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Abstract: The fast and precise fabrication of micro-devices based on single flakes of novel 2D materials
and stacked heterostructures is vital for exploration of novel functionalities. In this paper, we demon-
strate a fast high-resolution contact mask lithography through a simple upgrade of metallographic
optical microscope. Suggested kit for the micromask lithography is compact and easily compati-
ble with a glove box, thus being suitable for a wide range of air-unstable materials. The shadow
masks could be either ordered commercially or fabricated in a laboratory using a beam lithography.
The processes of the mask alignment and the resist exposure take a few minutes and provide a
micrometer resolution. With the total price of the kit components around USD 200, our approach
would be convenient for laboratories with the limited access to commercial lithographic systems.

Keywords: lithography; mask lithography; Van der Waals heterostructures; 2D materials; nanoelectronics

PACS: 42.82.Cr

1. Introduction

Two-dimensional materials and Van der Waals heterostructures attract a great interest
due to novelty of the properties with respect to traditional 3D materials. Almost all
phenomena being made atomically flat revolutionize the corresponding scientific area,
e.g., optoelectronics [1], magnetism [2] and superconductivity [3]. More importantly, these
materials become the elements of the future devices, e.g., chemical sensors [4], radiation
detectors [5], LEDs [6], qubits [7], etc.

Practically, the majority of the novel 2D material-based device prototypes are built
up from micrometer sized flakes placed on ∼1 × 1 cm2 substrates. The flakes are typically
obtained by mechanical exfoliation method [8–10], that is applicable to most of layered ma-
terials and gives the highest quality 2D crystals. The other fabrication methods, e.g., liquid
exfoliation [11] or CVD growth [12], may also produce rather small flakes.

Lithography allows us to pattern mesa-structures, contacts, gate electrodes etc. It is an
obligatory stage of the device fabrication. There are many types of lithography, e.g., scan-
ning probe lithography [13], nano-imprint [14], interference lithography [15], stencil mask
lithography [16] and others. The majority of these methods are too complicated for 2D
materials-related problems. Most of the lithographical processes with microflakes are,
therefore, performed using either beam (electron or laser) or mask optical lithography.

Beam lithography is rather expensive (the typical costs of the laser writers and the
electron beam lithography machines are ∼USD 100,000 and ∼USD 1,000,000, respectively),
time-consuming and requires a fabrication of a system of the marks. The contact mask
optical lithography is usually performed with a mask aligner. It is a rather fast process.
Commercial mask aligners are designed for 2′′–6′′ diameter substrates and include high
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mechanical accuracy positioning system and sophisticated optics for uniform exposure.
These elements are necessary for submicron precision over the whole wafer area and
determine high cost (∼USD 100,000) and size of the typical mask aligners [17,18]. Thus,
a lithography could be a bottleneck in the 2D materials laboratories.

Another feature of 2D materials is the degradation of almost all of them (except for
graphene and hBN) on the air [19,20]. To overcome this issue the time of the air expo-
sure is minimized and the encapsulation between hBN layers in the inert atmosphere is
used [20–22]. Recently several set-ups were built with lithographers placed into the inert at-
mosphere gloveboxes [23,24]. Such a combination makes lithography even more expensive.

The existing compact low-cost lithography systems lack for either an alignment op-
tion [25,26] or a µm resolution [27,28] required for 2D materials.

This research suggests a solution of the abovementioned problems within a cheap,
compact and inert atmosphere-integrable optical mask lithography system. The installa-
tion is based on an optical microscope, a manual XYZR stage, an UV-diode and exploits
∼1 × 1 cm2 size shadow masks. We demonstrate applicability of the system for 2D materi-
als and other microstructures. The suggested approach paves an alternative to high-priced
conventional lithography for microstructures and 2D materials laboratories.

2. Materials and Methods
2.1. Description of the Installation

Figure 1 shows a scheme and a photograph of the setup. A kit to a metallographic
optical microscope (with illumination from the top) includes an XYZR stage, located on
the microscope bottom illumination condenser platform, and an UV-diode, located on
the objective turret instead of one of the objectives. The substrate is taped to the XYZR
stage. The chromium mask is attached to the underside of the microscope slide with
the metal-coated side facing the substrate. The microscope slide is fixed in the standard
microscope slide position. The mask is positioned with respect to the substrate in the focus
of the objective using both the slide movement and the XYZR movement of the substrate.

