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A B S T R A C T

Background: Multiple aspects of sleep and Sleep Disordered Breathing (SDB) have been linked to hyperten-
sion. However, the standard measure of SDB, the Apnoea Hypopnea Index (AHI), has not identified patients
likely to experience large improvements in blood pressure with SDB treatment.
Methods: To use machine learning to select sleep and pulmonary measures associated with hypertension
development when considered jointly, we applied feature screening followed by Elastic Net penalized
regression in association with incident hypertension using a wide array of polysomnography measures, and
lung function, derived for the Sleep Heart Health Study (SHHS).
Findings: At baseline, n=860 SHHS individuals with complete data were age 61 years, on average. Of these,
291 developed hypertension ~5 years later. A combination of pulmonary function and 18 sleep phenotypes
predicted incident hypertension (OR=1.43, 95% confidence interval [1.14, 1.80] per 1 standard deviation (SD)
of the phenotype), while the apnoea-hypopnea index (AHI) had low evidence of association with incident
hypertension (OR =1.13, 95% confidence interval [0.97, 1.33] per 1 SD). In a generalization analysis in 923
individuals from the Multi-Ethnic Study of Atherosclerosis, aged 65 on average with 615 individuals with
hypertension, the new phenotype was cross-sectionally associated with hypertension (OR=1.26, 95% CI [1.10,
1.45]).
Interpretation: A unique combination of sleep and pulmonary function measures better predicts hypertension
compared to the AHI. The composite measure included indices capturing apnoea and hypopnea event dura-
tions, with shorter event lengths associated with increased risk of hypertension.
Funding: This research was supported by National Heart, Lung, and Blood Institute (NHLBI) contracts
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1. Introduction

Hypertension is a medical condition affecting more than 30% of
the U.S population. The correct diagnosis, early intervention and effi-
cient treatment of hypertension are important for reducing risk of
stroke, cardiovascular disease, and renal failure [1,2]. There is a large
body of evidence for the association of various sleep characteristics
with blood pressure and hypertension [3,4]. Sleep disordered breath-
ing (SDB), common in middle aged and older individuals at risk for
hypertension, has been shown to be associated with increase in both
nocturnal and daytime blood pressure, uncontrolled blood pressure,
and prevalent and incident hypertension [5,6]. In addition, indepen-
dent of SDB, reduced slow wave sleep (N3), short total sleep duration,
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Research in Context

Evidence before this study

Sleep Disordered Breathing (SDB) has been linked to elevated
blood pressure as well as hypertension in various studies with
multiple pathophysiological mechanisms suggested. However,
the gold standard measure, Apnoea�Hypopnea Index (AHI), for
quantifying SDB and defining the case population in most of
previous studies has been widely questioned for oversimplify-
ing this complex disorder. The long-term prognosis and clinical
manifestations of SDB can be better reflected by integrating
other polysomnography-derived measures and sleep state
traits, many of which also have been previously shown in asso-
ciation with hypertension. Additionally, pulmonary function
featured by vital capacity measures has been reported to associ-
ate with both cross-sectional and incident hypertension. A con-
nection between reduced lung volume and SDB can also be
established via increased upper airway collapsibility and
reduced oxygen storage. Despite all mentioned efforts to map
the relationships among three conditions, the cardio-pulmo-
nary domain remains under-investigated in the context of SDB.

Added value of this study

Our study considered a plethora of sleep-related traits, with
further incorporation of pulmonary functions to assess SDB and
the SDB-related pathogenesis of hypertension. We developed
composite sleep and pulmonary function measures with stron-
ger prognostic power compared to the AHI. Apart from the
main composite phenotype requiring access to electroencepha-
lography measurements (cSPPSG), we also develop developed a
version of composite phenotype friendly to home sleep studies
(cSPHST).

Implications of all the available evidence

This study will lead to improved risk stratification metrics
based on overnight sleep studies. It shows that greater atten-
tion should be given to lung function and to hypopnea and
apnoea event durations.
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and poor sleep quality, have been implicated in hypertension [7-9].
Several pathophysiological mechanisms are proposed to link dis-
turbed sleep to hypertension through abnormal arterial blood gas,
excessive arousals and decreased slow-wave sleep affecting the bal-
ance between sympathetic and parasympathetic nervous system
activity [8,10-12].

