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Hierarchical Bayesian estimation 
of covariate effects on airway 
and alveolar nitric oxide
Jingying Weng, Noa Molshatzki, Paul Marjoram, W. James Gauderman, Frank D. Gilliland & 
Sandrah P. Eckel*

Exhaled breath biomarkers are an important emerging field. The fractional concentration of exhaled 
nitric oxide (FeNO) is a marker of airway inflammation with clinical and epidemiological applications 
(e.g., air pollution health effects studies). Systems of differential equations describe FeNO—measured 
non-invasively at the mouth—as a function of exhalation flow rate and parameters representing 
airway and alveolar sources of NO in the airway. Traditionally, NO parameters have been estimated 
separately for each study participant (Stage I) and then related to covariates (Stage II). Statistical 
properties of these two-step approaches have not been investigated. In simulation studies, we 
evaluated finite sample properties of existing two-step methods as well as a novel Unified Hierarchical 
Bayesian (U-HB) model. The U-HB is a one-step estimation method developed with the goal of 
properly propagating uncertainty as well as increasing power and reducing type I error for estimating 
associations of covariates with NO parameters. We demonstrated the U-HB method in an analysis of 
data from the southern California Children’s Health Study relating traffic-related air pollution exposure 
to airway and alveolar airway inflammation.

List of symbols
NO parameters  CA, logCaw, logDaw
CA  Concentration of NO in the alveolar region, (ppb)
Caw  Concentration of NO in the airway tissue, (ppb)
Daw  Airway tissue diffusion capacity, pL·s−1·ppb−1

J ′aw  Maximum flux of NO in the airway
FeNO  Fractional concentration of exhaled nitric oxide, ppb
NLME  Nonlinear mixed effect model
HMA  Högman and Merilӓinen Algorithm

Exhaled breath biomarkers are an important emerging field, since they can be measured non-invasively and 
 repeatedly1. The fractional concentration of exhaled nitric oxide (FeNO) is a marker of airway inflammation 
with applications in clinical settings (e.g.,  asthma2) and epidemiological research (e.g., studies of inhaled envi-
ronmental  exposures3,4). The nature of the non-invasive assessment of FeNO results in challenges that can be at 
least partially addressed by innovations in statistical methodology.

FeNO concentrations are inversely related to expiratory flow rate, suggesting both an airway and an alveolar 
source of nitric oxide (NO)5,6. High flow FeNO primarily reflects low NO concentrations in the alveolar region 
while low flow FeNO primarily reflects higher NO concentrations in the airway  tissue7,8. Several mathemati-
cal models have been developed to describe the dynamics of NO in the lower respiratory tract, using systems 
of differential equations with parameters describing NO sources in the airway and alveolar  compartments9. 
Conventional standardized assessment of FeNO at a fixed 50 ml/s flow  rate2,10,11 treats flow dependency as a 
nuisance. However, measurement of FeNO at multiple expiratory flow rates (“multiple flow FeNO”) is a prom-
ising technique that takes advantage of the information across flow rates to non-invasively assess airway and 
alveolar inflammation using estimated parameters quantifying airway and alveolar source of NO. The growing 
interest in multiple flow FeNO has resulted in its inclusion in the most recent update to the guidelines for FeNO 
 assessment12.

Non-invasive assessment of airway and alveolar NO has also sparked interest in relating estimated airway and/
or alveolar NO to covariates, such as respiratory  diseases13,14 and environmental exposures, including: ambient 
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air  pollution15,16, traffic-related air  pollution17 and  pollen18. All of these studies have used a “Two-Stage” (TS) 
approach to estimating the associations of covariates with NO parameters. Stage I consists of estimating NO 
parameters for each participant (using a variety of methods, which we will describe later). Stage II consists of 
relating each estimated NO parameter (treated as a known outcome) to covariates in a standard linear regression 
model. However, the statistical properties of the TS approach have not been thoroughly investigated.

The TS approach ignores the uncertainty in the Stage I estimated NO parameters when they are used in Stage 
II, thereby failing to propagate the statistical uncertainty. Additionally, TS methods may fail to produce NO 
parameter estimates in Stage I for some participants due to small sample size (e.g., in our motivating example 
there are ~ 9 observations/participant)19. Subsequent exclusion of these subjects in Stage II may bias the esti-
mated association in Stage II. Another issue is that the Stage I model (i.e., the model estimating NO parameters) 
is only an approximation of reality and may include various assumptions aimed at simplification which impact 
parameter estimation (e.g., alveolar NO estimation has been shown to be sensitive to applying a first, second, 
or third order approximation to an exponential function in the Stage I model)19. To overcome the weakness of 
TS approaches, we had previously explored a nonlinear mixed effect (NLME) unified model to simultaneously 
estimate NO parameters and their associations with covariates. However, the method suffered from convergence 
 issues20. For NLME models, which are widely-used in the field of pharmacokinetics, convergence issues are not 
uncommon and can sometimes be overcome through the careful choice of starting  values19,21.

