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Abstract

Background: The prognostic value of CD4 counts and RNA viral load for identifying treatment need in HIV-infected
individuals depends on (a) variation within and among individuals, and (b) relative risks of clinical progression per unit CD4
or RNA difference.

Methodology/Principal Findings: We reviewed these measurements across (a) 30 studies, and (b) 16 cohorts of untreated
seropositive adults. Median within-population interquartile ranges were 74,000 copies/mL for RNA with no significant
change during the course of infection; and 330 cells/mL for CD4, with a slight proportional increase over infection. Applying
measurement and physiological fluctuations observed on chronically infected patients, we estimate that 45% of population-
level variation in RNA, and 25% of variation in CD4, were due to within-patient fluctuations. Comparing a patient with RNA
at upper 75th centile with a patient at median RNA, 5-year relative risks were 1.4 (95% CI 1.2–1.7) for AIDS and 1.5 (1.3–1.9)
for death, without change over the course of infection. In contrast, for a patient with CD4 count at the lower 75th centile,
relative risks increased from 1.0 at seroconversion to maxima of 6.3 (4.4–8.9) for AIDS and 5.5 (2.7–10.1) for death by year 6,
when the population median had fallen to 300 cells/mL. Below 300 cells/mL, prognostic power did not increase, due to a
narrower CD4 range.

Conclusions: Findings support the current WHO recommendation (used with clinical criteria) to start antiretroviral
treatment in low-income settings at CD4 thresholds of 200–350 cells/mL, without pre-treatment RNA monitoring – while not
precluding earlier treatment based on clinical, socio-demographic or public health criteria.
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Introduction

CD4 cell counts (CD4) and RNA viral loads (RNA) are the two

most commonly used prognostic markers of the clinical progres-

sion of HIV infection [1–3]. In the chronic stage of infection, the

level of viral replication, as measured by the concentration of RNA

in the blood, largely determines the time from initial infection to

AIDS and death: high initial RNA is a marker for rapid

progression, and in all individuals clinical progression is preceded

by an increase in RNA [4–8]. As infection progresses, CD4

declines [9,10] and should, in principle, provide a measure of the

remaining time to AIDS and death. Despite a broad consensus on

these prognostic patterns, recent observations of poor correlation

between RNA and CD4 decline rates in adult patients have led to

a renewed debate over the relative merits of RNA and CD4 as

prognostic indicators in the absence [11,12] and presence [13] of

highly active antiretroviral treatment (ART).

As ART becomes increasingly available in low-income countries

[14], knowledge of the natural history of HIV infection and the

prognostic value of RNA and CD4 measurements is increasingly

important:

N On a population basis, to help determine at what threshold it is

most effective, and cost-effective, to begin therapy of

treatment-naı̈ve patients [15];

N On an individual basis, to refine management of treatment-

naı̈ve patients [15];

N To optimize treatment allocation among patients in settings

where available resources cannot (yet) meet the full demand for

ART [16];

N To improve the empirical basis for prognostic and epidemi-

ological models of the impact and cost-effectiveness of ART

[16].
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The prognostic value depends on (i) the relative risk of

progression per unit difference in RNA or CD4, and (ii) the

extent to which RNA and CD4 levels vary within populations.

The interpretation of published data on these two components of

prognostic value is complicated by several factors. First, prognostic

values are likely to vary as the infection progresses. Unfortunately,

in many studies dates of seroconversion are not known or known

only with considerable uncertainty. Further, among (and within)

studies with known dates of seroconversion, the timing of RNA or

CD4 ‘baseline’ measurements varies, as does the subsequent

duration of follow-up. Second, studies use a variety of outcome

measures and analytical methods to interpret observed associa-

tions.

To determine the comparative prognostic values of RNA and

CD4 over the course of untreated infection, we review and analyze

quantitative data on progression risks associated with high RNA

and low CD4, and within-population variability in both markers,

from high-quality cohort studies of HIV-seropositive adults. All

observations are ‘standardized’ in types of outcome measure, and

in time relative to the intervals since seroconversion of patients. As

a complementary approach, magnitudes of within-patient (labo-

ratory and physiological) and among-patient variation are

reviewed and compared between RNA and CD4. Results are

discussed in the light of treatment initiation recommendations and

CD4/RNA testing algorithms that are either in use or have been

proposed for low-income settings.

