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Abstract: Axial spondyloarthritis (axSpA) describes a group of chronic inflammatory 
rheumatic diseases primarily involving the axial skeleton. IL-17 is involved in the pathogen-
esis of numerous inflammatory diseases, including inflammatory arthritis. Until a few years 
ago, the only biological agents licensed for the treatment of axSpA and nr-axSpA were TNF 
inhibitors. However, as some patients did not respond to TNF inhibition or experienced 
secondary failure, the introduction of the first two IL-17 inhibitors (secukinumab [SEC] and 
ixekizumab [IXE]) has extended the treatment options, and there are now three others 
(bimekizumab, brodalumab and netakimab) in various stages of clinical development. The 
last ten years have seen the development of a number of therapeutic recommendations that 
aimed at improving the management of axSpA patients. The aim of this narrative review of 
the published literature concerning the role of IL-17 in the pathogenesis of SpA, and the role 
of IL-17 inhibitors in the treatment of axSpA, is to provide a comprehensive picture of the 
clinical efficacy and safety of the drugs themselves, and the treatment strategies recom-
mended in the international guidelines. 
Keywords: spondyloarthritis, ankylosing spondylitis, non radiographic axial 
spondyloarthritis, axial spondyloarthritis, anti-TNF drugs, anti-IL17 drugs, interleukin 17

Introduction
The term “axial spondyloarthritis” (axSpA) describes a group of chronic inflammatory 
rheumatic diseases primarily involving the axial skeleton. These are divided into the two 
major subtypes of radiographic axSpA (rx-axSpA) or ankylosing spondylitis (AS), and 
non-radiographic axSpA (nr-axSpA) on the basis of the presence or absence of radio-
graphically detected changes in the sacroiliac joints and/or spine. Both forms are char-
acterised by active inflammation that causes pain, stiffness, and bone formation, and thus 
leads to severely limited spinal mobility and functional impairment, but they may also 
involve the entheses and peripheral joints, as well as the eyes, skin and bowel.1,2

Nr-axSpA mainly affects females and AS mainly affects males, but there may 
also be sex-related differences in disease presentation: females often have a high 
Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and high Patient 
Global Assessment (PGA) scores, and more frequently experience fatigue and 
peripheral involvement, whereas males often have high C-reactive protein (CRP) 
levels, are positive for HLA B27, and show magnetic resonance imaging (MRI) 
evidence of inflammation.3–7

The main aims of axSpA treatment are to decrease inflammation and prevent or 
slow structural spinal damage in order to reduce pain and stiffness, and preserve 
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spinal mobility, and this has led to the introduction of 
targeted biological agents against TNF and (more recently) 
IL-17, which are highly effective in reducing disease signs 
and symptoms, improving physical function, and increas-
ing the quality of life.

The aim of this narrative review of the published 
literature concerning the role of IL-17 in the pathogenesis 
of SpA, and the role of IL-17 inhibitors in the treatment of 
axSpA, is to provide a comprehensive picture of the clin-
ical efficacy and safety of the drugs themselves, and the 
treatment strategies recommended in the international 
guidelines.

The Role of IL-17
IL-17 pro-inflammatory cytokines are produced by CD8+ 
T cells, γδ T cells, natural killer (NK) T cells, mucosal 
associated invariant (MAI) T cells, and other cells 
involved in immune processes.8 The most widely studied 
is IL-17A, the expression of which is regulated by other 
inflammatory cytokines, including IL-23 which, together 
with IL-17 in the so-called IL-23/IL-17 axis, makes 
a crucial contribution to host protection and 
inflammation.9,10

IL-17 is involved in the pathogenesis of numerous 
inflammatory diseases, including inflammatory 
arthritis,10,11 and its effects on specific cells (eg fibroblasts, 
epithelial cells and synoviocytes) lead to the transcription 
of pro-inflammatory genes and the subsequent secretion of 
pro-inflammatory cytokines (TNF, IL-1, IL-6) and chemo-
kines (CCL20, CCL2, CCL7, CXCL1, CXCL2, CXCL5, 
CXCL8).12–15 It also increases the production of granulo-
matosis-stimulating factors (G-CSF, GM-CSF),16 and reg-
ulates the production of antimicrobial peptides (defensins 
and S100 proteins).17 However, despite its protective func-
tion, excessive activation of the IL-17 pathway can lead to 
autoimmune responses or inflammatory diseases:18 it can 
guide the degradation of the joint extracellular matrix in 
patients with inflammatory arthritis;19,20 cause osteoclast 
activation and bone destruction;21 and also promote the 
angiogenesis that allows inflamed joints to be reached by 
inflammatory cells.22,23

