016). We
speculated that the LB nucleus of the right amygdala, as the input
region, may be due to inadequate high-level cognitive guidance,
resulting in lower-level emotional cognitive processing disorders.

Longitudinal EC Analyses Following
12-Week Pharmacotherapy
The normalization of aberrant right amygdala subregions
connectivity may indicate that the EC of right amygdala
subregions correlated with the depressive symptoms. The
longitudinal analyses following 12-week pharmacotherapy
revealed that the depressive symptoms and hypoconnectivities
of right amygdala subregions were ameliorated with
pharmacotherapy; in other words, the pharmacotherapy
may relief the symptom of depression by improving the right
amygdala subregion brain function. This claim echoed previous
studies, which revealed that the pharmacological treatment
improved the SF nucleus function for emotion and social
information processing and the ability of the CM nucleus to make
correct emotion responses (Phan et al., 2003). Another study
suggested that pharmacological antidepressant effects can be
measured in terms of some increase of frontolimbic connectivity
and that these effects were most clearly demonstrated by the
change of amygdala connections (Chen et al., 2008). Considering
that mSFG and IFGoperc are part of frontolimbic circuitry
and are critical for the pathological mechanism of MDD, SSRIs
therapy may, in part, improve depressive symptoms by restoring
the connectivity between the amygdala and these regions. Some
analyses exploring the improvement of symptom predictors
for pharmacotherapy have found the potential of the PCC as
predictive of improved response (Rizvi et al., 2013). Lower
baseline EC between the CM and the PCC exhibited increased
strength after treatment in our study, which implies that this
connectivity was associated with treatment response to SSRIs.

Correlation analysis further supports our conclusion, which
shows that depressive symptom improvement is associated with
the change of brain function or neuroplasticity. The relationship
between MDD improvement and the PCUN component of
the DMN has been identified, which is consistent with
previous reports of the DMN being associated with symptom
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improvement (Fonseka et al., 2018). The PCUN and the PCC
located in the midline cortical regions of the DMN mediate
self-referential processing; they may have excessive involvement
in information processing in MDD (Li et al., 2013). What is
more, SSRI selective altered intrinsic regional DMN connectivity
has also been found in previous research (van de Ven et al.,
2013). The result of paired-sample t-test between before and after
treatment shows that the EC of the IFGoperc and the PCC with
right amygdala subregions was reconfigured under the influence
of treatment, although no significant corrections were found
there, which is related to the mechanism of pharmacotherapy.
MDD is a complex mental disease, which involves a variety
of abnormal brain functions (Furey et al., 2013). The HAMD
score only reflects the part of clinical symptoms in MDD
patients, and there are still many potential abnormalities in MDD
that may be changed by treatment. In addition, due to the
internal heterogeneity of mental illness itself and the influence
of external environment, the clinical diagnosis is often not as
detailed as research projects (Gao et al., 2018). Some hidden
anomalies that are not related to the HAMD scores in MDD
could be found by objective brain imaging measurements. This is
because the function of the human brain, which is characterized
by complex spatial structure, may have some complex non-
linear relationship with clinical scores that cannot be found in
correlation analysis (Cohen et al., 2020). Therefore, their changes
are still meaningful for better understanding of the neural
mechanism of MDD treatment. These results indicated that right
amygdala subregion function was suggested to be relevant to
characterize the neurobiology of antidepressant medications and
may be useful in guiding treatment selection in future studies.

Predictive Power of Effective
Connectivity
There is no doubt that the etiopathogenesis of depression
has its biological basis (Ge et al., 2020). It is important to
identify the neurobiological mechanisms of pharmacotherapy
in MDD, so that this knowledge can be applied to improve
clinical treatment. Great progress has been made in the
study of human brain dysfunction caused by depression or
MDD using MRI (Dosenbach et al., 2010). However, whether
these human brain functional indicators contain enough
information to help us predict the therapeutic improvement
remains a big unknown. Along this line, many studies
try to explore useful therapeutic predictors using difference
MRI neuroimaging makers and machine-learning algorithms
(Jiang et al., 2018). For example, a previous study indicated
that the right amygdala was associated with MDD, and
the right amygdala connectivity predicted the psychotherapy
improvement in depressed adolescents (Straub et al., 2017). In
our study, our results also demonstrated the predictive ability
of EC of right amygdala subregions at baseline for symptom
improvement after 12-week pharmacological therapy in MDD.
Consistent with our hypothesis, these findings are suggestive
of the fact that right amygdala subregion-seeded EC may aid
in understanding mechanisms of pharmacotherapy in MDD
and holds the promise for future research to improve the