Methods

Literature review
Studies on RNA, CD4 and their variation within HIV-1

infected populations, and the risks of AIDS and death

associated with high RNA or low CD4 published up to May

2008 were identified by PubMed search. Search terms included

(HIV-1 OR AIDS), (RNA OR viral load), CD4, (longitudinal

OR cohort OR seroconver* OR prognos*), and (AIDS OR

mortality OR survival OR progress* OR (natural history)).

Relevant publications (in English, French or Spanish) were

traced backward and forward in time to identify additional

data on the same patient cohort. In instances needed, authors

were contacted to obtain or verify data from eligible studies.

Study selection and analyses adhered to the MOOSE Guidelines

for Meta-Analyses and Systematic Reviews of Observational Studies (see

Text S1) [17].

Outcome measures considered were:

N Relative risks associated with high RNA or low CD4 for

subsequent development of clinical AIDS and/or death.

N RNA and CD4 median or mean levels, with interquartile

ranges (IQRs) or other centiles (e.g. 10th and 90th), minimum,

maximum and standard deviations (SD).

Studies were included if:

N They reported one or more relevant outcome measures for

HIV-1 seropositive adults aged$15 years. All types of risk

population, including men having sex with men, injection drug

users, haemophiliacs, and heterosexually infected men and

women, were eligible, as well as all types of study samples

including general population surveys, clinic or hospital patient

reports, sero-incident cohorts and sero-prevalent surveys.

However, study groups were not allowed to have been selected

according to their subsequent prognosis or the presence or

absence of symptoms during primary infection.

N They reported the average duration of infection in the study

population at time of the relevant ‘baseline’ RNA or CD4

measurement, based on (estimated) patient seroconversion

dates from serotesting at regular intervals.

N Quantification of RNA was done using a Reverse Transcrip-

tase-Polymerase Chain Reaction assay, with a lower detection

limit of less than 1000 copies/mL. Both serum and plasma

measurements were included, as these differ only by a

relatively small amount compared to variations over time

and between individuals [18,19].

N For prognostic studies, median follow-up was more than 1

year.

N Study subjects were not treated with triple-therapy ART or

any antiretroviral combination containing protease inhibitors.

Studies that included patients receiving zidovudine monother-

apy or two nucleoside analogues (for subgroups of participants,

during part of follow-up) were included, because these

regimens do not significantly affect RNA or CD4 levels over

several years [5,8], which was the typical length of follow-up in

prognostic studies analyzed – and two studies reported no

influence of non-triple ART use on RNA and CD4 prognostic

value [20,21].

Within-population variability in RNA and CD4
For within-population variability in RNA and CD4 levels,

eligible studies had to report at least two statistics of: median,

mean, IQR or other centiles, minimum, maximum and standard

deviation. We standardized variability statistics across all studies as

medians with IQRs, deriving missing medians and IQRs by

applying normal distributions on transformations of the reported

alternative statistics.

Appropriate transformation functions that normalized RNA

and CD4 distributions were identified by analysis of raw data from

a cross-sectional survey of HIV-infected South-African men [22].

A Box-Cox transformation [23], that minimizes the skewness of

the frequency distribution, was found to produce adequate normal

distributions:

y~ xl{1
� ��

l

where x is the untransformed value of RNA viral load (copies/mL)

or CD4 (cells/mL) and y is the corresponding transformed value.

Estimated values of l that fitted the South African data were

0.1606 for RNA and 0.5420 for CD4. The same power law and

values of l were then used to derive RNA and CD4 medians and

IQRs from studies not reporting these statistics, by fitting

cumulative distribution functions [24].

Relative prognostic risks associated with RNA and CD4
The analysis of relative risks associated with high RNA and low

CD4 focused on the two outcome measures AIDS and death.

Standard definitions of AIDS (group C of the Centers for Disease

Control and Prevention 1993 [25] or 1986/7 [26], or European

1993 [27] classification) were accepted. Where available, we

included the reported univariate relative risks per 100 cells/mL

lower baseline CD4, and per 10-fold (1 log10/mL) higher baseline

RNA. Univariate risks were felt to best reflect the value of simple,

individual predictor variables as used in clinical practice (where

e.g. CD4 thresholds are constant irrespective of patients’ RNA,

age and sex). For studies reporting only multivariate risks (adjusted

for covariates), however, those measures were included.

HIV Progression and CD4/RNA
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To capture the maximum possible information from relevant

studies despite limitations in data and variability in risk measures

reported (Table 1), we proceeded as follows:

N Studies which reported relative risks only for quartiles of RNA

or CD4 were included, assuming that each successive quartile

approximated a 10-fold higher RNA or a 100 cells/mL lower

CD4 – as was the case in one study that reported on both risk

measure units [21].