IL-17F plays a similar role to that of IL-17A, but 
induces a weaker inflammatory response.24 It increases 
the production of certain pro-inflammatory mediators and 
matrix metalloproteinases in fibroblasts and epithelial 
cells,25,26 and is involved in the neutrophilia associated 
with severe asthma.27

IL-17A and IL-17F therefore both have pro- 
inflammatory, osteoclastogenic and angiogenic potential, 
thus making them critical drivers of inflammation.18

The IL-23/IL-17 axis plays a clear role in the patho-
genesis of SpA.18 Taams et al have reviewed its role in 
animal models of inflammatory arthritis, discussed the 
presence of IL-17 family members in the blood and tissue 
of SpA patients, and investigated the genetic variants 
involving the axis that leading to susceptibility to SpA.18 

They have also explored the synergistic effect of IL-17 and 
other pro-inflammatory cytokines on joint inflammation 
and altered bone homeostasis.18

A number of animal models of inflammatory arthri-
tides, including rheumatoid arthritis (RA) and SpA, have 
demonstrated the key pathogenetic role of the IL-17 and 
IL-23 pathways.18 It has been shown that the inhibition of 
IL-17A decreases disease activity and joint damage in an 
adjuvant-induced model of arthritis.28,29 Moreover, IL-17 
or IL-17 receptor knockout in an animal model of col-
lagen-induced arthritis (CIA) prevents the development of 
the disease, which depends on IL-17 in its early phases, is 
partially suppressed by IL-17 receptor inhibition during 
the phase of active inflammation, and is exacerbated in 
terms of severity and joint destruction when IL-17 is 
overexpressed.30–33

One comprehensive review of these animal models34 

has reported that the overexpression of HLA-B27 in rats 
leads to the proliferation of IL-17+ CD4+T cells.35,36 It has 
also been shown that the IL-17 produced by IL-23 stimu-
lates arthritis within an SpA syndrome in the SKG mouse 
model of RA,37–39 and that the introduction of exogenous 
IL-23 stimulates the production of IL-17 and exacerbates 
enthesitis in the CIA model.40,41 Furthermore, IL-17 plays 
a key role in the development of ankylosis and psoriasis- 
like dermatitis in certain mouse strains.42,43

IL-17A and IL-17F Cytokines in SpA 
Patients
IL-17A and IL-17F have been investigated in fewer stu-
dies of SpA than studies of RA, but the results have shown 
that their serum levels are significantly higher in SpA 
patients than in healthy subjects.43,44 Moreover, serum 
IL-17 levels in AS patients correlate positively with dis-
ease activity.45,46 It has also been found that IL-17 levels 
are higher in the synovial fluid than in the serum of 
psoriatic arthritis (PsA) patients,47 and higher in the syno-
vial fluid of patients with reactive arthritis or 
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undifferentiated SpA than in those with osteoarthritis (OA) 
or RA.48 Furthermore, the expression of IL-17 receptor 
A is higher in the synoviocytes of PsA and RA patients 
than in the synoviocytes of patients with OA.49

One study has found that the gut (terminal ileum) of AS 
patients is a significant source of IL-23 but not IL-17.50

The only data available concerning IL-17F in SpA 
patients show that it is more frequently present and more 
expressed in the synovial tissue of patients with PsA than 
in OA patients.51,52

The synergistic effects of IL-17A and other cytokines 
and mediators lead to an increased pro-inflammatory 
response and, although these effects have been explored 
in only a few studies of SpA, they have been widely 
studied in RA patients.18

The most widely studied is the synergy of IL-17A and 
TNF.53–55

However, the synergistic role of IL-17A and TNF in 
bone formation and destruction still needs further and 
more detailed clarification.18

IL-17A can also have synergistic effects with other 
pro-inflammatory cytokines:18 together with IL-1β, it 
increases the production of IL-6 by RA synoviocytes56 

and the production of CCL20 by fibroblast-like 
synoviocytes57 and, together with IFNα, it enhances the 
expression of intercellular adhesion molecule 1 (ICAM1), 
thus increasing inflammation in PsA patients.58

The lack of robust evidence means that the role of 
IL-17F in the pathogenesis of SpA still needs to be 
definitely confirmed,18,59 but it is known that it acts 
synergistically with IL-17A in the process of 
inflammation52,59 and it has been shown that dual IL- 
17A and IL-17F blockade reduces inflammation better 
than IL-17A blockade alone.59

The mechanisms allowing the synergistic effects of IL- 
17A and IL-17F are not clear, but it has been hypothesised 
that IL-17A may stabilise mRNA transcripts, thus increas-
ing gene expression and protein production,60 and that 
phospholipase D enzymes may up-regulate cytokine 
secretion.61 For example, although there is no evidence 
concerning IL-17F,18 it has been reported that IL-8 mRNA 
and other mRNA transcripts (including ACT1, MIP2 and 
CSF2) are involved in the synergy between TNF and IL- 
17A.15,18