2.2. Mask Fabrication

In this section, we describe how to make a mask in the lab. We use a free version of the
KLayout software for drawing the design of the mask in .DXF or .GDS format. Microscope
glass slide is used as a carrier (Figure 2a). After cleaning the glass in acetone, isopropanol
and deionized water we deposit (resistive heating in 10−5 Torr vacuum) around 100 nm of
chromium (Figure 2b). Then, we spin-coat it with the resist (HS-1512, 1 min, 4 k rpm), bake
the resist (50 s, 100 ◦C). We expose the design of the mask in the resist using the laser-beam
lithographer µPG 101 by Heidelberg and develop it (AZ-326 MIF by Microchemicals). Then,
we etch the metal (solution Ceric ammonium nitrate: perchloric acid: H2O = 10.9%: 4.25%:
84.85% [29]) and remove the rest of the resist with acetone (Figure 2c). A prepared library
of the masks (see example in Figure 2d) allows us to make lithography on the samples of
various shape and size without making a new unique mask each time. Similar ideas could
be found in Ref. [30], where a set of masks with alignment markers of the special shape
was suggested.

2.3. Lithography Procedure

The photos of the stages and the results of the lithography on few-layer graphene
samples are shown in Figure 3a–e. We used natural graphite and LLE method of mechanical
exfoliation [31] to insulate mono- and few layers of graphene on oxidized Si (285 nm
thermally grown SiO2 4′′ wafer from Graphene Supermarket [32]). The Si wafer was
heavily doped with boron to provide back-gating at the low temperatures.
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UV diodeSlide with the mask

XYZ-R tableSubstrate

Objective turret

Objective

Figure 1. A scheme (top) and a photo (bottom) of the alignment and exposure microscope kit: 1—the sample fixed to the
XYZR stage, 2—mask, 3—UV diode in the lens slot, 4—5× lens, 5—microscope turret, 6—XYZR stage.
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Final micromask

(c)
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Figure 2. Fabrication of masks based on a microscope glass slide. (a) glass; (b) evaporated chromium layer on the slide;
(c) etched mask after optical lithography; (d) some of our masks for mesa-structures and contacts.

Using the long working distance 5–20×magnification plan objective, we focus at the
level of the chromium layer. We move the substrate in the XY-plane by microcrews and
rotate it for alignment with the mask. Due to sufficient depth of focus both the mask and
the substrate could be observed simultaneously without a mechanical contact. Then, we
bring them into contact (Figure 3a) using Z-stage. The alignment process is shown in the
Supplementary Video S1. After the contact, we switch the turret from the objective to the
UV diode and turn the diode on, illuminating the photoresist for 5–10 s (resist HS-1512,
405 nm diode 3 W). After the exposure, the resist is developed with a standard developer
(AZ-326 MIF by Microchemicals) (Figure 3b). Then, the subsequent procedures can be
performed, e.g., metal evaporation or mesa-etching, see Figure 3c–e.
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(a) (b) (c)

(d) (e)

(f)

Figure 3. Lithography fabrication stages and examples. Panels (a–d) show the mesa-fabrication stages on a few-layer
graphene flake. The length of the Hall-bar structure is 18 µm. (a) Alignment of the mesa mask with 40 µm length graphene
flake; (b) after the resist developing; (c) mesa-structure after the plasma-etching and resist removal; (d) micromask-patterned
resist for the contacts; (e) example of the 50 µm length graphene monolayer Hall-bar mesa-structure with top- evaporated
gold contacts, (f) Hole density and mobility measured from the Hall effect in the graphene sample at 4 K.