N Where progression risk was reported as ‘non-significant’

without specification of the exact value, this was entered as 1.0.

N From studies that reported relative risks for RNA or CD4

‘baseline’ measurements taken at two or more different

timepoints relative to seroconversion [4,28,29], all estimates

were included, to capture all information on the development

over time in the prognostic marker.

N From studies that reported risks over two or more different

durations of follow-up (from a fixed timepoint of baseline RNA

or CD4 measurement) [30,31], we included the estimate for

the shortest follow-up duration, as short-term prognostic

indications are likely to be most relevant in patient

management.

N For studies of seroprevalent cohorts for whom no (estimated)

median time interval between seroconversion and (baseline)

RNA or CD4 measurement was reported, this timepoint was

imputed based on the reported baseline CD4 level and the

relationship between the measurement timepoint and baseline

CD4 in studies that reported both.

The dependence of risks on timepoint of RNA/CD4 measure-

ment, duration of follow-up, average rate of progression to AIDS

or death during follow-up, median baseline CD4 in the study

population, geographical region and use versus non-use of

antiretroviral mono- or bi-therapy at baseline and during follow-

up was assessed in linear regression. All studies were weighted

equally, because heterogeneity in risks due to factors such as study

design and follow-up, setting, clinical spectrum of patients at

baseline and median progression rates was much greater than

sampling errors. Factors significant at p,0.10 in univariate

analysis were considered for multivariate models.

Components of within-population variability
As a complementary indication of the population-level prog-

nostic values of RNA and CD4 measurement, we quantified the

extent to which within-population variation in each measure

reflects within-individual variation, due to laboratory measure-

ment error and/or short-term physiological fluctuation – which

confounds prognostic value – versus variation among individuals –

which determines and constitutes clinical prognostic value.

Relevant studies reporting components of within-individual

variability for both RNA and CD4 from the same set of patients

were identified by searching PubMed. Their results were analyzed

in the light of total within-population variations aggregated from

the larger set of studies reporting the latter.

Results

Within-population variability in RNA and CD4
RNA medians with IQRs at a specified (estimated) time after

seroconversion were available from 57 measurements (Figure 1a).

Across these data, population medians varied widely, between

5,000 and 390,000 copies/mL. The IQR averaged around

74,000 copies/mL, or 2.5 times the population median. For the

overall median across studies of 28,000 copies/mL the corre-

sponding IQR would be <8,000–82,000. In linear regression, the

IQR did not change significantly with the timepoint after

seroconversion (p = 0.37), but increased with increasing population

median RNA (p,0.001). When expressed as a proportion of

population median value, the IQR did not vary with time

(p = 0.64) or with median RNA value (p = 0.052).

For CD4, across 51 datapoints, population medians decreased

over time after seroconversion, from around 600 cells/mL in the

first year to 360 cells/mL for populations sampled at around 8

years after seroconversion (Figure 1b; p for trend,0.001).

Corresponding IQRs averaged 330 cells/mL, or 0.65-fold the

population median. For the overall median of 500 cells/mL the

corresponding IQR would be 360–700 cells/mL. In linear

regression, the IQR did not vary significantly with either the

population-specific median CD4 or the timepoint after serocon-

version (p = 0.11 and 0.095, respectively). When expressed as a

proportion of population median, however, the IQR increased

with time after seroconversion (p,0.001; Figure 1b).

Relative prognostic risks per unit RNA or CD4 difference
Mean relative risks per 10-fold higher RNA were 2.0 (95%

confidence interval (CI): 1.8–2.5) for AIDS (12 studies, 17

datapoints) and 2.5 (2.1–3.0) for death (9 studies, 10 datapoints;

Table 1). These prognostic risks did not vary over time after

seroconversion (Figure 2a and 1b), or with duration of follow-up,

geographical region, baseline CD4, use of antiretroviral mono-/bi-

therapy, or average clinical progression rates (see Text S2).

In contrast, relative risks per 100 cells/mL lower CD4 increased

with time after seroconversion, for both AIDS (10 studies, 14

datapoints) and death (7 studies, 8 datapoints; Table 1) (Figures 2c

and 1d): from 1.0 at seroconversion to an estimated 3.0 (95% CI

2.6–3.4) by 6 years for AIDS (p,0.0001 for trend), and to 2.8

(1.9–3.7) for death (p,0.0001). In multivariate regression, this

pattern was not modified by duration of follow-up, geographical

region, baseline CD4, use of antiretroviral mono-/bi-therapy or

average progression rates (see Text S2).