Among all of the immunity cell types capable of pro-
ducing IL-17, it has been shown that a number of T cell 
subsets produce IL-17 in patients with SpA.11,62–64

1. IL-17+ CD8+ T cells have been identified as poten-
tial sources of IL-17 in studies of immune-mediated 
inflammatory diseases, including psoriasis, multiple 
sclerosis and PsA (eg in psoriatic skin 
lesions).58,62,65–70 These T cells can be found in 
the peripheral blood of patients with AS, and their 
frequency increases with the severity of the 
disease;71 furthermore, they are more frequent in 
the synovial fluid than in the peripheral blood of 
both PsA and AS patients.65,72 Their immunophe-
notype shows pro-inflammatory capacity,73 and 
their presence is associated with markers of disease 
activity such as CRP levels and Doppler findings.65 

However, increased levels of IL-17-producing CD8 
+ T cells have not been found in RA patients,65 and 
seem to be related to the development of only HLA 
class I and not HLA class II-associated SpA.18

2. Tissue-resident memory (TRM) T cells. CD8+ TRM 

cells express IL-17 and other cytokines in the skin 
of healthy and psoriatic subjects69,74–76 and, 
although less widely studied, CD4+ TRM cells 
have also been found in human skin.77 It has been 
shown that IL-17-producing TRM cells can be con-
sidered disease drivers in a mouse model of SpA,78 

and they may be present in the synovial fluid of 
patients with juvenile inflammatory arthritis (JIA)79 

or SpA,73 which underlines their importance in the 
pathogenesis of inflammatory arthritides.18

3. MAIT cells. CD8+ MAIT cells (particularly Vα7.2/ 
IL-17+CD8+ T cells) have been identified in the skin 
and blood of psoriatic patients.80,81 They are also 
more frequently detected in the peripheral blood of 
AS patients than in the peripheral blood of healthy 
subjects.82,83

4. Invariant NKT cells. Very few studies have 
described the presence of IL-17-producing NKT 
cells in SpA patients, but the findings of a murine 
study suggest that NKT cells may maintain or acti-
vate TH17 cells, and thus contribute to the develop-
ment of inflammation.84

5. γδ T cells producing IL-17 have been very fre-
quently detected in the peripheral blood of patients 
with PsA, AS, reactive arthritis, and enthesitis- 
related JIA,78,85–87 as well as in the synovial fluid 
of patients with PsA, reactive arthritis, and undiffer-
entiated SpA.87,88 It has also been shown that γδ 
T cells produce IL-17 in mouse models of SpA and 
psoriatic skin inflammation,89–91 and accumulate in 

ImmunoTargets and Therapy 2021:10                                                                                               https://doi.org/10.2147/ITT.S259126                                                                                                                                                                                                                       

DovePress                                                                                                                         
143

Dovepress                                                                                                                                                           Atzeni et al

https://www.dovepress.com
https://www.dovepress.com


tissues often affected by SpA, such as the entheses, 
the aortic root, and the eye.92

Other Cells
IL-17 can also be produced by immunity cells other than 
T cells, including group 3 innate lymphoid cells (ILC3s), 
which have been described in the peripheral blood and 
synovial fluid of PsA patients, where their levels correlate 
with disease activity.93,94 High levels of CD3− CD56+ NK 
cells have been detected in patients with enthesitis-related 
arthritis,86 and IL-17-producing NK cells have been found 
in the synovial fluid of patients with reactive arthritis or 
undifferentiated SpA.88

Finally, it has been found that mast cells, which were 
initially hypothesized to be IL-17 producing cells, actually 
have the function of storing and releasing exogenous IL- 
17A.95,96

IL-17 Inhibition in axSpA Patients: 
Randomised Controlled Trials and 
Real-Life Data
Until a few years ago, the only biological agents licensed 
for the treatment of AS and nr-axSpA were TNF inhibitors. 
However, as some patients did not respond to TNF inhibi-
tion or experienced secondary failure, the introduction of 
the first two IL-17 inhibitors (secukinumab [SEC] and 
ixekizumab [IXE]) has extended the treatment options, 
and there are now three others (bimekizumab, brodalumab 
and netakimab) in various stages of clinical 
development.97

The last ten years have seen the development of 
a number of therapeutic recommendations aimed at 
improving the management of axSpA patients. The guide-
lines of the Assessment of Spondyloarthritis International 
Society/European League Against Rheumatism (ASAS/ 
EULAR)98 and those of the American College of 
Rheumatology/Spondylitis Association of America/ 
Spondyloarthritis Research and Treatment Network 
(ACR/SAA/SPARTAN)99 recommend the use of non- 
steroidal anti-inflammatory drugs (NSAIDs) and physical 
therapy in the first-line treatment of pain and stiffness.