This paper presents a novel Unified Hierarchical Bayesian (U-HB) model for NO parameter estimation, 
based on previous statistical methodology developments in  pharmacokinetics21 and implemented using Gibbs 
 sampling22. Our U-HB model simultaneously estimates NO parameters and their associations with covariates, 
thereby propagating uncertainty throughout the entire analysis. The U-HB model is a novel application of 
Hierarchical Bayesian methods to the field of multiple flow FeNO. We present simulation studies evaluating the 
statistical properties of existing two-step methods and the novel U-HB approach. We then show results from an 
application of these methods to data from the southern California Children’s Health Study (CHS). The CHS is a 
landmark cohort study on the effects of air pollution exposures on children’s respiratory  health23–25. The meth-
odological work in this paper is motivated by the need for better statistical methods to address CHS research 
questions. In particular, our group has been interested in evaluating the effects of traffic-related air pollution 
exposures on airway and alveolar inflammation. Traffic is a major source of anthropogenic air pollution which 
is increasingly recognized as impacting human  health26–32.

Methods
We begin by introducing the deterministic steady-state two-compartment model for FeNO and then discuss a 
variety of TS approaches which have been used to estimate both the alveolar and airway NO parameters from 
this model and associations with covariates. We then introduce our novel U-HB approach.

Deterministic, steady-state two-compartment model for FeNO. Our modeling work is based on 
the simple steady-state two-compartment model (henceforth referred to as the 2CM) which assumes a cylin-
drically-shaped airway compartment and an expansile alveolar  compartment9,33. Under the 2CM, FeNO can be 
related to parameters quantifying airway and alveolar NO sources as follows:

Equation 1 describes how FeNO (ppb) measured at the mouth is related to expiratory flow rate, “flow” (mL/s), 
and three “NO parameters”: CA, the concentration of NO in the alveolar region (ppb); Caw, the concentration 
of NO in the airway tissue (ppb); and Daw, the airway tissue diffusion capacity (pL·s−1·ppb−1). Note that another 
widely used parameter J’aw , the maximum flux of NO in the airway, is the product of Caw and Daw

9. A number of 
common methods for estimating NO parameters in the 2CM use an alternative J’aw parameterization of Eq. (1), 
but here we use the Caw parameterization since it allows for direct estimation of a more interpretable parameter.

Estimating NO parameters from the 2CM. The model in Eq. (1) is deterministic and nonlinear. To 
estimate 2CM parameters from stochastically observed multiple flow FeNO data (steady state summaries of 
repeated FeNO maneuvers at a range of target flow rates), researchers have relied on linear regression methods 
under various linearizing assumptions or nonlinear regression methods. For example, previous studies have used 
approximations based on Taylor expansions to the exponential function, including first order linear approxima-
tion methods (linT and linP)9, second order quadratic approximation methods (quadT and quadP)19, and a 
third order approximation method, the Högman and Merilӓinen algorithm (HMA)13,34. Nonlinear approaches 
include standard nonlinear least squares  regression35 which essentially adds a random normal error to Eq. (1), 
as well as a natural log transform-both-sides  extension19. The log transform-both-sides model acknowledges the 
increased variation in residuals that occurs as flow rate (and hence FeNO concentration) increases.

Estimating associations of covariates with NO parameters. TS methods. We selected three ex-
isting TS approaches to be evaluated in a simulation study, along with the new U-HB method. In each of the 
following TS methods, Stage I estimates of the three NO parameters for participant i ( ̂CAi , ̂logCawi , and ̂logDawi ) 
are treated as known values and used as the outcomes in three separate Stage II linear regression models relating 
each NO parameter to a covariate X:

(1)FeNO = Caw + (CA − Caw)× e−Daw/flow
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Henceforth, we will refer to the three TS approaches by the names of their Stage I models, which are:

1. The TS Högman and Merilӓinen Algorithm (TS-HMA).  HMA13,34 is a widely-applied method for estimating 
NO parameters using an iterative algorithm involving a third-order approximation to the 2CM. In a study 
with N participants, Stage I consists of fitting N HMA models, one per participant. Stage I input data for 
each participant consists of 3 observations: average FeNO measured at low, medium, and high flow rates. In 
the CHS we use 30, 100, and 300 mL/s  respectively19.

2. The TS Nonlinear Least Squares model (TS-NLS). The natural log transform-both-sides nonlinear least 
squares model proposed previously by our  group19, and henceforth referred to as NLS, is implemented using 
standard nonlinear-least squares software (“nls” from the nlme package in R). The log transform-both-sides 
approach better satisfies the assumption of normally distributed errors while maintaining the physiological 
interpretation of the NO  parameters19. For N participants, Stage I consists of fitting N log transform-both-
sides NLS models of the following form, based on Eq. (1):

where j = 1,…ni indexes the observations for each participant. In the CHS, the protocol asked each partici-
pant to perform 9 maneuvers, but in practice participants had between 4 and 12 valid maneuvers each. Each 
maneuver is summarized by a paired observation of FeNO concentration and  flow36. Note that in Eq. (3), 
two NO parameters are expressed (and directly estimated) as logCaw and logDaw to enforce positivity of Caw 
and Daw and to better satisfy the normality assumptions in the TS-NLME method (below). This is common 
practice in pharmacokinetics  modeling37.