Prognostic power at population level
When combining the results from Figures 1 and 2, population-

level prognostic powers can be approximated as the relative risk

for a hypothetical patient with RNA at the upper 75th centile or

CD4 at the lower 75th centile, compared to a patient with exactly

the median RNA or CD4 level in a given population (Figure 3).

Whereas relative risks per 10-fold RNA (multiplicative) increase

were similar to relative risks per 100 cells/mL (linear) CD4 decline

(Figure 2), the population-level prognostic value was then

considerably higher for CD4 than for RNA, except for populations

limited to very recently infected people. For RNA, relative

prognostic risks for a patient with viral load at upper 75th centile

were a modest 1.4 (95% CI 1.2–1.7) for AIDS and 1.5 (95% CI

1.3–1.9) for death, compared to a patient with median RNA.

These values were constant across the range of population baseline

CD4 medians (Figure 3a).

For CD4, in contrast, the prognostic risk at the lower 75th

centile compared to the ‘median’ patient, rose markedly with

decreasing median CD4: from 1.0 (i.e., no prognostic information)

at CD4s above 625/mL – which, in our dataset, corresponded to

the time of seroconversion – to maxima of 6.3 (95% CI 4.4–8.9)

for AIDS and 5.5 (95% CI 2.7–10.1) for death in populations with

median 300 CD4/mL – which, in the dataset of prognostic risks,

corresponded to around 6 years after seroconversion (Figure 3b).

The time pattern of increasing CD4 prognostic risks was

stronger at a population level (Figure 3b) than at individual-level

(Figure 2c&d), because the (proportional) population-level vari-
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ability in CD4 increases over time after infection (Figure 1b).

Below a population median of 300 cells/mL (around year 6 after

seroconversion), the absolute CD4 range within populations

started to decrease (despite continued increase in proportional

variability). As a result, population-level prognostic value tended to

fall again, although this decline did not reach statistical

significance within the CD4 range evaluated (down to 190 cells/

mL; Figure 3b). In intuitive terms: by the time that most or all

patients have progressed to low CD4, the prognostic value of CD4

will start to decrease.

Components of within-population variability
One study reported components of within-population variability

for plasma RNA and CD4 simultaneously [32], permitting a

comparison of variability components between the indicators. In

this study, 30 clinically stable seropositive men in the UK receiving

antiretroviral mono-therapy had blood samples taken for RNA

and CD4 measurement at 6 occasions spread over 6 months. Each

sample was analyzed twice. Differences between duplicate assays

were considered to reflect laboratory/measurement error, while

variation between visits within a patient was attributed to

physiological fluctuation.

For RNA, among patients with enrollment levels of .500/mL,

the median within-patient range of values across 6 measurements

was <6,500 copies/mL (0.76 log10), while the median difference

between duplicate assays was <1,500/mL (0.2 log10). For CD4,

the median within-patient range over 6 months was 119 cells/mL,

and the median difference between duplicate assays 16 cells/mL.

Using components of variance analysis, the authors estimated that

for RNA, physiological and measurement factors accounted for

55% and 45% of variation within individuals, while corresponding

contributions were 92% and 8% for CD4 [32].

Figure 4 shows how this within-individual variability contributes

and compares to overall within-population variability. Outcomes

for all three variability components (among individuals in a

population, within-individual physiological and within-individual

laboratory measurement error) were standardized as ‘coefficients

of variability’, relative to the corresponding population median

values (Table 2). For RNA, total within-individual variation was

thus estimated to make up about 45% of within-population

variation. For CD4, within-individual variation would account for

around 25% of within-population variation. The corresponding

estimated proportion of variation among individuals is therefore

smaller for RNA than for CD4 (55% and 75%, respectively: blue

areas in Figure 4), reinforcing the conclusion that, among patients

in the chronic stage, CD4 has better prognostic power than RNA.

Discussion

This quantitative review confirmed that RNA and CD4 have

very different time patterns of clinical prognostic value during

untreated HIV-1 infection [4].