As for conventional disease-modifying anti-rheumatic 
drugs (DMARDs), only sulfasalazine has demonstrated 
a mild efficacy in treating the axial manifestations of 
SpA but, as well as methotrexate and leflunomide, it may 
play a role in the treatment of peripheral SpA solely.

In the case of non-responders to NSAIDs or patients 
for whom NSAIDs are contraindicated, biological drugs 
(TNF and IL-17 inhibitors) are strongly recommended. As 
there is no indication that any one of these is more effec-
tive than the others, the choice should be made on the 
basis of the available safety data, the presence of extra- 
articular manifestations, and patient preference. Since no 
predictive factors of good response to IL-17 inhibitors are 
currently available, treatment response is still far from 
ideal for many patients, and we lack the biomarkers to 
predict which medication is most appropriate for an indi-
vidual patient. The ASAS/EULAR98 and ACR/SAA/ 
SPARTAN99 guidelines recommend TNF inhibitors as 
first line of biologic agents, mainly because of a broader 
clinical experience and larger pharmacovigilance data with 
these agents as compared to IL-17 inhibitors. This 
approach may change in future when real life data and 
results of comparative and strategy studies on IL-17 inhi-
bitors will be available.

Clinical trials are of course the gold standard for asses-
sing the efficacy and safety of new biological drugs but, as 
they are conducted under standardized conditions and 
exclude certain types of patients and/or situations, their 
findings may not reflect their real-world prescription 
and use.

Secukinumab
The efficacy and safety of SEC, a fully human antibody 
that selectively targets IL-17A and inhibits its interaction 
with IL-17 receptors,100 has been tested in AS patients in 
one phase II101 and five Phase III trials (MEASURE 1,102 

MEASURE 2,103 MEASURE 2-J,104 MEASURE3105 and 
MEASURE4106) and their extensions. In the Phase II 
proof-of-concept study, 59% of the patients in the SEC 
group showed a week-64 ASAS20 response as against 
24% of the patients receiving placebo (PBO).

MEASURE 1 and 2,97 which respectively enrolled 371 
and 219 patients, tested two doses of the active drug (75 
and 150 mg) against PBO, and had the percentage of 
patients with a week-16 ASAS20 response as their primary 
endpoint (Table 1). At the end of the MEASURE 1 study, 
an ASAS20 response was achieved by 61% of the patients 
in the 75 mg group, 60% of those in the 150 mg group, 
and 28% of those in the PBO group; in MEASURE 2, the 
corresponding figures were respectively 41%, 61% and 
28%.102,103 The drug was efficacious regardless of whether 
it was received by patients as their first biological drug or 
by patients failing to respond to previous anti-TNF 

https://doi.org/10.2147/ITT.S259126                                                                                                                                                                                                                                    

DovePress                                                                                                                                                        

ImmunoTargets and Therapy 2021:10 144

Atzeni et al                                                                                                                                                           Dovepress

https://www.dovepress.com
https://www.dovepress.com


treatment. About 80% of the patients did not experience 
radiographic progression over a period of two years,107 

and the drug was well tolerated.108

Sustained responses were observed in the 5-year, long- 
term extension of MEASURE 1, during which 74% of the 
patients in the 75 mg group and 79% of those in the 150 mg 
group achieved an ASAS20 response, and respectively 54% 
and 65% achieved an ASAS40 response.109,110 Among the 
150 patients who completed five years’ treatment with SEC 
150 mg in the extension of MEASURE 2,111 ASAS20 
responses were recorded in 67% and ASAS40 responses in 
50%, and there were sustained improvements in the other 
efficacy endpoints. The drug’s safety profile remained con-
sistent with that described in previous reports.111

A pooled analysis of MEASURE 1 and 2 showed that 
the majority of the SEC-treated patients who achieved 

remission by week 16 remained in remission for up to 
three years.112

The use of SEC 150 mg in the MEASURE 2-J trial led 
to sustained improvement in the signs and symptoms of 
Japanese AS patients for 24 weeks without giving rise to 
any new or unexpected safety issues.104

In the MEASURE 3 trial, in comparison with 36.8% of 
the patients receiving PBO, a 16-week ASAS20 response 
(the primary endpoint) was observed in 60.5% of the 
patients treated with SEC 300 mg (p<0.01) and 58.1% of 
those treated with SEC 150 mg (p<0.05).105 There were 
improvements in the primary and secondary endpoints in 
both TNF inhibitor-naïve patients and patients inade-
quately responding to previous TNF inhibition.113 The 52- 
week ASAS20 and ASAS40 response rates in the SEC 
150 mg group were respectively 54% and 41%.105

