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Abstract

Objective: Recent studies have shown that the current guidelines suggesting immunologic monitoring to
determine response to highly active antiretroviral therapy (HAART) are inadequate. We assessed whether routinely
collected clinical markers could improve prediction of concurrent HIV RNA levels.

Methods: We included individuals followed within the Johns Hopkins HIV Clinical Cohort who initiated
antiretroviral therapy and had concurrent HIV RNA and biomarker measurements ≥4 months after HAART. A two
tiered approach to determine whether clinical markers could improve prediction included: 1) identification of
predictors of HIV RNA levels >500 copies/ml and 2) construction and validation of a prediction model.

Results: Three markers (mean corpuscular hemoglobin [MCH], CD4, and change in percent CD4 from pre-HAART
levels) in addition to the change in MCH from pre-HAART levels contained the most predictive information for
identifying an HIV RNA >500 copies/ml. However, MCH and change in MCH were the two most predictive
followed by CD4 and change in percent CD4. The logistic prediction model in the validation data had an area
under the receiver operating characteristic curve of 0.85, and a sensitivity and specificity of 0.74 (95% CI: 0.69-0.79)
and 0.89 (95% CI: 0.86-0.91), respectively.

Conclusions: Immunologic criteria have been shown to be a poor guideline for identifying individuals with high
HIV RNA levels. MCH and change in MCH were the strongest predictors of HIV RNA levels >500. When combined
with CD4 and percent CD4 as covariates in a model, a high level of discrimination between those with and
without HIV RNA levels >500 was obtained. These data suggest an unexplored relationship between HIV RNA and
MCH.

Introduction
Current World Health Organization guidelines recom-
mend using CD4 counts to monitor treatment response
to highly active antiretroviral therapy (HAART) in
regions where HIV viral load testing is unavailable [1].
However, recent reports suggest that monitoring CD4
counts does not accurately classify individuals who have
not successfully suppressed HIV RNA levels [2-4]. One
study, from Uganda, examined whether CD4 counts and

CD4 percentages could be used to classify individuals as
above or below four thresholds of HIV RNA (50, 500,
1000, and 5000) and at three time points (6, 12, and
18 months) after the initiation of treatment [3]. Various
classification schemes based upon CD4 counts (e.g. an
increase in CD4 count from 0 to 6 months) or CD4 per-
centage provided a sensitivity range of only 0.04-0.62 for
detecting individuals with HIV RNA above 500 [3]. We
examined whether other clinical markers that are routi-
nely assessed within the Johns Hopkins HIV Clinical
Cohort (JHHCC) could provide better classification of
individuals who do not have suppressed HIV RNA levels
using a novel approach.
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Methods
The JHHCC was established to prospectively quantify
the processes and outcomes of care for HIV-infected
individuals seen in clinical practice in the Baltimore
metropolitan area [5]. All patients give informed consent
and the JHHCC is conducted in accordance with the
ethical standards of the Johns Hopkins Institutional
Review Board and with the Helsinki Declaration of
1975. Subjects included in this analysis were individuals
who initiated HAART after January 1, 2000 and had an
HIV RNA measurement at least 4 months after initia-
tion. Each individual also had to have at least one of the
biological markers (listed below) measured within
60 days before or 30 days after the time of HIV RNA
measurement. Only a single record of HIV RNA (the first
measurement occurring at least 4 months after HAART
initiation) and clinical markers for each individual was
included in the analyses. All individuals were still on
treatment at the time of their HIV RNA measurement.
We utilized a random forest approach to evaluate the

ability of routinely collected clinical markers to classify
individuals as greater or less than 500 HIV RNA
copies/ml. Random-forests are an algorithmic, non-
parametric approach to identify prognostic variables
and are robust to over fitting the data [6,7]. These
methods are an extension of classification and regres-
sion trees (CART) which by introducing randomness
in variable selection and have been shown to have
lower error and better classification rates [6,8]. Briefly,
individual classification trees were generated from ran-
dom bootstrap samples from the data set. Each node
of the tree (or branch point) was created by selecting a
random subset of candidate classification variables. As
with standard CART methods, nodes were split by
variables that optimize a splitting criteria and each tree
is grown to full size. Because each classification tree
was developed from a bootstrap sample of the study
population, a subset of the study population remained
unused for that tree; this subset was used to validate
the tree and estimate the classification error. Ulti-
mately, the random forest approach provides a mea-
sure of each variable’s importance by examining (in
the validation subset) the increase in error rate when
the variable is ignored [6,8]. This consists of running
the data from the subset of individuals not chosen in
the bootstrap sample through the tree while permuting
each covariate in turn. Thus each covariate has a set of
error rates (obtained from each tree) for when the spe-
cific covariate has and has not been permuted. The
change in the error rate is summarized over all trees
in the random forest and divided by the standard error
to provide a standardized change in error rate. If a
variable did not truly have prognostic importance then