2.4. Sample Characterization Methods

The morphology of the studied flakes was determined using the tapping mode of the
NT-MDT Solver P47 AFM. Transport measurements were performed in Cryogenics mini-
CFMS setup using standard 4-terminal technique at the 4 K temperature and magnetic
fields ±1 T. We used SR830 Lock-ins to set the transport current (10 nA, 13 Hz) and
measure two components of the resistance. Gate voltage was swept using Yokogawa GS200
precision voltage source. Resistance Rxx and Hall resistance Rxy values were obtained
from the symmetrization and the antisymmetrization of the measurements at 1 T and −1 T,
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respectively, in order to compensate for the inevitable small contact misalignments and
sample non-uniformity. Carrier density n was found as n = B/(eRxy), where e is the
elementary charge and B = 1 T is the magnetic field. Carrier mobility µ was found as
µ = Rxyl/(Rxxw), where l and w are the distance between the potential probes and the
width of the mesa, respectively.

3. Results

We discuss below the obtained graphene mesa-structurized samples and the achieved
parameters of the set-up.

Figure 3c,d show a plasma-etched graphene mesa-structure and micromask-patterned
resist for the lithography of the contacts, respectively. Figure 3e,f show the examples of
the structures with gold contacts obtained by different techniques. In Figure 3e, the whole
substrate with graphene monolayer flake was first covered with gold, then the contacts
were micromask-patterned, then the mesa was defined using the micromask lithography
and the plasma-etching.

To demonstrate that the graphene field effect structure works properly, we show in
Figure 3f density and mobility of the carriers (holes) as functions of gate voltage at 4 K.
The coefficient between the gate voltage and the carrier density agrees well with the used
SiO2 thickness. The low value of the mobility ∼2000 cm2/(Vs) is due to the fabrication
process, and in particular, the monolayer contact to metal etchants. Charge neutrality point
position at gate voltage Vg = 78 V is also indicative for the high degree of disorder.

In order to demonstrate a micrometer resolution, we fabricated a mask with slits
down to 1 µm thickness and performed a lithography using this mask, see Figure 4. The
resolution was confirmed by AFM scans. Our setup also demonstrates a micrometer
accuracy of alignment of the mask and the substrate, see Figure 3b,d–f and Supplementary
Materials Video S1.

(a)

(b)

Figure 4. Photo and AFM scan of (a) the mask and (b) the patterned resist. The narrowest line width
and distance between the lines in the mask equal to 1.5 µm.
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An important advantage of the micromask lithography with respect to the beam
lithography is low time consumption. The alignment of the mask and the substrate requires
a few minutes. The exposure of the sample with a UV diode takes 5–10 s, depending on the
resist used. The entire lithography process including deposition, baking and developing of
the photoresist takes about 10 min.

The setup does not provide a precise alignment at the periphery of the substrate
outside the microscope field of view. Nevertheless, the uniformity of the illumination is
ensured over the much larger area of ∼1 cm2, owing to ∼5 cm LED-to-substrate distance.
For example, Figure 5a,b show an Al meander and a macroscopic mask for it. Such a
superconducting meander with high kinetic inductance [33,34] can be used, e.g., as a
current biasing element with high impedance [35].

The cost of the kit to the microscope consists of the cost of the XYZR stage (in our case
∼USD 100,000), the diode (∼USD 3) and the power supply (∼USD 50), as summarized in
Table 1. We also used some screws and standard mechanical parts (not indicated in the
table). To reference the prices of some components, that we used for lithography and mask
fabrication are also given in Table 1. A clean room with a chemical hood, stable temperature
and humidity is highly desirable for the reproducible resist properties. If the ultimate
resolution is not the goal, the cost of the process can be dramatically reduced by using a
not-so dustless atmosphere and a not-so stable climate-control. In Table 1, we show the
typical costs of the ubiquitous resist and developer sufficient for 2–3 micrometer resolution.

Table 1. Components of the micromask-lithography kit.