Table 1 Summary of Secukinumab Trials

MEASURE1102 

(TNFi-Naïve and TNFi-IR 
As Patients)

MEASURE2103 

(TNFi-Naïve and 
TNFi-IR As 

Patients)

MEASURE3105 

(TNFi-Naïve and TNFi-IR 
As Patients)

PREVENT114 

(nr-axSpA Patients)

Subjects 371 219 226 555

Drug regimen i.v. SEC 10 mg/kg or matched 

PBO week 0, 2 and 4, and then 
s.c. SEC (75 or 150 mg) or 

matched PBO injection every 

4 weeks, starting week 8

s.c. SEC (75 or 

150 mg) or 
matched PBO week 

0, 1, 2, 3 and 4, and 

then every 4 weeks

i.v. SEC 10 mg/kg or matched 

PBO week 0, 2 and 4, and then 
s.c. SEC (150 or 300 mg) or 

matched PBO injection every 

4 weeks starting week 8

SEC 150 mg LD, SEC 150 mg 

NL, or PBO week 0, 1, 2 and 
3, and then every 4 weeks 

starting week 4. The SEC 

150 mg NL group received 
PBO in week 1, 2, and 3 to 

maintain blinding

ASAS20 responses 

week 16 (primary 
endpoint of 

MEASURE 1, 2 and 3; 

secondary endpoint 
of PREVENT)

60% (SEC 150 mg)* 61% (SEC 150 mg)* 60.5% (SEC 300 mg)* 56.8% (SEC 150 mg LD)**
61% (SEC 75 mg)* 41% (SEC 75 mg) 58.1% (SEC 150 mg)** 58.2% (SEC 150 mg ND)**

29% (PBO) 28% (PBO) 36.8% (PBO) 45.7% (PBO)

ASAS40 responses 
week 16 (secondary 

endpoint of 

MEASURE 1, 2 and 3; 
primary endpoint of 

PREVENT)

42% (150 mg)* 36% (SEC 150 mg)* 42.1% (SEC 300 mg)** 41.5% (SEC 150 mg LD)**
33% (75 mg)* 26% (SEC 75 mg) 40.5% (SEC 150 mg)** 40.8% (SEC 150 mg ND)*

13% (PBO) 11% (PBO) 21.1% (PBO) 29.2% (PBO)

ASAS-PR week 16 15% (SEC 150 mg)* 14% (SEC 150 mg)* 21.1% (SEC 300 mg)** 21.6% (SEC 150 mg LD)*

16% (SEC 75 mg)* 15% (SEC 75 mg)* 9.5% (SEC 150 mg) 21.2% (SEC 150 mg ND)*

3% (PBO) 4% (PBO) 1.3% (PBO) 7% (PBO)

Notes: *P<0.01, ** P<0.05 in comparison with placebo. 
Abbreviations: AS, ankylosing spondylitis; nr-axSpA, non radiographic axial spondyloarthritis; TNFi, tumour necrosis factor inhibitors; IR, inadequate responders; SEC, 
secukinumab; i.v., intravenous; s.c., subcutaneous; LD, loading dose; NL, no loading dose; PBO, placebo; PR, partial remission.
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MEASURE 4 assessed the long-term efficacy, safety 
and tolerability of SEC. The initial 16-week treatment was 
completed by 97% of the patients, and the subsequent two- 
year treatment was completed by 83%.106 The primary 
endpoint of 16-week ASAS20 responses was not reached 
because of the very high response rate in the PBO 
group,109 but the drug’s two-year safety profile matched 
that described in previous studies.113

PREVENT was the first phase III trial of SEC in active 
nr-axSpA patients with objective signs of inflammation 
(MRI with SI joint inflammation and/or high-sensitivity 
CRP).114 The treatment improved disease signs and symp-
toms throughout the 52-week study period without leading 
to any new safety findings. The study met both of its 
primary endpoints: the 16-week ASAS40 response rate 
was higher among the patients receiving SEC 150 mg 
with loading doses than among those receiving PBO 
(41.5% vs 29.2%; p = 0.0197), and the 52-week 
ASAS40 response rate was also higher in the patients 
receiving SEC 150 mg without loading doses (39.8% vs 
19.9%; p <0.0021).114

A very recent a systematic review and meta-analysis of 
ten randomized controlled trials (RCTs) assessing the effi-
cacy and safety of IL-17A inhibitors in a total of 2,613 
patients with AS (six trials of SEC, two of IXE, and one 
each of netakimab and bimekizumab) showed that, in 
comparison with placebo, the IL-17A inhibitors improved 
both the ASAS20 response rate (OR = 2.58; p <0.01) and 
the ASAS40 response rate (OR = 2.80; p <0.01). Although 
the treatment significantly increased the risk of adverse 
events (OR = 1.23; p = 0.03) and nasopharyngitis (OR = 
1.72; p <0.01), it did not increase the risk of serious 
adverse events (OR = 0.87; p = 0.60).115