clinical outcomes. Since emotional dysfunctions are the main
symptom of MDD, it makes sense to predict the symptom
improvement from the amygdala at baseline, and many studies
have discovered the potential of the amygdala as a predictor
for pharmacotherapy (Furey et al., 2013; Williams et al.,
2015). Moreover, the correlation between roles of the right
amygdala for visual emotional stimuli and MDD symptoms
improvement is supported by some studies (Furey et al., 2013;
Szczepanik et al., 2016).

Employing internal validation procedures, we built our
predictive models based on two different cross-validation
methods. Encouragingly, the results are robust and still support
our conclusion. From the methodological principle of GCA,
the “scrubbing” in data preprocessing removes the “bad” time
points and may affect the evaluation results of GCA. We thus
repeated all analyses without “scrubbing” in the preprocessing
analysis. Our findings were similar, and the model maintains
good prediction performance. The high reproducibility shows
the feasibility of the EC in the right amygdala subregions for
predicting the symptom improvement of MDD. Predictive data
mining has become very popular in neuroimaging research,
especially in the study of mental diseases (Meng et al., 2017).
The ultimate purpose of neuroimaging diagnosis is to predict the
symptom of patients, and our results strengthen the role of the
amygdala in the pathophysiology of MDD and its importance in
model mood dysregulation and as a new therapeutic target.

Limitation
Several limitations warrant further consideration. First, the
number of participants was small, and not all subjects have
completed the pre- and post-test, which may limit the statistical
power in finding the abnormal EC brain regions and challenge
our results. Therefore, a larger number of sample sizes and
measures to prevent the loss of subjects are needed in further
studies. Second, there is internal heterogeneity of SSRIs in the
pharmacological drugs among patients for the current dataset.
However, only the baseline data of R-fMRI have been used to
predict the symptom improvement, and these data are not related
to heterogeneous pharmacotherapy. Consistent with our dataset
and previous studies on the prediction of the MDD symptom
improvement treated with heterogenous antidepressant drugs,
neuroimaging markers also perform effective predictive capacity
(Shen et al., 2015), and a large-sample study shows that there
are only subtle differences between different pharmacological
treatment modalities (Stassen et al., 2007). Nevertheless, to
control the heterogeneity of therapy medicine is needed for
future research. Third, the dosages of drugs could affect the
experimental results. As the longitudinal study leads to the loss of
participant data, only 15 of the 36 participants in our remaining
data have complete information about the dosages of drugs.
We repeated our analysis by using the EC in right amygdala
subregions of these 15 subjects as features and incorporate the
drug dose as a covariant in the predicted model. Fortunately,
the EC of right amygdala subregions still significant predict
the symptom improvement. The high reproducibility of our
findings indicated the reliability of right amygdala subregions-
based predictor for treatment outcomes, but a more complete
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large sample size should be used to verify this conclusion in
future research. Finally, the current study revealed that the EC
in right amygdala subregions significantly predicts the symptom
improvement of MDD patients after 12-week pharmacological
therapy. However, apart from the treatment improvement after
12-week pharmacotherapy, an important topic in the future is
whether the symptom improvement of other treatment courses
can be predicted.

CONCLUSION

The current study demonstrated the abnormal right amygdala
subregion-seeded EC, and the results mainly concentrated in the
frontolimbic circuits and the DMN. The longitudinal analysis
found that the symptom improvement caused by antidepressant
medications is associated with the change of mean EC strength
of right amygdala subregions in MDD patients. Importantly,
the EC in right amygdala subregions at baseline significantly
predicts the symptom improvement of pharmacotherapy. The
function of right amygdala subregions may contribute to
a better understanding of the neurobiological mechanism
of pharmacotherapy. Meanwhile, these results also provided
new supporting evidence for the application of neuroimaging
techniques in the treatment outcome prediction and thus guide
more individualized treatment for MDD patients.
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