Component Price, USD Website (Accessed on
20 July 2021)

3 W 405 nm LED (10 pcs) 3 Aliexpress
Power supply Gophert NPS1601 47 Aliexpress

XYZR platform 111 Aliexpress
Chromium-coated tungsten rods 17 Aliexpress
Laboratory glass slides, 150 pcs 6 Aliexpress

1000–7000 rpm centrifuge 180 Aliexpress
300 W LCD repair hot plate 40 Aliexpress
Photoresist FP-09-M, 0.5 l 70 frast.ru

Developer UPF-1B, 5 l 20 frast.ru

The equipment for the resist deposition and baking (spin-coater and heating stage, respec-
tively) could also be purchased within a tiny budget. An expensive professional spin-coater
with vacuum sucking of the substrate and programmable control (∼USD 10,000–20,000) can
be replaced by a USD 200 PCR centrifuge with the substrate sticking by the double-side
scotch-tape. A hot plate with temperature control is also very accessible, as shown in
Table 1. All these solutions have been tested in our laboratory. Small items listed below are
also quite cheap: acetone, isopropanol, tweezers, nitrile gloves, pipettes, scriber to cut the
wafers and glass, and deionized water. Thus, on the basis of our results, we believe that
at least 2–3 micrometer-resolution lithography should not be a limiting factor for any 2D
materials laboratory.

It is instructive to compare our setup with the other home-made table-top mask
lithography machines. In Ref. [36], a mask aligner is built from the sketch. It is much
cheaper than the commercial ones (USD 7,500 versus ∼USD 100,000), can work with
up to 4′′ diameter photomasks and wafers and has slightly lower resolution than the
commercial models.

A projection lithographer modification of the optical microscope is reported in Ref. [37].
A photomask is located at the slot of the diaphragm and its image is exposed to the
objective focal plane. The system has a resolution of 0.6 µm. Its main disadvantage is
a small exposure area of ∼100 µm in diameter that is inconvenient for most of the 2D
material-related microstructures.

https://www.aliexpress.com/item/32987909529.html?spm=a2g0s.9042311.0.0.264d33edTJWruS
https://www.aliexpress.com/item/4000074657736.html?spm=a2g0o.productlist.0.0.42e05559AICyz1&algo_pvid=e19086fe-e521-4bb0-a69b-6eee215c70e8&algo_expid=e19086fe-e521-4bb0-a69b-6eee215c70e8-29&btsid=0b8b034e16243747769404687ebe7e&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_&item_id=4000074657736&sku_id=10000000194227124
https://www.aliexpress.com/item/32845287859.html?spm=a2g0o.store_pc_groupList.8148356.24.4f6960f9QM0gkp&item_id=32845287859&sku_id=65165741845
https://www.aliexpress.com/item/4000628238226.html?spm=a2g0o.productlist.0.0.60376149lRwGa4&algo_pvid=3d2bbb8b-b713-4d3a-9d63-0102250ed587&algo_exp_id=3d2bbb8b-b713-4d3a-9d63-0102250ed587-1
https://www.aliexpress.com/item/4000774469101.html?spm=a2g0o.productlist.0.0.23ec4cb0NH5DMP&algo_pvid=daa54c8c-8436-4929-b5dc-7520db4b03e3&algo_exp_id=daa54c8c-8436-4929-b5dc-7520db4b03e3-1
https://www.aliexpress.com/item/1005002287640257.html?spm=a2g0o.productlist.0.0.6c1f308a5QL0Da&algo_pvid=c0eb18b9-ed5e-4797-b49a-289359723007&algo_exp_id=c0eb18b9-ed5e-4797-b49a-289359723007-34
https://www.aliexpress.com/item/4001115702295.html?spm=a2g0o.store_pc_groupList.8148356.2.533c5e1cLHRHpO&_ga=2.170665376.1265477190.1624370219-1276885253.1582732106
https://frast.ru/frast_new/photoresists_en.html
https://frast.ru/frast_new/photoresists_en.html
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These works could be compared with the fabrication of contacts and mesa-structures
to 2D materials using standard mask aligner with a µm resolution [30]. The comparison is
summarized in Table 2.

Table 2. Comparison of table-top and home-made mask lithographers.

Parameter This Work Projection
Lithographer [37]

Mask
Aligner [36]

Mask
Aligner [30]

Exposure area 1 × 1 cm 0.1 × 0.1 mm 10 × 10 cm 10 × 10 cm
Resolution ∼1.5 µm 0.6 µm 3 µm ∼1 µm

Cost of the
machine

USD 200 +
micro-

scope USD 1500

UV lamp USD
500+

microscope USD
1500

USD 7500 ∼USD
100,000

The prices of our setup and the setup from ref. [37] in Table 2 we estimated from the
cost of the entry level metallographic microscope by AmScope [38].