In 2018, Gentileschi et al described the first real-life 
experience of the short-term efficacy of SEC in 21 axSpA 
patients enrolled at three Italian referral centers. Between 
the start of treatment and the 3-month follow-up visit, 
there was a statistically significant reduction in the 
BASDAI (p <0.0001) and ASDAS-CRP values (p = 
0.0005), with no statistically significant difference 
between the subgroups receiving SEC 150 or 300 mg, 
and no significant difference between the biological treat-
ment-naïve patients and the patients previously treated 
with TNF inhibitors. No adverse events were reported 
during the observation period.116

The same group also published the findings of a real- 
life study of the long-term effectiveness of SEC and drug 
survival in axSpA patients in 2020. There was 

a statistically significant reduction in the BASDAI and 
ASDAS-CRP values during the 24-month observation per-
iod, with no statistically significant difference between the 
two doses or between the biological treatment-naïve 
patients and the patients failing to respond to previous 
TNF inhibition. The global 24-month drug retention rate 
was 78.2%, and no adverse event or infectious disease was 
reported during the study period.117

In 2019, Mann et al published findings taken from the 
Czech ATTRA that showed rheumatologists considered 
SEC to be equivalent to a TNF inhibitor in the case of 
biological DMARD-naïve patients and that, after the fail-
ure of ≥3 TNF inhibitors, patients were significantly more 
likely to be treated with SEC.118

Elliot and Wright described their experience with SEC 
in a cohort of 45 patients: 36 with PsA (five of whom had 
predominant axial disease) and nine with AS. SEC proved 
to be effective in patients inadequately responding to TNF 
inhibition in their clinical setting.119

Williams et al described the results of their real-world 
experience of SEC treatment for AS at the Royal National 
Hospital for Rheumatic Diseases in Bath in 2020, thus 
providing further evidence that SEC is largely safe and 
effective.120

Also, in 2020, the Spondyloarthritis Roman Group 
(STRONG) published the results of a multicentre, prospec-
tive observational study121 showing that SEC improved all 
of the evaluated clinical parameters and patient-reported 
outcomes after six and 12 months. The treatment was well 
tolerated, and drug survival was good, particularly among 
male AS patients.121

Another real-life study of 1,860 axSpA patients in 13 
European registries participating in the European 
Spondyloarthritis Research Collaboration Network was 
published in 2020.122 SEC retention rates after six and 
12 months of treatment were respectively 82% and 72%, 
and comparable with those observed in studies of TNF 
inhibition. Response rates were lower than those recorded 
in the RCTs but consistently better among the biological 
drug-naïve patients.122

A recent systematic review and meta-analysis of real- 
life studies of the biological drugs used to treat AS has 
shown that one-year drug survival rate of SEC was 0.77 
(95% confidence interval 0.64–0.90).123

A Canadian cost-effectiveness analysis has shown that 
SEC 150 mg is a more cost-effective option for biological 
treatment-naïve AS patients than certolizumab pegol, ada-
limumab, golimumab, etanercept and an etanercept 
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biosimilar, or infliximab and an infliximab biosimilar,124 

and the situation is similar in Finland125 and the UK126 for 
both biological treatment-naïve and biological treatment- 
experienced patients with active AS.

The ongoing, longitudinal SERENA study of patients 
with psoriasis, PsA or AS with an observational period of 
up to five years is being conducted at 438 centers across 
Europe and, when its results become available, it will 
provide valuable information concerning the long-term, 
real-world effectiveness and safety of SEC.127

Two recent real life cohort studies compared effective-
ness of treatment with SEC with that of TNF inhibitors. 
Both studies showed that axSpA patients with prior TNFi 
exposure treated with SEC experienced comparable out-
comes as patients treated with an alternative TNF 
inhibitor.128,129

Ixekizumab
The efficacy of IXE, an IgG4 monoclonal antibody that 
has affinity for the homodimer IL-17A and the heterodi-
mer IL-17A/F, in treating radiographic axSpA has been 
demonstrated in two phase III RCTs (COAST-V130 and 
COAST-W131), both of which achieved their primary 

endpoints and showed significant ASAS40 responses to 
its administration every two or every four weeks (Table 2).