3. The TS Nonlinear Mixed Effect model (TS-NLME): In a nonlinear mixed effects (NLME) approach, we use 
FeNO maneuvers from all participants to estimate a single NLME model of the form:

with participant-level random effects which follow a multivariate normal distribution. Participant-level 
estimates of NO parameters are obtained by combining fixed effect parameter estimates with empirical 
Bayes estimates of the random effects. Because TS-NLME fits a single model (rather than N models) in Stage 
I, it does not suffer from the small sample size issues that affect TS-HMA or TS-NLS (each of which often 
fails to produce estimates for a subset of the population at Stage I). In TS-NLME, which has been applied 
 previously17, NO parameters estimated in a Stage I NLME are then related to covariates in a separate Stage II.

In secondary analyses, we evaluated two alternative TS-NLS approaches: a constrained version of TS-NLS (in 
which we assume CA > 0.001) and a version of TS-NLS with an inverse-variance weighted Stage II.

Unified methods. In our unified approaches, we aim to model the measured outcome FeNO conditionally on 
both latent NO parameters and measured environmental factors using hierarchical modeling. Unified methods, 
in contrast to the TS methods, simultaneously estimate the NO parameters and their associations with the covar-
iate Xi in a single model. Below we present two unified methods, one based on the frequentist NLME approach 
and our novel method using a Bayesian approach:

1. The Unified Nonlinear Mixed Effect model (U-NLME): In U-NLME, rather than estimate separate Stage II 
models relating estimated NO parameters to Xi as in TS-NLME, we incorporate Xi into the mean function 
for each NO parameter in the NLME model (equations are conceptually similar to those in the U-HB, pre-
sented in Eqs. 5–7). Recall that NLME is recognized to have convergence issues and is sensitive to starting 
 values19,21. Early work on the U-NLME indeed demonstrated problems with  convergence20. However, for 
completeness we include U-NLME for comparison purposes.

2. The Unified Hierarchical Bayesian model (U-HB): The U-HB method can be described as a two-level hier-
archical Bayesian model, with j indexing FeNO maneuvers nested in participant i, as displayed in Fig. 1.

Two-level hierarchical Bayesian model (Fig. 1). Level 1: Maneuver. Similar to Eq. (4), we assume 
that log(FeNO) for participant i at maneuver j is normally distributed:

with a mean function:

(2)
ĈAi = αCA + βCAXi + εCAi

̂logCawi = αlogCaw + βlogCawXi + εlogCawi

̂logDawi = αlogDaw + βlogDawXi + εlogDawi
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(
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)
+

(
CA − exp

(
logCaw

))
× e− exp (logDaw)/flowj

)
+ εj

(4)log
(
FeNOij

)
= log(exp

(
logCawi

)
+

(
CAi − exp

(
logCawi

))
× e− exp (logDawi )/flowij )+ εij

(5)log
(
FeNOij

)
∼ N

(
f
(
θi ,Xi , flowij

)
, σ 2

)

(6)f
(
θi ,Xi , flowij

)
= log

(
exp

(
logCawi

)
+

(
CAi − exp

(
logCawi

))
× e− exp (logDawi )/flowij

)



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17180  | https://doi.org/10.1038/s41598-021-96176-z

www.nature.com/scientificreports/

that depends on the 3-dimensional vector of participant-specific NO parameters θ i = (CAi , logCawi , logDawi)
′ , 

Xi (the role of Xi becomes clear in Level 2), and flow rates. The variance (σ2) is assumed constant across partici-
pants and flow rates.

Level 2: Subject. We assumed the participant-level NO parameters are each a linear function of Xi:

where the vector ǫi = (ǫCAi
, ǫlogCawi

, ǫlogDawi
)′ of participant-level random effects is assumed to have a multivariate 

normal distribution with mean zero and variance–covariance matrix �θ . Based on the previous data  analyses38, 
we assumed the joint distribution of the NO parameters can be reasonably modeled using a multivariate normal 
(MVN) distribution, and the equations above are equivalent to a formulation of: θ i ∼ MVN

(
µθ i ,�θ

)
 where 

µθ i represents a mean vector with, for example, the first element equal to αCA + βCAXi , and �θ is the same 
variance–covariance matrix of NO parameters. Since the concentration of NO in the alveolar region should be 
non-negative, we imposed a non-negative constraint on CA . We implemented our U-HB model using the Gibbs 
sampling program  JAGS39. But JAGS can only specify univariate truncated normal distributions. To achieve this 
constraint in our multivariate context, we constructed the truncated MVN distribution into two steps. First, 
we sampled from a bivariate normal distribution for ( logCaw , logDaw ), then we sampled from a zero-truncated 
normal distribution for CA with the conditional expectation and variance given ( logCaw , logDaw).

Prior distributions. We assumed the vectors of regression intercepts ( α ) and slopes ( β ) in Eq.  (7) each had 
independent normal prior distributions (with I indicating a square identity matrix):

where µα =

(
µαCA

,µαlogCaw
,µαlogDaw

)′

 = (2, 4.2, 2.5)′ and µβ = (µβCA
,µβlogCaw

,µβlogDaw
)′ = (0, 0, 0). Non-inform-

ative values were assumed for the variance hyperparameters σ 2
α = σ 2

β = 103 . Similarly, the variance of the residuals 
(σ2) was assigned a non-informative Inv-Gamma (10−3 , 10−3 ) prior distribution and the variance–covariance 
matrix of NO parameters ( �θ ) was assigned a non-informative inverse-Wishart prior distribution.