the change in error rate should be distributed around
0 and normally distributed.
The random-forest approach was used to search for

prognostic variables among the following measures:
absolute CD4, percent CD4, serum albumin, alanine
aminotransferase, aspartate aminotransferase, creatinine,
hemoglobin, total lymphocyte, eosinophil, and neutro-
phil counts, potassium, calcium, chloride, CD3 counts,
red blood cell count, mean corpuscular hemoglobin
(MCH), mean corpuscular hemoglobin concentration
(MCHC), mean corpuscular volume (MCV), packed cell
volume, platelet count, alkaline phosphatase, CO2, direct
billirubin, and HAART regimen (protease inhibitor [PI],
non-nucleoside [NNRTI], triple nucleoside [NRTI], and
dual regimen containing both PI and NNRTI based regi-
mens). The measured value up to 1 year preceding
HAART initiation, and the corresponding difference
between post-HAART and pre-HAART values, were
included (e.g. change in MCH = [post-HAART MCH] -
[pre-HAART MCH]). Individuals who were missing
marker measurements had values imputed using the
approach for imputation in random-forests as outlined
by Brieman [9] (R Foundation for Statistical Computing,
Vienna, Austria: http://www.R-project.org). Imputation
in random forests maintains accuracy when up to 80%
of the data are missing [9].
Initially the random forest included all covariates to

determine an overall error rate and order of the variable
importance. Utilizing this information, we constructed
another random forest limiting the covariates to the 12
most important variables. Subsequently we continued to
prune covariates from the random forest by eliminating
the least predictive variables until we reached a random
forest consisting of variables which had a variable
importance above 1.96 as a cutoff since a non-prognos-
tic variable should be normally distributed.
While, the random-forest approach provides an excel-

lent method for identification of important, prognostic
variables, it unfortunately does not produce a familiar
regression equation that can be easily disseminated
through printed material. Furthermore, the random-for-
est may contain thousands of trees and therefore cannot
be easily included in a figure. Thus, we utilized the ran-
dom-forest results to identify variables that had the
most predictive capability based upon the variable
importance measure. We then used these variables to
construct a logistic model with HIV RNA above
500 cps/ml as the outcome and the concurrent markers
(or change from pre-HAART levels) were included as
covariates. Because of the missing data, we re-imputed
the missing data 20 times to account for the variability
in the imputation process and summarized the results
of the logistic model for multiple imputation [10].
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To optimally assess the classification error of both the
random-forest and logistic model, we reserved one-half
of the study population as a cross-validation set. The
models calibration was examined by splitting the pre-
dicted probabilities from the logistic model into 8 quan-
tiles (each consisting of 98 indviduals) and assessing the
observed probability of having an HIV RNA above 500
copies/ml as compared to the mean predicted probabil-
ity in each quantile group [11].
To determine how well the models were able to dis-

criminate between those who did and did not have an
HIV RNA above 500 copies/ml, we relied primarily on
the receiver operating characteristic (ROC) curve and
the area under the receiver operating characteristic
(AUROC) curve. An ROC curve is the relationship
between sensitivity and specificity when different cutoff
of a distribution is utilized. The AUROC provides the
probability that one can discriminate between two indi-
viduals (one randomly chosen from those who are above
500 copies/ml and one randomly chosen from those
that are below 500 copies/ml) which individual is above
500 copies/ml [12].

Results
The study population was comprised of 1,568 indivi-
duals; 784 were used for the random-forest analysis
and 784 for the validation set. Study population

characteristics are shown in Table 1. The median (inter-
quartile range, IQR) time the HIV RNA was measured
after HAART initiation was 0.48 (IQR: 0.39-0.65) years.
The majority of individuals had an HIV RNA level
below 500 copies/ml (1017 [65%]). The median CD4
count just prior to HAART initiation was 190 (IQR: 66-
315) cells/mm3 and 278 (IQR: 143-426) at the time of
HIV RNA measurement. Most were on a PI-based regi-
men (47%) followed by a NNRTI-based regimen (38%)
with the rest on either a dual PI and NNRTI or triple
NRTI-based regimen (15%). A total of 696 (59%) were
on a regimen containing a thymidine analogue (49%
containing zidovudine and 33% containing stavudine).
Utilizing the variables listed above, the random-forest

method was able to correctly classify 659/784 indivi-
duals: 473/509 individuals with HIV RNA < 500 copies/
ml, for a specificity of 0.93 [95% confidence interval, CI:
0.90-0.95] and 186/275 individuals ≥ 500 copies/ml, for
a sensitivity of 0.68 [95% CI: 0.62-0.73]. The most
important variable when all variables were included was
the MCH levels followed by change in MCH from pre-
HAART levels. Using the variable importance as a
guide, a new random-forest was grown eliminating the
least important variables from the model. The final ran-
dom-forest included with four different markers: MCH
(both current and change from pre-HAART level), cur-
rent CD4 count, change in percent CD4, and MCHC