4. Discussion

We discuss below the limitations and the ways to further improve the micromask
lithography.

A crucial element that determines the resolution is a photomask. The mask could be ei-
ther fabricated (as explained in Methods section) or ordered from numerous suppliers with
on-demand design [39–41]. Mask of a standard size (e.g., 3′′) is too big for the microscope,
and could be cut into separate pieces. The typical cost of the mask fabrication is rather
affordable, depending on the resolution and can vary between USD 100 and USD 1000.
The mask could be produced much more cheaply [42,43] if a µm resolution is not crucial.

The resolution of the photomask can be greatly improved by electronic lithography,
and by subsequent using of the mask in combination with ∼260 nm wavelength exposure.
Such a wavelength, however, requires a quartz glass slide and also allows us to use
UV-sensitive PMMA-based electron resists. Potentially, a nanometer resolution could
be achieved via various sophisticated methods of mask production [44,45] essentially
exploiting the near-field exposure.

Further development. To assemble Van der Waals heterostructures out of layered
crystals, so-called transfer machines are widely used [46–49]. These setups include a micro-
scope and an XYZR-platform and lack only for a LED to implement the mask lithography.
We believe, therefore, that adding a lithography option to these machines is straightforward.
Importantly, such transfer machines are placed into the glove boxes with inert atmosphere
by many groups routinely [20–22], and a lithographer could placed similarly.

Figure 5c demonstrates a combination of micromask lithography drawn contact elec-
trodes and a microflake of 1T-TaS2 transfered atop using the home-made transfer ma-
chine [49]. 1T-TaS2 is a material with charge-density wave and Mott insulator states includ-
ing the metastable ones [50]. Electric and optical switching between these states make TaS2
microflakes and thin films prospective for memristive applications [51,52].

The XYZR stage can be made motorized and automated, similarly to transfer ma-
chines [22], that is very useful for the glovebox operation. Indeed, the resin gloves are not
convenient for manual working with the microscope and the XYZR stage.

The alignment marks are not necessary for the objects in the field of view as seen,
e.g., from Figure 3. This is an essential advantage, because (i) the time of air exposure
is less and (ii) a number of technological steps diminishes. Nevertheless, the described
photomask technique is extremely useful for the production of the system of alignment
marks on different substrates. Such marks are needed for the beam lithography align-
ment and also for the location of the flakes in the spatially resolved measurements, see,
e.g., photoluminescence [53].
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(a) (b) (c)

Figure 5. Implementations of the micromask lithography. (a) A meander-shaped Al structure on
a silicon substrate made by the micromask lithography and the lift-off process; the width of the
depicted structure is 850 µm, the thickness of the neighbouring lines and the distance between them
are 4 µm. (b) Dark-field image of the shadow mask used to produce the meander and contact pads
for it; the width of the structure is ≈4 mm. (c) A microflake of the electrically switchable material
1T-TaS2 placed on the micromask-fabricated contact electrodes using the transfer machine.

5. Conclusions

We demonstrated a cheap, fast and high-resolution contact mask lithography modi-
fication of a metallographic microscope that allows us to pattern micro-flakes and other
objects placed on ∼1 × 1 cm2 substrates. The kit consists of a manipulator, LED, placed in
one of the objective turret slots and LED power source. This setup makes a fabrication with
a micrometer resolution fast and available to any laboratory. We demonstrate the fabrica-
tion of the masks with a micrometer resolution using a beam lithographer. The suggested
approach allows us to place microfabrication into the inert atmosphere, which is crucial for
the further development of the 2D materials field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12080850/s1, Video S1: The alignment process.
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Abbreviations
The following abbreviations are used in this manuscript:

PMMA poly (methyl methacrylate)
UV ultraviolet
XYZR stage a platform, that is controllably positioned along 3 axes and rotated
Z stage vertical component of XYZR stage
XY stage horizontal plane of XYZR stage
2D two dimensional
LED light-emitting diode
CVD chemical vapor deposition
LCD liquid crystal display
PCR polymerase chain reaction
AFM atomic-force microscope
LLE Layer-engineered large-area exfoliation
CFMS Cryogen Free Measurement System
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