Calculation of posterior via MCMC. Taking a Bayesian perspective, the general posterior distribution can be 
written as:

This density cannot be directly calculated. Instead, we rely on MCMC methods to provide samples from 
the density. Specifically, we implemented Gibbs sampling using JAGS, taking advantage of normal conjugate 
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Figure 1.  Hierarchical model structure relating FeNO measurements at multiple flow rates to NO parameters 
that are a function of a potential determinant X (e.g., air pollution).
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distributions for this hierarchical model. While convergence is sometimes non-trivial to obtain, Gibbs sampling 
generally had good performance in the models considered here.

To conduct U-HB analyses, we used three parallel MCMC chains in JAGS. Once the Gelman-Rubin R̂   con-
vergence  criteria40 reached ≤ 1.1, we drew 12,000 additional samples and checked that the R̂ remained ≤ 1.1 (sec-
ond checkpoint). If so, we used those 12,000 samples to construct the posterior distributions of the parameters. 
Otherwise, we continued sampling as long as necessary to satisfy the convergence criteria.

Simulation study. We conducted an extensive simulation study to compare the performance of the five 
methods. To produce realistic synthetic data, we modelled our data generation scenarios on the CHS. Specifi-
cally, we simulated data for 1000 individuals and assumed each individual performed 8 FeNO maneuvers, two at 
each of four flow rates: 30, 50, 100, and 300 ml/s. These particular flow rates were selected for three reasons: (1) 
they match the flow restrictors provided with the FeNO sampling instrument, (2) they are within a reasonable 
range of flows for schoolchildren, and (3) optimal flow rate sampling design has been studied in detail previ-
ously, and studies with these flow rates balanced theoretical performance with  feasibly36. Based on previously 
described distributions in the  CHS38, we assumed NO parameters had a multivariate normal distribution with an 
additional non-negative constraint for CA in data generation step (the randomly sampled vector of NO param-
eters was discarded if it had a negative CA value). The variance–covariance matrix was set to be similar to values 
observed in preliminary analyses of CHS data:

We also assumed that a standard normal covariate X had a potentially different linear relationship with each 
NO parameter. In all data generating scenarios, we set the fixed effect intercepts (mean NO parameters for 
participants with mean X) to mirror those used in previous statistical methods work on FeNO in the CHS (i.e., 
1, 3.5, and 2.5 for CA, logCaw and logDaw respectively). Our primary focus was on the associations of X with NO 
parameters ( βCA , βlogCaw

 , and βlogDaw
).

We considered seven different scenarios, in which one or more of the β ’s varied (ranging from 0 to 0.2, with 
a step size of 0.02) as summarized in Table 1. In Scenario 1, the magnitudes of the associations between X and 
each NO parameters were assumed to be equal ( βCA = βlogCaw

 = βlogDaw
 ) and all β ’s varied together. In Scenarios 

2–4, only one of the NO parameters was associated with X; in Scenarios 5–7, only one NO parameter was not 
associated with X. The scenarios where at least one association is truly zero permit estimation of Type I error 
rates. For each setting of each scenario, we conducted 1000 replicates. Using these seven scenarios, we compared 
the five methods in terms of the following criteria. Bias was calculated as (estimate–true value) and relative bias 
as (estimate–true value)/true value. Considering 95% confidence intervals or credible intervals (henceforth called 
95% CI for simplicity), we calculated their length and coverage. Power was defined as the proportion of the 95% 
CIs that did not include 0 when the true value was not 0. We used Scenario 1 for primary results, where all NO 
parameters were assumed to be equally affected by X. We used Scenarios 5–7 for primary results on type I error 
rates, which we define as the proportion of 95% CIs that did not include 0 when the true value was 0. All results 
were presented only for simulated datasets on which all methods satisfied convergence criteria.

In total, we generated 71 sets of simulated datasets (7 scenarios with 10 values each of the varying parameters, 
as well as one dataset with all β’s = 0), each replicated 1,000 times. Analyses were conducted using the clusters at 
the University of Southern California’s High-Performance Computing Center using R version 3.5 and JAGS 4.0. 
The median time needed to produce estimates for 5 models (TS-NLS, TS-HMA, TS-NLME, U-NLME, U-HB) 
for each dataset was 6 h.

CHS data analysis. In a previous publication using data from CHS  participants38, we investigated the asso-
ciation between traffic-related air pollution (TRAP) and NO parameters. Briefly, we conducted a cross-sectional 
analysis of multiple flow FeNO measured in 1635 schoolchildren ages 12–15, using TS-NLME and TS-HMA. By 

(10)�� =

(
0.44 0.13 −0.14
0.13 0.62 −0.15
−0.14 −0.15 0.36

)

Table 1.  Seven scenarios considered in the simulation study, where the relation of X to each NO parameter 
( βCA , βlogCaw

 , βlogDaw
 ) varied from 0 to 0.2, with a step size of 0.02. *In Scenarios 1 and 5–7, the non-zero β 

values are identical (e.g., the first three settings of Scenario 1 have βCA = βlogCaw
 = βlogDaw

 = 0, βCA = βlogCaw
 = 

βlogDaw
 = 0.02, βCA = βlogCaw

 = βlogDaw
 = 0.04). † Cells marked 0 indicate that X had no effect on the corresponding 

NO parameter.