Table 1 Study population characteristics

Training Data (n = 784) Validation Data (n = 784)

Median Age (IQR) 42.4 (36.7, 47.6) 41.8 (36.2, 48.3)

Male Sex - N (%) 500 (64) 522 (67)

Race - N (%)

African-American 588 (75) 589 (75)

White 169 (22) 174 (22)

Other 27 (3) 21 (3)

HIV Risk Behaviors - N (%)*

MSM 203 (26) 203 (26)

IDU 288 (37) 290 (37)

Heterosexual 412 (53) 399 (51)

Median RNA (IQR) copies/ml** 155 (50, 6147) 145 (50, 7071)

Median CD4 (IQR) cells/ul** 273 (149, 441) 279 (133, 418)

[N = 701 (89%)]† [N = 695 (89%)]†

Median Change in Percent CD4 (IQR)*** 2.9 (0.0, 6.7) 3.0 (-0.4, 7.3)

[N = 655 (84%)]† [N = 635 (81%)]†

Median MCH (IQR) (pg/cell)** 33.0 (30.2, 36.6) 32.8 (29.9, 36.2)

[N = 413 (53%)]† [N = 410 (52%)]†

Median Change in MCH (IQR)*** 1.7 (-0.2, 4.3) 1.8 (-0.3, 5.2)

[N = 364 (46%)]† [N = 360 (46%)]†

*HIV risk behaviors are reported behaviors at enrollment into the cohort and are not mutually exclusive

** At time of first HIV RNA measurement at least 4 months after initiation of effective therapy

*** Change is the change from pre-HAART levels to marker measurement concurrent with HIV RNA measurement occurring at least 4 months after initiation of
treatment.

† The number and percent in brackets correspond to the number of individuals that were not missing these data.
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(both current and change from pre-HAART level). This
final, reduced random-forest was able to correctly clas-
sify 643/784 individuals for an overall error rate of 18%
(specificity: 459/409 = 0.90 [95% CI: 0.87-0.93]; sensitiv-
ity: 184/275 = 0.67 [95% CI: 0.61-0.72]).
A logistic model was constructed based upon these

final variables. The final logistic model is shown in
Table 2 and shows approximately 20% decrease in odds
having a HIV RNA above 500 copies/ml for every pg/
cell higher of either MCH level or change in MCH
(from pre-HAART levels). A calibration plot (Figure 1)
demonstrated that the logistic model was fairly well cali-
brated as the curves lowess curves for the training (solid
line) data set followed the 45 degree line. The area
under the receiver operating curve (AUROC) was 0.85
(95% CI: 0.82-0.88). Using a predicted probability from
the logistic model of >0.5 as having HIV RNA ≥500
copies/ml the sensitivity, specificity, positive and nega-
tive predictive values are shown in Table 3. The operat-
ing characteristics of this logistic model relative to the
random-forest prediction approach resulted in a slight
decrease in specificity (0.89 vs. random forest: 0.90) and
an increase in sensitivity (0.70 vs. random forest: 0.67)
with a positive predictive value of 0.77 and negative pre-
dictive value of 0.84 among the training set.
Change in MCHC from pre-HAART levels and

MCHC were not included in the final model as these
two variables were not significant in the logistic model
(p = 0.71 and 0.36, respectively). Modeling a non-linear
relationship of these two variables did provide a signifi-
cant association (c2 = 18.64; 5 degrees of freedom; p =
0.002). However, when included in the model, these two
variables and non-linear terms did not substantially
improve prediction (AUROC = 0.86). Therefore, these
variables were left out of the final logistic model in
favor of a more parsimonious model.
The final random-forest applied to the validation set

resulted in a sensitivity of 0.71 (95% CI: 0.66-0.76) and a
specificity of 0.91 (95% CI: 0.88-0.93). These were not
significantly different compared to the training set