Within the first 2 years of infection, RNA immediately gives

some indication of long-term prognosis. Due to constant relative

risks (Figure 2a&b) and constant within-population variability

(Figure 1a), RNA remains similarly informative when measured

during later years (Figure 3a). CD4, in contrast, carries little

prognostic value over early years. Its within-population variability

then instead largely relates to pre-infection CD4 levels, which vary

by up to a factor ten among uninfected adults without influencing

prognosis after infection [10]. As infection progresses and

worsening immune deficiency allows opportunistic infections

(OI) and AIDS-defining illnesses to occur, the prognostic value

of CD4 increases (Figure 3b), due to strong increases in relative
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prognostic risks per unit CD4 decrease (Figure 2c&d) and

increasing proportional within-population variability in CD4

levels (Figure 1b). Part of the prognostic value may reflect that

OI themselves temporarily reduce CD4 [33] and increase RNA

[34,35] 2 effects that may be common in clinic populations where

the occurrence of OIs is often the reason for diagnosis, especially

in Africa. The pattern of diminishing CD4-related progression

risks at higher baseline CD4 (Figure 2c+d) was also observed in a

recent multi-center analysis of patients starting immediate versus

deferred ART [36]: Here, the prognostic value of CD4 2 as

measured by AIDS/death risks associated with deferring ART 2

was high at low CD4 thresholds, but marginal at thresholds in the

range of 500 cells/mL.

Within 2 years after seroconversion, CD4 surpasses RNA as a

prognostic marker, and in later years its prognostic value far

exceeds that of RNA (Figure 3). This estimation supports the

natural history model whereby viral replication drives CD4 decline

and clinical progression (Figure 5a). The marked superiority of

CD4 as prognostic marker during untreated infection is further-

more supported by its estimated near 2-fold smaller proportional

laboratory measurement error and physiological fluctuation within

patients, compared to RNA (Figure 4).

Implications for ART initiation and allocation
As of 2008, the common protocol in USA and Western Europe

is to initiate treatment when CD4 falls below 350/mL or in case of

a history of an AIDS-defining illness [1]. For low-income

countries, as a ‘public health approach’ the WHO recommends

ART for people in WHO clinical stage IV regardless of CD4,

consideration of treatment in stage III with CD4 below 350/mL,

and treatment for those with CD4 below 200/mL regardless of

clinical stage [3]; determining viral load is unnecessary. Our

results support the WHO recommendation to start antiretroviral

treatment in low-income settings based on clinical criteria

supplemented with CD4, without pre-treatment RNA monitoring

2 if the purpose of ART is to maximize clinical benefit among

patients for given treatment and diagnostic inputs. By revealing

that prognostic power is highest in populations with median CD4

around 300/mL (Figure 3b), findings furthermore assist in

interpreting recommendations for how to manage treatment-naı̈ve

Figure 1. (A) RNA viral load; (B) CD4 cell counts, over the course of untreated HIV-1 infection in adults. Each blue dot represents one datapoint of a
median RNA or CD4, with the horizontal error bar indicating the corresponding interquartile range in the study population. Bold pink lines are
medians across all population medians, for which thin pink lines indicate the corresponding interquartile range. Data sources: (a) [6–8,11,28,29,31,66–
85]; (b) [7,8,11,28,29,31,66–71,73–88]. The (linear) trends over time since seroconversion in population median RNA and CD4 should not be
interpreted as a proxy of trends in RNA and CD4 in individual patients. Since population medians are conditional on patients being alive, in individual
patients RNA will instead tend to increase over time, and CD4 will tend to decrease stronger than apparent from Figure 1b.
doi:10.1371/journal.pone.0005950.g001
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individuals with CD4 between 200–350/mL 2 an area of

therapeutic uncertainty.

Simulation studies that combined assumed CD4 and RNA

prognostic risks and within-population variabilities with observed

clinical responses to ART in different CD4 and RNA strata also

found that application of CD4 thresholds to supplement clinical

criteria improves the effectiveness and cost-effectiveness of ART

[37–39]. An observational study of South African patients added the

proviso that clinical criteria alone are a better predictor of disease

progression and ART benefit than CD4 alone [40]. Studies

evaluating different CD4 thresholds predicted that thresholds above

350 cells/mL would save more lives and life-years, but at lesser cost-

effectiveness [38,41] 2 with routine start at CD4,350/mL being

cost-effective by international economic standards [42].

Regarding the utility of RNA measurement, two models

comparing CD4-based and RNA-based treatment initiation con-

cluded that, to scale-up ART beyond symptomatic patients

presenting in clinics, combined RNA/CD4 algorithms would be

most efficient [43,44]. In contrast, a comparison of clinical, CD4- and

RNA-based screening algorithms for a population in Côte d’Ivoire

found RNA testing to be of high cost and dubious additional benefit

[45], and another simulation predicted low cost-effectiveness for

adding RNA measurement to clinical criteria and CD4 testing [39].