βCA βlogCaw
βlogDaw

Scenario 1* 0–0.2 0–0.2 0–0.2

Scenario 2 0.02–0.2 0† 0

Scenario 3 0 0.02–0.2 0

Scenario 4 0 0 0.02–0.2

Scenario 5* 0 0.02–0.2 0.02–0.2

Scenario 6* 0.02–0.2 0 0.02–0.2

Scenario 7* 0.02–0.2 0.02–0.2 0
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design, CHS participants had ~ 9 FeNO maneuvers each (3 at 50 ml/s, 2 each at 30, 100, and 300 ml/s flow rates). 
Exposure to TRAP in the indoor schoolroom microenvironment at the time of the FeNO test was assessed using 
approximately concurrent room air measurements of NO (ppb). In this paper, we re-analyzed these data using 
both “unadjusted” models (with TRAP exposure as the only covariate) and minimally “adjusted” models (with 
TRAP exposure plus adjustment for: sex, age, asthma). The original publication adjusted for additional potential 
confounders or study design variables (race/ethnicity, rhinitis history, use of asthma medications in the past 
12 months, secondhand tobacco smoke exposure, parental education, time of day of FeNO test, FeNO analyzer, 
and CHS community), but results from minimally adjusted models were similar to those of the fully adjusted 
 model38. Note that the original publication used the alternative J’aw parameterization of the two-compartment 
model:

whereas in this paper we used the “Caw” parameterization (Eq. 2) due to the direct estimation of the more inter-
pretable airway wall concentration parameter. Thus, here we fit TS-NLME models to CHS data with both the 
“ J ′aw ” and “Caw” parameterization to facilitate direct comparison with the previously published work.

Results
Simulation study. Computational time and convergence. TS-NLS and TS-HMA models always converged 
in Stage II and their run times were typically less than 1 min (Supplementary Fig. 1), but they failed to estimate 
NO parameters in Stage I for some participants due to small sample size. In average, 31.6% of the Stage I mod-
els failed to converge for TS-NLS while it was < 1% for TS-HMA. Hence these participants were left out of the 
Stage II model. TS-NLME models had a convergence rate of 90% (average time: ~ 10 min) while U-NLME had 
a convergence rate of only 70% (average time: ~ 20 min). For U-HB models, the median time to achieve R̂ < 1.1 
was 5.5 h (~ 90% of models converged within 16 h and 1% never converged in the 48 h allowed). For the rest of 
this paper, to aid comparison, we only show results obtained from the subset of datasets for which all methods 
satisfied converged criteria. Results for all datasets are shown in Supplementary Sect. 5.

Bias. As shown in Fig. 2a (Scenario 1), U-HB consistently showed the smallest bias. For other methods, the 
directions and relative magnitudes of the bias varied across NO parameters. Trends in bias were consistent across 
the range of β , so we report average relative bias. All methods produced negatively biased estimates of βCA , with 
the average relative bias being the smallest for U-HB (− 4.1%) and much larger for the other methods (approxi-
mately − 12.3% for TS-HMA and − 50.4% for TS-NLS, − 42.6% for TS-NLME and − 42.3% for U-NLME). For 
βlogCaw

 , average relative bias was negative for U-HB (− 7.7%) and TS-HMA (− 67.6%) but positive for the other 
methods (11.1% for U-NLME, 11.4% for TS-NLS, and 45.1% for TS-NLME). Conversely, for βlogDaw

 , the average 
relative bias was positive for U-HB (8.8%) and TS-HMA (64.1%) but negative for the other methods (− 10.2% 
for U-NLME, -53.4 for TS-NLS, and -55.2% for TS-NLME). For Scenarios 2–7 (Supplementary Figs. 2.2–2.7), 
U-HB also had smaller bias than all other methods. In the secondary analyses, constrained TS-NLS had smaller 
bias than the standard TS-NLS for estimating CA , but, it considerably underestimated logCaw. Inverse-variance 
weighted TS-NLS had even worse performance (results not shown). Thus, we only report standard TS-NLS 
results.

CI coverage and length. As shown in Fig. 2b and d (Scenario 1), U-HB was the only method to produce CIs with 
appropriate coverage (~ 95%) for associations with all NO parameters ( βCA , βlogCaw

 , βlogDaw
 ). TS-NLME consist-

ently had the worst coverage while its one-step analog, U-NLME, performed much better for βlogCaw
 and βlogDaw

 

(11)
log (FeNO) = log(exp(log J ′aw−logDaw)+

(
CA − exp

(
log J ′aw − logDaw

))
∗exp(− exp(logDaw)/flow)+ε

Table 2.  Analysis of CHS data: estimated associations of a 10ppb increase in traffic-related air pollution 
with CA, logCaw, and logDaw ( ̂β  and 95% CI) using the selected methods, without and with adjustments for 
covariates (age, sex, asthma). † Previously published model: J ′aw parameterization of TS-NLME. *P  <  0.05, **P  
<  0.01, ***P  <  0.001.