(sensitivity p = 0.27; specificity p = 0.67). When the
logistic model was applied to the validation data set, the
calibration curve (Figure 1, open circles and dashed-dot
line) suggests that the actual probability was lower than
the predicted. However, this was mainly for those with a
predicted probability between 0.21 and 0.37 and other-
wise the overall curve and confidence intervals suggest a
fairly well calibrated model. Nevertheless, the sensitivity
and specificity from the logistic model (Table 3), was
not significantly different in the validation set as com-
pared to the training set (p = 0.64 and p = 1.0, respec-
tively). Furthermore, the AUROC in the validation set
was unchanged at 0.85 (95% CI: 0.82-0.88) and the
receiver operating curves for the training and validation
data sets in addition to the two data sets combined were
similar (Figure 2). Using the combined training and vali-
dation data sets, the point on the ROC curve that maxi-
mized both the sensitivity and specificity at both 0.80
was a cutoff in the predicted probability from the logis-
tic model of 0.31.
For comparison to a logistic model based solely on

CD4 at time of HIV RNA measurement, the training
and validation data had an AUROC of 0.73 (95% CI:
0.70-0.77) and 0.75 (95% CI: 0.71-0.78), respectively
indicating that CD4 by itself had a lower ability to dis-
criminate between those who were and were not above
500 copies/ml. A cutoff in the predicted probability of
0.5 from this logistic model resulted in a sensitivity of
0.49 (95% CI: 0.44-0.55) and specificity of 0.87 (95% CI:
0.84-0.89) in the training data. Similar results were seen
in the validation set (sensitivity: 0.55 [95% CI: 0.49-
0.60]; specificity: 0.85 [95% CI: 0.82-0.88]). Inclusion of
change in CD4 from pre-HAART levels slightly
improved these results (AUROC of 0.77 and 0.78 for
training and validation data sets, respectively).

Discussion
There are two notable conclusions to this study. First,
we expected traditional markers to be the most predic-
tive (e.g. CD4, total lymphocyte counts) of current HIV

Table 2 Results of logistic model after screening for variables by the random forest approach***

Beta Coefficient Odds Ratio Odds Ratio 95% Confidence Interval p-value

Intercept 7.27 ** <0.0001

MCH (pg/cell) -0.19 0.83 0.77, 0.89 <0.0001

Change in MCH (per pg/cell)* -0.22 0.81 0.74, 0.88 <0.0001

CD4 (per 100 cells/mm3) -0.32 0.73 0.65, 0.81 <0.0001

Change in Percent CD4 (per percent)* -0.05 0.95 0.91, 0.99 0.008

* Change is relative to the pre-HAART value for an individual, thus a positive value for change in MCH indicates an increase in MCH for an individual from their
pre-HAART value.

** The intercept has no OR interpretation.

*** To determine the predicted probability of having an HIV RNA > 500 copies/ml for an individual, take the value of each variable and multiply it by the
corresponding Beta Coefficient. Take the sum of the resulting values and add the Intercept Beta Coefficient. This is the log(odds) that an individual has an HIV
RNA value above 500 copies/ml. The predicted probability is then 1/(1+e(-log(odds)).
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RNA status. The importance of MCH and change in
MCH was unexpected. There is a paucity of information
on MCH with treatment and HIV RNA levels. Previous
studies have suggested that mean corpuscular volume
may change with NRTI use [13,14]. Another suggested
that among treated individuals, those on an indinavir,
nelfinavir, or saquinavir regimen had higher MCV and
MCH than individuals on non-PI based regimens [15].
Perhaps the most compelling data is a recent study that
examined hematological differences among Thai patients
with and without antiretroviral therapy stratified by tha-
lassemia (both alpha and beta) status [16]. Focusing on
those without thalassemia, individuals treated with anti-
retrovirals had a higher MCH level (36.13 vs. 28.7 pg; p
< 0.001) and higher MCV (107.26 vs 87.1 fL; p < 0.001)
[16]. However, HIV RNA levels were not reported.

Therefore, whether or not the importance of MCH is
due to a correlation with HIV RNA levels or due to
antiretrovirals, remains to be answered. While a signifi-
cant portion of our study population was on a regimen
containing a zidovudine, which has been associated with
anemia [17-20], these antiretrovirals were not likely to
have had an effect because treatment would have likely
attenuated the association of MCH with an HIV RNA
above 500 due to the inverse relationship. Furthermore,
including variables indicating whether zidovudine was
used did not significantly contribute to the random for-
est analysis. In the logistic model, the point estimates
for MCH and change in MCH remained virtually
unchanged (less than 5% of the estimate in Table 2)
suggesting that zidovudine and stavudine are unlikely
potential confounders of the MCH HIV RNA
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Figure 1 Calibration curve. A calibration curve resulting from the logistic model presented in Table 2, which shows good calibration overall
when applied to the training (solid diamonds, solid line) and validation (open circles, dash-dot line) sets, despite that those with a predicted
probability between 0.21 and 0.37 the actual probability appears to be lower than predicted in the validation set. Vertical lines correspond to
95% confidence intervals for the corresponding quintile group.
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relationship. Furthermore, inclusion of zidovudine and
stavudine in the model did not substantially improve the
AUROC (0.86 vs. 0.85). Nevertheless, the relationship
between HIV RNA and MCH should be further investi-
gated in longitudinal studies to confirm this relationship.
Second, the results suggest that a binary rule for classi-