Most simulation models assumed a fixed increase in risk of

clinical progression per unit CD4 decline during untreated

infection, throughout the spectrum of CD4 levels and infection

stages. This simplistic assumption is at odds with the progressive

increase in relative hazard with decreasing CD4 stratum (i.e.

increasing duration of infection) that emerged from our analysis

(Figure 2c&d). Furthermore, only one model [38] incorporated

random fluctuation in CD4 (or RNA) measurement in

simulations. If accounting for both the time-changing CD4-

related risk and dilution of prognostic value due to within-

individual fluctuations that our analyses quantified, these models

would probably predict an even lower cost-effectiveness for

applying CD4 thresholds above 350 cells/mL and for RNA pre-

treatment monitoring.

Implications for screening strategies for ART-naı̈ve
people

The substantial within-patient fluctuation for both CD4 and

RNA implies that prognostic value can be improved by repeating

blood sampling and measurements within patients, and evaluating

their average levels over time. Pooling repeat values would probably

increase prognostic risks relative to those shown in Figures 2&3,

which mostly derived from single RNA or CD4 measurements.

Modelling studies have calculated, as the most efficient CD4

testing algorithm for ART-naı̈ve people, a default measurement

frequency of not more than once yearly [44], with repeat

testing for patients whose initial value is close above the

treatment threshold (e.g. between 350–400 cells/mL) [38,41].

Stratification by age, with more frequent tests for older people

in whom CD4 declines faster, would further increase efficiency

[38,41].

Figure 2. Relative risks of clinical HIV progression per unit difference in RNA or CD4. A. Risk of AIDS per 10-fold (1 log10/mL) higher RNA;
B. Risk of death per 10-fold (1 log10/mL) higher RNA; C. Risk of AIDS per 100 cells/mL lower CD4; D. Risk of death per 100 cells/mL lower CD4. Each
symbol represents the estimate from 1 study, of a population of HIV-1 infected adults (see Table 1 for details of studies). Risks are displayed as a
function of the median time since HIV seroconversion that RNA or CD4 was first measured. Horizontal error bars indicate the median duration of
follow-up over which RR was evaluated. Dashed lines in (a) and (b) indicate pooled median RRs across studies, which did not vary with time since
seroconversion. Dashed lines in (c) and (d) indicate linear trends of increasing RR with stage that CD4 was measured (from a defined value of 1.0 at
seroconversion; c: Pearson’s R2 = 0.74; p,0.0001; d: Pearson’s R2 = 0.89; p,0.0001). Median follow-up across studies and datapoints were (a) 4.8 years;
(b) 6.3 years; (c) 4.9 years, (d) 4.6 years. If instead of univariate relative risks, multivariate relative risks were preferentially included from studies that
reported both, results did essentially not change (a: 6 studies reporting both RRs, with median ratio of multivariate-to-univariate RR 0.82; b: 6 studies
reporting both, median ratio of multivariate-to-univariate RR 0.84; c: 4 studies reporting both, median ratio of multivariate-to-univariate RR 0.94; d: 5
studies reporting both, median ratio of multivariate-to-univariate RR 0.91).
doi:10.1371/journal.pone.0005950.g002
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Limitations
The analyses have several limitations. First, the majority

(,75%) of eligible studies were from high-income, Western

settings – leaving the applicability of findings uncertain especially

in Africa.

For relative risk studies, data analyzed were limited to untreated

cohorts and did not address toxicity, viral resistance and cost

associated with (early versus late) ART. We nevertheless believe

that the findings are important for clinical decision making,

because the prior question that physicians face is their patients’

prognosis if treatment is not initiated. Furthermore, despite our

attempts to include only high-quality studies and to focus on

standardized outcomes with known covariates, our pooled analyses

are not meta-analyses in the strict sense. Notably, included studies

varied in rates of loss to follow-up, extent of exposure to

antiretroviral mono- or bi-therapy, OI prophylaxis and treatment,

and patient inclusion criteria and age ranges; however, available

(cohort-aggregate, rather than individual-patient) data and

statistical power precluded optimal assessment of these possible

determinants (see Text S2).

Although one would ideally like to know absolute risks of AIDS

and death, these are both highly variable between patients and

uncertain. Therefore, treatment guidelines must be based on

population estimates of relative risks for different categories of

patients, such as we provide.

Analyses focused on RNA and CD4 as independent individual

markers, ignoring non-laboratory-based markers that are typically

more accessible, at lower cost, for larger groups of patients.