Estimation method Model Estimated βCA
 (95% CI) Estimated β logCaw

 (95% CI) Estimated β logDaw
 (95% CI)

TS-NLS
Unadjusted 0.24 (0.06, 0.41)** 0.04 (− 0.05, 0.13) 0.02 (− 0.05, 0.10)

Adjusted 0.23 (0.06, 0.40)** 0.04 (− 0.05, 0.13) 0.03 (− 0.05, 0.10)

TS-HMA
Unadjusted 0.33 (0.19, 0.47)** 0.17 (0.02, 0.32)* − 0.14 (− 0.31, 0.02)

Adjusted 0.32 (0.18,0.46)** 0.16 (0.02, 0.31)* − 0.14 (− 0.31 0.02)

TS-NLME
Unadjusted 0.08 (0.03, 0.14)** 0.02 (− 0.04, 0.07) 0.04 (− 0.01, 0.08)

Adjusted 0.08 (0.03, 0.14)** 0.01 (− 0.04, 0.07) 0.03 (− 0.01, 0.08)

TS-NLME ( J ′aw)†
Unadjusted 0.08 (0.03, 0.14)** 0.07 (− 0.01, 0.15) 0.03 (0.01, 0.08)

Adjusted 0.08 (0.03, 0.14)** 0.07 (− 0.01, 0.14) 0.03 (− 0.01, 0.07)

U-NLME
Unadjusted 0.13 (0.04, 0.22)** − 0.01 (− 0.09, 0.06) 0.07 (− 0.01, 0.15)

Adjusted 0.13 (0.05, 0.22)** − 0.03 (− 0.09, 0.06) 0.07 (− 0.01, 0.15)

U-HB
Unadjusted 0.15 (0.07, 0.24) − 0.02 (− 0.11, 0.07) 0.07 (− 0.03, 0.18)

Adjusted 0.15 (0.07, 0.24) − 0.02 (− 0.12, 0.07) 0.07 (− 0.04, 0.18)
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Figure 2.  Relative bias (a), coverage (b),  power (c)  and CI length (d) of the selected estimation methods from 
Scenario 1 of the simulation study ( βCA = βlogCaw

 = βlogDaw
).
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but only moderately better for βCA . To further understand this difference in TS-NLME vs U-NLME coverage, we 
note that the CIs for TS-NLME were very narrow (the narrowest of all methods) and TS-NLME estimates were 
considerably more biased than for U-NLME (except for βCA , where the bias was similar for the two methods). 
TS-NLS had poor coverage for βCA (due to large bias, despite wide CI) and βlogDaw

 (due to large bias). TS-HMA 
had the widest CIs for βlogCaw and βlogDaw but the bias for these parameters was also large, reducing the CIs’ cover-
age. For Scenarios 2–7, results were similar (Supplementary Figs. 2.2–2.7).

Type I error. Figure 3 shows type I error rates from Scenarios 5, 6 and 7, all of which had only one NO param-
eter not affected by the covariate X (e.g., type I error for βCA was obtained from Scenario 5 where βCA = 0 while 
βlogCaw

= βlogDaw
 varied). Results of Scenarios 2–4, in which only one NO parameter association was non-zero, 

are shown in Supplementary Figs. 2.2–2.4. Of all the methods, U-HB generally had the lowest type I error rates, 
with values of ~ 0.05 for βCA , βlogCaw

 , and βlogDaw
 but that increased slightly as the effect of X on the other NO 

parameters increased. As might be expected from the earlier analyses of bias and CI coverage/length, the other 
methods performed less well. TS-NLME had poor type I errors for βlogCaw

 and βlogDaw
 , and the type I errors 

increased dramatically as the effect of X increased. U-NLME had the highest type I error for βCA , and the type I 
error increased more modestly as the effect of X increased. TS-NLS and TS-HMA had similar patterns in type I 
error rates, which were inflated slightly for βCA and βlogCaw

 but ~ 0.05 for βlogDaw
.

Power. As shown in Fig. 2c (Scenario 1), power results were complex. U-HB had power > 0.99 for effect sizes 
of 0.12 for βCA , 0.18 for βlogCaw , and 0.16 for βlogDaw . Although U-HB never had the best power relative to the 
other methods, the apparently good power curves of some methods require careful interpretation. TS-NLME 
appeared to have the best power across all NO parameters, but this was due to its narrow confidence intervals 
and came at the cost of inflated type-I error rates (e.g., Fig. 2c for Scenario 1 when βCA = βlogCaw

 = βlogDaw
 = 0). 

TS-HMA had a similar power curve to U-HB for βCA (the parameter for which TS-HMA had the least bias), but 
TS-HMA had low power curves for βlogCaw and βlogDaw (parameters for which TS-HMA had displayed consider-
able bias and wide CI). Relative to the other methods, U-NLME power was high for βlogCaw and βlogDaw , but poor 
for βCA (the parameter for which U-NLME had considerable bias). TS-NLS had poor power for βCA and βlogDaw 
but better power for βlogCaw(the parameter for which TS-NLS had the least bias).