fying individuals as either above or below 500 copies/ml
is too simplistic. Rather it may need to be multiple mar-
kers as a set of complex binary partitions (random-forest)

or a linear combination (on a logit scale) of multiple mar-
kers. The algorithmic random-forest approach has not
been used extensively in HIV/AIDS applications but
shows promise as a powerful tool to identify important
variables that may classify individuals as above or below a
certain HIV RNA threshold. As we have demonstrated,
this approach may be used in conjunction with a
regression model. For example, building a logistic
model using a backwards stepwise selection approach

Table 3 Results of applying the logistic model to both the training set and validation set using a predicted probability
of 0.5 as the cutoff*

Training Set (N = 784)

Model Classification* HIV RNA > 500 copies/ml HIV RNA ≤ 500 copies/ml

HIV RNA > 500 copies/ml 192 57 PPV = 0.77

HIV RNA ≤ 500 copies/ml 83 452 NPV = 0.84

Sensitivity 0.70 (95% CI: 0.64, 0.75) Specificity 0.89 (95% CI: 0.86, 0.91)

Validation Set (N = 784)

Model Classification* HIV RNA > 500 copies/ml HIV RNA ≤ 500 copies/ml

HIV RNA > 500 copies/ml 205 57 PPV = 0.78

HIV RNA ≤ 500 copies/ml 71 451 NPV = 0.86

Sensitivity 0.74 (95% CI: 0.69, 0.79) Specificity 0.89 (95% CI: 0.86, 0.91)

* Individuals with probability >0.5 were classified as having HIV RNA > 500; Positive predictive value (PPV); Negative predictive value (NPV)
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Figure 2 Receiver operating characteristic curve. The receiver operating characteristic curve (ROC) for the combined training and validation
data set (solid line), training (dashed line), and validation (dash-dot line) data based upon the logistic model presented in Table 2.
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with Akaike’s information criteria upon our training
data resulted in a model with 30 variables. Additionally
it had an AUROC of 0.91 with a sensitivity of 0.75 and
specificity of 0.92. However, this model was overly
optimistic had an attenuated AUROC, sensitivity and
specificity that was 0.84, 0.69, and 0.87, respectively.
This demonstrates that our approach resulted in a
much simpler model of 6 variables and an AUROC
that remained constant at 0.85 in both the training
and validation data sets. Thus our analysis did not
result in an overly optimistic model (i.e. model was
transportable to the validation set).
Our goal was to assess whether routinely collected

clinical markers in addition to CD4 could potentially
predict individuals who had an HIV RNA above 500
copies/ml after initiation of effective treatment. It is pos-
sible that additional information such as adherence data
would improve the prediction and discrimination
between those who do and do not have an HIV RNA
above 500 copies/ml. Recent studies by Bisson [21] and
Cambiano [22] have shown that adherence measures
may be useful for detecting virologic failure and
rebound, respectively. Thus inclusion of good adherence
data is likely to improve our prediction model that
focused on clinical markers.
We do not know whether these results will generalize

to regions which need a method for identifying indivi-
duals whose HIV RNA levels remain above 500 copies/
ml. Regional conditions may affect hematologic para-
meters such as MCH in ways (e.g., nutrition, endemic
diseases, etc.) that would make the MCH less predictive.
In addition, patients in a developed country can afford
routine complete blood count testing, which may be less
affordable and available in developing countries. Finally,
the prevalence of HIV RNA suppression will also contri-
bute to the usefulness of this predictor since the preva-
lence affects the positive and negative predictive values.
However, our approach of utilizing a random forest to
screen through variables to identify important predictors
for a prediction model may be applied to resource lim-
ited settings.
We believe that our approach is more powerful for

determining predictors of a suppressed viral load than
previous approaches in that it was able to identify
important prognostic markers from a large number of
variables while providing a parsimonious model with-
out loss (as compared to automatic backwards selec-
tion) in ability to discriminate between those who do
and do not have an HIV RNA above 500 copies/ml.
These methods could be used to determine whether
the MCH or other biomarkers can be used in
resource-limited settings where the viral load is not
routinely available.
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