In the COAST-V trial, which enrolled TNF inhibitor- 
naїve AS or r-axSpA patients, 16-week ASAS40 responses 
were observed in 51.8% of those receiving IXE every two 
weeks, in 48.1% of those receiving IXE every four weeks, 
and in 18.6% of those receiving PBO.130 The trial also 
included a fourth study arm of patients receiving adalimu-
mab 40 mg every two weeks that served as an in-study 
active reference for comparison. Numerically, the ASAS40 
response seen with IXE were similar to those observed in 
the adalimumab group. Week-52 ASAS40 responses were 
observed in 53.1% of the patients treated with IXE every 4 
weeks and in 51% of the patients treated with IXE every 2 
weeks.131–134

The COAST-W trial enrolled AS or r-axSpA patients 
inadequately responding to TNF inhibition. Week-16 and 
week-52 ASAS40 responses were observed in respectively 
25.4 and 34.2% of the patients treated with IXE every four 
weeks, 30.6 and 30.6% of those treated with IXE every 
two weeks.131,134

No data are yet available concerning the ability of IXE 
to inhibit structural progression.

Table 2 Summary of Ixekizumab Trials

COAST-V130 

(TNFi Naïve r-axSpA Patients)
COAST-W131 

(TNFi-IR r-axSpA 
Patients)

COAST-X135 

(nr-axSpA Patients)

Subjects 341 316 303

Drug regimen s.c. IXE 80 mg every 2 or every 4 weeks; s.c. ADA 

40 mg every 2 weeks (active reference group); or 
matching PBO injection every 2 weeks

s.c. IXE 80 mg every 2 or 

every 4 weeks; matching PBO 
injection every 2 weeks

s.c. IXE 80 mg every 2 or 

every 4 weeks; matching PBO 
injection every 2 weeks

ASAS20 response 
week 16 (secondary 

endpoint)

68.7% (IXE 80 mg Q2W)* 
64.2% (IXE 80 mg Q4W)* 

60.5% (ADA 40 mg Q2W) 

40.7% (PBO)

46.9% (IXE 80mg Q2W)** 
48.2% (IXE 80mg Q4W)** 

29.8% (PBO)

NA

ASAS40 response 

week 16 (primary 
endpoint)

51.8% (IXE 80 mg Q2W)† 

48.1% (IXE 80 mg Q4W)† 
36% (ADA 40 mg Q2W) 

18.6% (PBO)

30.6% (IXE 80mg Q2W)‡ 

25.4% (IXE 80mg Q4W)‡ 
12.5% (PBO)

40% (IXE 80 mg Q2W)# 

35% (IXE 80 mg Q4W)# 
19% (PBO)

ASAS-PR week 16 14.5% (IXE 80 mg Q2W) 

14.8% (IXE 80 mg Q4W) 

15.1% (ADA 40 mg Q2W) 
8.1% (PBO)

5.1% (IXE 80 mg Q2W) 

6.1% (IXE 80 mg Q4W) 

1.1% (PBO)

NA

Notes: †P<0.0001 (Q2W and Q4W); ‡P=0.003 (Q2W), P=0.017 (Q4W); *P= 0.002 (Q2W), P=0.0015 (Q4W); **P<0.05 (Q2W), P<0.01 (Q4W); #P=0.0094 (Q4W), 
P=0.0016 (Q2W); P values in comparison with placebo. 
Abbreviations: r-axSpA, radiographic axial spondyloarthritis; nr-axSpA, non radiographic axial spondyloarthritis; TNFi, tumour necrosis factor inhibitors; IR, inadequate 
responders; NSAIDs, non-steroidal anti-inflammatory drugs; IXE, ixekizumab; s.c., subcutaneous; PBO, placebo; ADA, adalimumab; NA, not available; Q2W, every two 
weeks; Q4W, every four weeks; PR, partial remission.
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The efficacy and safety of IXE in patients with nr- 
axSpA was assessed in the COAST-X trial, a phase III 
RCT that enrolled TNF inhibitor-naïve patients135 (Table 
2). IXE was superior to PBO after 16 and 52 weeks: 16- 
week ASAS40 responses were observed in 35% of the 
patients receiving IXE every four weeks, 40% of those 
receiving IXE every two weeks, and 19% of those receiv-
ing PBO; 52-week ASAS40 responses were observed in 
respectively 30%, 31%, and 13%. The adverse events were 
no different from those found in previous IXE studies, and 
no new safety issues were identified.136 IXE was approved 
for the treatment of nr-axSpA by the FDA and the EMA in 
June 2020.137

To the best of our knowledge, there are no published 
real-life observational studies of IXE treatment in axSpA 
patients.

Efficacy of Secukinumab and Ixekizumab on 
Extra-Axial Manifestations
In addition to axial involvement, axSpA patients may also 
suffer from peripheral arthritis, enthesitis and dactylitis as 
well as extra-articular manifestations such as psoriasis, 
uveitis and inflammatory bowel diseases (IBD). These 
outcomes have not been specifically assessed in the 
above mentioned SEC and IXE pivotal trials where only 
axial outcomes have been studied as primary endpoints.