Overall summary of simulation study results. Across our simulation study scenarios, U-HB had good statistical 
properties and consistently outperformed U-NLME and the three TS approaches. The other unified approach, 
U-NLME, performed well for βlogCaw

 and βlogDaw
 , but not for βCA (biased, poor coverage, high type I error) and 

suffered from serious convergence issues, failing to converge for 30.2% of simulated datasets (Supplementary 
Fig. 1). The worst bias was observed for TS methods. Interestingly, TS-HMA had a different direction of bias 
compared to TS-NLS, TS-NLME and U-NLME for βlogCaw

 and βlogDaw
 . The correlation between NO param-

eters had an influence on bias across all methods. We assumed a positive correlation between CA and logCaw, a 
negative correlation between CA and logDaw, and a negative correlation between logCaw and logDaw to mimic the 
distributions previously observed in CHS participants. Neither the magnitude nor the direction of the estimated 
relative bias for βCA from all the models were affected by the values of βlogCaw

 or βlogDaw
 (comparing bias figures 

for Scenario 1 to Scenarios 2, 6 and 7, recall all Scenarios are included in Supplementary Figs. 2.1–2.7). But 
when estimating βlogCaw

 and βlogDaw
 , the relative bias changed both in magnitude and direction, except for U-HB 

(comparing bias figures for Scenario 1 to Scenarios 3, 5 and 7; comparing Scenario 1 to Scenarios 4, 5 and 7). We 

Figure 3.  Type I error* of the selected estimation methods from the simulation study.* With the type I error 
calculated for  βCA using Scenario 5 with βCA = 0, βlogCaw

 = βlogDaw
 ; for βlogCaw

 using Scenario 6 with βCA = βlogDaw
 , 

βlogCaw
= 0 ; and for βlogDaw

 using Scenario 7 with βCA = βlogCaw
 , βlogDaw

= 0).
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focused the simulation study results on β’s, the association between X and NO parameters, as our main interest. 
Results for α’s, the population mean NO parameters when X = 0, are presented in Supplementary Figs. 3.1–3.7.

CHS data analysis. As shown in Fig.  4, we confirmed the previously published result (using the J’aw 
parameterization TS-NLME)38 of a statistically significant positive association between TRAP and alveolar NO 
( βCA ) using all estimation methods. Results were quite similar with and without adjustment for age, sex, and 
asthma status (Table 2). Using U-HB, we found that a 10 ppb higher TRAP concentration was associated with 
a 0.15 (95% CI: 0.07, 0.24) ppb increase in  CA, after adjusting for sex, age, and asthma. This U-HB estimated 
βCA was nearly twice the size of the analogous estimate from TS-NLME (0.08, 95% CI: 0.03, 0.14 from both 
parameterizations). As in the previous publication, there was little evidence for effects of TRAP on airway wall 
inflammation ( βlogCaw and βlogDaw ). Based on the CHS findings, Scenario 2 of the simulation study ( βCA varies, 
βlogCaw = 0, βlogDaw = 0 , Supplemental Fig. 2.2) might be a closer comparator to the CHS data than Scenario 1. 
The finding in the CHS data that the estimated βCA was larger for U-HB than for TS-NLME agrees with results 
from both simulation Scenarios 1 and 2, where U-HB had a modest negative bias for βCA compared to the more 
considerable negative bias for TS-NLME. While we were motivated by the problem of estimating TRAP asso-
ciations with NO parameters (Stage II), it is interesting to note that all methods produce participant-level NO 
parameter estimates (Stage I) and these estimates were most similar when comparing U-HB to TS-NLME and 
U-NLME (Supplemental Figs. 4.1–4.3). However, TS-NLS and TS-HMA failed to estimate NO parameters in 
Stage I for subsets of participants due to small sample size of flow rate (31.6% for TS-NLS and <1% for TS-HMA 
in average).

Discussion
In this paper, we performed an extensive simulation study to evaluate the finite sample performance of a variety 
of statistical methods used to estimate the associations of covariates with NO parameters from the steady-state 
two compartment model of lower respiratory tract NO. One of these methods was a novel Unified Hierarchical 
Bayesian (U-HB) model which simultaneously estimates participant-level NO parameters and their associations 
with covariates. In the simulation studies, U-HB outperformed four other methods: three two-stage methods and 
one unified method, all implemented using frequentist approaches. When applying U-HB to the motivating data 
example—investigating associations of traffic-related pollution exposure with NO parameters in a cross-sectional 
sample of southern California schoolchildren—we confirmed the previously published positive association of 
traffic with alveolar inflammation (CA). However, the estimated association was nearly two times larger (0.15 vs 
0.08) using U-HB as compared to the two-stage method (TS-NLME) applied in the previous publication. This 
result was consistent with the simulation study finding that estimates of βCA tended to be higher (less negative 
bias) in U-HB than in TS-NLME.

Numerous applied publications use the two-stage approach, with NO parameters estimated in Stage I and 
then treated as observed outcomes in Stage II analyses relating NO parameters to covariates. Our paper is, to 

Figure 4.  Analysis of CHS data: estimated associations of traffic-related air pollution with CA, logCaw, and 
logDaw ( ̂β  and 95% CI) using the selected methods, *with no adjustments for covariates. *TS-NLME ( J ′aw ) is the 
previously published model using a J ′aw parameterization of TS-NLME.
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our knowledge, the first evaluation of statistical methods used to estimate the associations of covariates with NO 
parameters. A number of publications have previously studied statistical methods for estimating participant-
level NO parameters (i.e., only Stage I)9,13,19. In our own previous comparison of Stage I methods, we found that 
NLS outperformed linear, quadratic, and third order approximations (i.e., HMA), especially in terms of reduced 
bias for estimates of DawNO and more appropriate CI coverage for all NO  parameters19. In this paper where we 
compare TS methods, we found that TS-NLS also generally outperformed TS-HMA. The direction of bias for 
TS-NLS and TS-NLME were always the same, while TS-HMA usually differed from the other methods. TS-HMA 
also had the widest CI while TS-NLME had the shortest CI (resulting in high power but low coverage). The worst 
bias was observed for TS methods, which we suspect was a consequence of not propagating uncertainty in the 
second stage. U-NLME, which had the second best performance after U-HB, had serious convergence issues, as 
we had reported in our early work on U-NLME20.