Notably, age at initial infection is an important determinant of

survival [46–48], which in part underlies the effect of RNA and

CD4: older patients have higher viral setpoints [49] and hence

faster CD4 decline and disease progression (Figure 5b). Since age

at initial infection or its approximation, ‘age at first clinical

presentation’, will be available for all patients even in the most

peripheral facilities, the most relevant question to answer would be

the prognostic value of RNA and CD4 additional to age (and clinical

and other socio-demographic factors) [47]. Published reports did

not allow such analysis, but this will be eagerly awaited from

multicentre patient cohorts such as CASCADE, ART-LINC and

ICONA [47,50,51].

When considering expansion of CD4-guided treatment initia-

tion, thresholds may furthermore need to be differentiated

between populations, to account for geographical and age/sex

differences in pre-infection distributions [10]. For example, in

Figure 3. Population-level prognostic power of RNA and CD4 in untreated HIV-1 infection. A. Relative prognostic risk (RR) for a typical
patient at 75th centile highest RNA, compared compared to the average patient with exactly the population-median RNA value; B. Relative
prognostic risk for a typical patient at 75th centile lowest CD4, compared compared to the average patient with exactly the population-median CD4
value. Results are expressed as a function of median CD4 in the population, for the range of median CD4 levels found in studies analyzed in Table 1
and Figure 1. CD4 population medians were calculated as a linear function of the median year after seroconversion, based on the studies presented in
Table 1. Bold lines indicate best estimates; thin lines 95% confidence intervals.
doi:10.1371/journal.pone.0005950.g003
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populations with low CD4 levels in both HIV-infected and HIV-

uninfected adults, such as Ethiopians [52] and Chinese [53],

thresholds above 350 cells/mL would probably be (even) less

efficient than in other populations.

In the analysis of within-population variabilities, we did not

attempt to explain variation among studies in median marker levels

beyond that explained by stage of infection (Figure 1). The wide

variation in population medians for both RNA and CD4 is itself a

significant observation, which may justify further investigations

into geographical and socio-demographic patterns – as well as

reflection on the validity of universal, international reference

values and treatment thresholds [10].

The analysis of components of within-population variability

in CD4 and RNA (Table 2 and Figure 4) was based on the

findings of just one 30-patient dataset [32]. No other studies

were identified that estimated the contributions of measure-

ment error and physiological fluctuation for both RNA and

CD4 in parallel. However, several studies that measured a

subset of these outcomes supported the findings of study [32],

namely:

N RNA measurements fluctuate within patients over short

periods of time by 0.2–0.5 log10 copies/mL [54–58], with

measurement error and physiological fluctuation (without a

Figure 4. Within-population variability in RNA and CD4 during untreated adult HIV-1 infection, by component of variation.
‘Coefficients of variability’ were defined and calculated as described in Table 2. The percentages written in the blue bars indicate the proportion of
overall variability that is not attributable to within-patient factors.
doi:10.1371/journal.pone.0005950.g004

Table 2. Definition and calculation of components of within population-variability in RNA viral load and CD4 cell count during
untreated HIV-1 infection in adults.

Component of
variation Definition of ‘Coefficient of Variability’ Data sources Coefficient of variability (calculation)

RNA (copies/mL) CD4 (cells/mL)

Measurement error Median difference between duplicate assays within a
patient visit, as proportion of population median value

[32] 46% ( = 1,538/3,311*) 4% ( = 16/400)

Physiological
variation

Within-individual variation minus measurement error,
as proportion of population median value

[32] 126% ( = 173%–46%) 20% ( = 24%–4%)

} (total) Within-
INDIVIDUAL variation

Median 95% range of values within a patient obtained
over 6 visits, as proportion of population median value

[32] 173% ( = 5,717/3,311*) 24% ( = 98$/400)

Additional variation
among individuals

Within-population variation minus within-individual
variation, as proportion of population median value

Studies of
Figure 1+; [32]

210% ( = 383%–173%) 74% ( = 98%–24%)

} (total) Within-
POPULATION variation

Median within-population IQR divided by 0.675#, as
proportion of population median value

Studies of
Figure 1+

383% ( = (73,600/
0.675#)/28,200)

98% ( = (330/
0.675#)/500)

*Samples with RNA.500 copies/mL only. The 95% confidence interval was calculated based on the reported standard deviation among 6 visits, of 0.264 log10 copies/
mL, applying a Student T-statistic for 5 degrees of freedom.

$Lacking a reported standard deviation, the 95% confidence interval was estimated by multiplying the reported full ( = 119 cells/mL) CD4 range among 6 visits with the
ratio of 95% range to full range ( = 5,392/6,563 copies/mL) in RNA.