Nevertheless, some information about peripheral arthri-
tis, enthesitis, dactylitis and psoriasis may be drawn from 
the development programs of IXE and SEC in PsA show-
ing significant improvements for all these features.113

Treatment emergent anterior uveitis and IBD were 
reported in long-term clinical trials (MEASURE and 
COAST programs) and post marketing safety data in psor-
iasis, PsA and AS with low overall incidences, within the 
expected ranges in these disorders.110,111,134,138 However, 
the available data, although limited, would encourage cau-
tion in the use of IL-17 inhibition in patients with a history 
of uveitis or IBD.

Based on the aforementioned data regarding uveitis, 
IBD and psoriasis, IL-17 inhibitors would not be the first 
choice in case of associated IBD or uveitis, whereas it 
would be appropriate in case of psoriasis.

Other IL-17 Inhibitors
Brodalumab (an IL-17A receptor antagonist that also inhibits 
IL-17F, the IL-17A/F heterodimer and IL-17E) is approved 
for the treatment of psoriasis.139 However, a phase III trial 
involving patients with PsA was interrupted because of 

concerns about major side effects including depression and 
suicidal behaviour140 (although it is still unclear whether 
there is a causal relationship between the drug and suicidal 
ideation and behaviour), and a PBO-controlled phase II trial 
involving axSpA patients (ClinicalTrials.gov ID 
NCT02429882) was cancelled and withdrawn in 2015.

The preliminary results of a phase III trial of brodalu-
mab treatment in AS and nr-axSpA patients 
(ClinicalTrials.gov ID NCT02985983) carried out in 
Japan were presented at the 2019 EULAR conference.141 

The week-16 ASAS40 response rate was significantly 
higher in the brodalumab group (35/80, 43.8%, p=0.018) 
than in the PBO group (19/79, 24.1%) and, on the basis of 
these results, brodalumab may be considered a future ther-
apeutic option for patients with axSpA.

Bimekizumab, an inhibitor of both IL-17A and IL-17F, has 
been shown to be effective in a phase IIb trial involving AS 
patients:142 significantly more bimekizumab-treated patients 
achieved a week-12 ASAS40 response than those receiving 
PBO (non-responder imputation: 29.5% for bimekizumab 
16 mg every four weeks; 42.6% for bimekizumab 64 mg 
every four weeks; 46.7% for bimekizumab 160 mg every 
four weeks vs 13.3% for PBO every four weeks; p<0.05).132 

Phase II trials involving AS patients (ClinicalTrials.gov ID 
NCT03355573 and NCT03215277) and phase III trials invol-
ving patients with AS (ClinicalTrials.gov ID NCT03928743), 
nr-axSpA (ClinicalTrials.gov ID: NCT03928704), or AS and 
nr-axSpA (ClinicalTrials.gov ID NCT04436640) are currently 
ongoing.

Netakimab is a recombinant humanized IgG1 anti-IL 
-17 monoclonal antibody with a modified Fc fragment and 
CDR regions.143 A Phase III, PBO-controlled trial 
(ClinicalTrials.gov ID NCT03447704) is currently evalu-
ating the safety and efficacy of a 120 mg dose for up to 
one year in 228 patients with active AS.

Conclusions
The IL-23/IL-17 axis plays a clear role in the pathogenesis 
of SpA. IL-17A and IL-17F have been investigated in few 
studies of SpA, but their serum levels are significantly 
higher in SpA patients and correlate positively with dis-
ease activity. TNF and (more recently) IL-17 inhibitors 
have dramatically changed the scenario of axSpA treat-
ment as they are highly effective in reducing disease signs 
and symptoms, improving physical function, and increas-
ing the quality of life. The results of clinical trials have 
shown that IL-17 inhibitors are efficacious and safe, and 
this has been confirmed by some recent real-world data 
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concerning a range of unselected patients. The guidelines 
of the ASAS/EULAR and those of the American College 
of Rheumatology/Spondylitis Association of America/ 
Spondyloarthritis Research and Treatment Network 
(ACR/SAA/SPARTAN) recommend in the case of non- 
responders to NSAIDs or patients for whom NSAIDs are 
contraindicated, biological drugs (TNF and IL-17 inhibi-
tors). Until today, there is no indication that any one of 
these is more effective than the others, then the choice 
should be made on the basis of the available safety data, 
the presence of extra-articular manifestations, and patient 
preference. However, based on the published data IL-17 
inhibitors would not be the first choice in case of asso-
ciated IBD or uveitis.
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