This paper has several strengths. First, our novel U-HB model takes a unified approach, which combines 
the estimation of NO parameters and their associations with covariates into a single step. This allows for the 
propagation of uncertainty across stages and avoids the exclusion of some participants in two-stage models 
due to failure to estimate their Stage I model. Second, we used a Bayesian approach for U-HB which allowed 
us to: clearly specify a hierarchical model structure, fully characterize the posterior distributions of the param-
eters of interest, and to have the flexibility to use diffuse priors (as we do here) or more informative priors if 
appropriate. Unlike TS-NLS or TS-NLME, U-HB does not use inferential approaches that rely on large sample 
size/normality assumptions that might be violated with multiple flow FeNO datasets. Third, we used the Caw 
parameterization of the 2CM (Eq. 1) for all the methods presented in the paper since it directly estimates what 
we believe to be a more interpretable NO parameter—the airway wall concentration of NO (Caw, ppb)—rather 
than J ′aw (the airway wall tissue diffusion capacity, pL·s−1·ppb−1). Based on CHS data analysis (Supplementary 
Fig. 4.3), had we used the J ′aw parameterization, our results would have been similar to what we observed using 
the Caw parameterization. An additional advantage of U-HB is that, since it is implemented using MCMC, we 
can fully characterize the posterior of J ′aw from a Caw parameterization model by simply calculating exp (log Caw)/
exp (log Daw) at each MCMC iteration. Fourth, we compared U-HB to four alternative methods, which spanned 
the range applied in practice to study the associations of covariates with NO parameters. We did exclude one 
common two-stage method (“TS-linT”) in which Stage I is a simple linear regression for each participant, based 
on the linear approximation proposed by Tsoukias et al.41. We excluded TS-linT because its simplified assump-
tion of the approximation cannot estimate Caw (it only estimates J ′aw and CA). Fifth, we performed an extensive 
set of simulation studies across a range of effect sizes, which were of particular concern in situations where 
the covariate is related to only one (or two) of the three correlated NO parameters. We examined not only bias 
and CI length but also power and type I error rates in those scenarios to understand how each model behaved. 
Finally, we implemented U-HB via Gibbs sampling in readily available software (the R interface to JAGS). This 
implementation of the U-HB worked well across simulation scenarios (especially compared to other methods) 
and converged considerably better than the NLME methods.

Limitations of our work include the following three issues. First, the current implementation of U-HB in 
JAGS is computationally intensive and requires hours to fit instead of seconds (TS-NLS, TS-HMA), minutes 
(TS-NLME) or tens of minutes (U-NLME). To overcome this challenge in the exploratory or interactive model-
building stage of an applied data analysis, an analyst may wish to use a two-stage version of HB. One can run 
U-HB with no covariates to obtain participant-level NO parameters in Stage 1, and then in Stage 2, run the usual 
separate linear regression models relating NO parameters to covariates. Penultimate and final models could then 
be estimated with U-HB. Running the final analyses using U-HB, over the course of several hours, is a minimal 
commitment of resources compared to the months or years that most studies have devoted to planning and data 
collection. Future work may consider alternative MCMC methods, with the goal of reducing run time. Second, 
our simulation studies though extensive, did not cover all possible scenarios. Here we generated data using 
magnitudes of association and NO parameter distributions similar to those observed in the CHS data, under a 
single covariate scenario. However, U-HB can be readily applied to scenarios with multiple covariates or even 
interactions, with some additional computational cost. For example using CHS data, U-HB converged after 4.8 h 
for the model with only one covariate, but 9.2 h for a model with two covariates and 9.5 h for a model with four 
covariates. Third, we used the conservative approach of only comparing methods using datasets for which all 
the methods converged. If we included all datasets (dropping a dataset for a method only if that method failed 
to converge on that dataset), the relative performance the methods was similar (Supplemental Fig. 5).

In summary, we have performed the first evaluation of statistical methods used to estimate the associations of 
covariates with NO parameters. We found the best performance using a novel unified estimation method (U-HB), 
which requires longer computation time (hours rather than minutes) but which can be readily implemented 
using standard statistical software.

Software
An example dataset and R code for implementing all 5 methods are available on Github https:// github. com/ 
USCbi ostats/ FeNO_ UHB.

Data availability
Due to the limitations in the original consent forms and HIPAA requirements, the data from the CHS cannot 
be freely available in the manuscript, supplemental files, or in a public repository. However, we are committed 
to sharing the data and results acquired as part of this study. The CHS has a process in place for data sharing 
that involves approval of proposals by a Data Sharing Committee. Investigators who want access to data will be 

https://github.com/USCbiostats/FeNO_UHB
https://github.com/USCbiostats/FeNO_UHB
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required to submit a research protocol, which will be reviewed by the CHS Health Data Release Committee and 
the USC IRB. Please send requests to access this dataset to Dr. Frank Gilliland (gillilan@usc.edu).

Received: 2 April 2021; Accepted: 30 July 2021
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