#For a normal distribution, the 95% confidence interval is equal to the interquartile range divided by 0.675. As population median value, we here take the median
across all studies shown in Figure 2.

+Average within-population variability was taken from the pool of eligible studies depicted in Figure 1, as the sample in [32] was too small to provide a representative
estimate of typical within-population variability.

doi:10.1371/journal.pone.0005950.t002
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diurnal pattern) each contributing about half to this variation

[54,55,58–60];

N CD4 measures vary within patients by 60–130 cells/mL within

weeks, with a larger contribution of physiological (diurnal)

fluctuation than of measurement error [56,61,62];

N Proportionally, measurement error and overall within-individ-

ual variation are larger at lower median CD4 [56] and RNA

[32,63];

N During stable infection, overall within-subject variation is

proportionally larger for RNA than for CD4 [57].

While these analyses help to better understand the respective

value of RNA and CD4 measurements in decision making for

treatment-naı̈ve patients, biomarker testing and treatment alloca-

tion policies should ultimately reflect not just knowledge of HIV

natural history and clinical prognosis, but a broader societal

debate about the individual-level and public health objectives of

ART [16]. By end-2007, in low- and middle-income countries an

estimated 31% (2.9 out of 9.7 million) of people in need were

getting ART [14]. As long as resources remain insufficient to treat

all people in need, prioritization among patients must inevitably

consider not only the individual patient’s health gain, but also the

broader public health objectives: Is treatment meant to maximize

patients’ survival (for given treatment and diagnostic inputs)? To

restore workforce capacity, and/or to prevent orphaning and

reduce socio-demographic impact of HIV/AIDS? To contribute

to HIV prevention, by lowering viral load and reducing

transmission to sexual partners of patients? Different objectives

would guide treatment priorities in different directions: for

example to the sickest and oldest, to employees in critical

economic sectors and young parents [64], or to the most sexually

active (risk) groups and/or patients with highest RNA [65].

Conclusions
Although high RNA is the earliest predictor of clinical

progression after HIV seroconversion, for populations of treat-

ment-naı̈ve patients during stable infection or with unknown date

of seroconversion, CD4 surpasses RNA as a prognostic indicator

and screening tool to select patients in need of ART. The

prognostic value of CD4 in treatment-naı̈ve patients was shown to

be greatest in populations with median <300 cells/mL. Findings

support the WHO recommendation to start antiretroviral

treatment in low-income settings based on clinical criteria

supplemented with CD4, without pre-treatment RNA monitoring.

Whereas expanding CD4 treatment initiation thresholds to above

around 350 cells/mL would increase the life-years gained with

ART, the added value of CD4 measurement then diminishes. A

public health approach to expanding ART allocation in low-

income countries may benefit from differentiating or supplement-

ing CD4 thresholds by independent socio-demographic or public

health prognostic indicators, such as age.

Supporting Information

Text S1 MOOSE Guidelines for meta-analysis and systematic

reviews of observational studies – with specification of adherence of

literature searches, study selection and analyses conducted.

Found at: doi:10.1371/journal.pone.0005950.s001 (0.14 MB

DOC)

Text S2 Statistical Appendix. Univariate and multivariate

regressions of relative risks of clinical HIV progression associated

with higher RNA viral load and lower CD4 cell count.

Found at: doi:10.1371/journal.pone.0005950.s002 (0.08 MB

DOC)

Figure 5. Schematic natural history model of HIV-1 replication driving rates of CD4 decline and clinical progression. A. Survival varies
among individuals according to the level of viral replication – which is indicated by RNA after reach of the setpoint in the first months after
seroconversion: patients with highest RNA (red lines) have shortest survival; patients with lowest RNA (green lines) have longest survival. Rates of CD4
decline varies according to (1) RNA setpoint; and (2) pre-infection CD4, which varies independently without influencing prognosis upon infection.
Individuals with high CD4 before infection have faster subsequent CD4 decline (bold lines) than individuals with low pre-infection CD4 (dashed lines)
– for a given RNA and duration of survival. This natural history model has earlier been proposed based on data of cohorts of homosexual men in New
York city and Washington DC [89]. B. Refinement of natural history model to incorporate prognostic determinants not (or not entirely) operating
through RNA and CD4; these increase the within-population variability in survival (x-axis range). ‘Age’ here could symbolically be taken to also stand
for other factors independently associated with prognosis: e.g. good immune constitution at baseline or low exposure to pathogens causing
opportunistic infections, instead of young age.
doi:10.1371/journal.pone.0005950.g005
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