Previous studies that investigated the association between hyper-
tension and sleep disordered breathing (SDB) mainly focused on
defining “cases” or exposures using the polysomnography (PSG)-
derived apnoea�hypopnea index (AHI), a simple measure of average
number of respiratory events (apneas and hypopneas) per hour of
sleep. Nevertheless, continuous positive airway pressure (CPAP), the
primary treatment of OSA, has shown overall modest effects on blood
pressure when individuals are selected on the basis of cutoff values
for the AHI alone [13-17]. The relatively modest blood pressure
improvements observed in these trials possibly reflects the failure of
AHI to adequately capture pathophysiology of the respiratory events
or to identify individual differences in response to these events. Mul-
tiple additional metrics are available from the PSG that plausibly can
improve prediction of hypertension, such as sleep depth, periodic
limb movement index and reduced slow wave sleep [9,18,19]. Addi-
tionally, emerging data indicate the importance of state-specific
measures of sleep disturbance; e.g., REM-dominant sleep apnoea
appears to drive a large portion of sleep-apnoea associated
hypertension, possibly because of associations with more severe
sympathetic activation, more hypoxemia, and disruptions of REM
sleep-related neuroendocrine homeostasis [20]. Considering the
complicated and heterogeneous mechanisms underlying hyperten-
sion in relation to sleep, a potential alternative approach to disentan-
gle individual sleep disturbance exposures is to combine multiple
sleep-related traits ranging from sleep architecture, hypoxemia,
breathing disturbance and autonomic dysregulation, along with
other individual characteristics, to evaluate individual phenotype
contributions while accounting for potential confounders.

Cardio-pulmonary interactions have multiple physiological and
clinical implications, but are relatively under-studied in the setting of
SDB. Notably, variations in lung function may influence SDB suscepti-
bility as well as SDB subtype, including predisposition to hyperten-
sion. Decreased end-expiratory lung volume increases upper airway
collapsibility and can precipitate or exacerbate apneas and hypo-
pneas [21-24]. In addition, both lower lung volumes and underlying
pulmonary parenchymal disease can reduce oxygen storages and
result in a greater degree of hypoxemia following SDB-related respi-
ratory events. Decreased lung volumes also may be a marker of car-
diac ventricular dysfunction. Multiple studies have demonstrated an
association of reduced pulmonary function with hypertension cross-
sectionally [25-27], as well as with incident hypertension [25-28],
although those studies did not evaluate the influences of SDB. Other
studies reported the association of pulmonary function with incident
cardiovascular outcomes [29-32], of which hypertension is a strong
risk factor. We therefore hypothesized that measures of lung func-
tion, in conjunction with quantitative measures of sleep and SDB,
could provide improved physiological biomarkers predictive of
hypertension risk and provide insight into SDB-related pathophysio-
logical mechanisms that cause hypertension.

In this study, we aimed to develop composite sleep and pulmo-
nary (cSP) phenotypes based on spirometry and overnight polysom-
nography (PSG) measures to predict incident hypertension in the
Sleep Heart Health Study (SHHS) via penalized regression, which
simultaneously performs both feature selection and effect size esti-
mation. We then evaluated the cSP traits in the Multi-Ethnic Study of
Atherosclerosis (MESA) cohort in association with hypertension in
order to study generalization to a population with different charac-
teristics. We performed side-by-side comparison between AHI and
the cSP phenotypes to demonstrate the added value of the cSP phe-
notypes in explaining the association between sleep and hyperten-
sion, compared to the standard AHI.

2. Methods

To select sleep and pulmonary phenotypes predictive of hyperten-
sion and develop a combined phenotype, we took a multi-step
approach (see Figure 1). First, we used data collected in SHHS, a large
prospective cohort study, to construct cSP phenotypes based on over-
night PSG and spirometry measures. As the initial pool of traits for
further processing, we used two different sets of sleep physiology
traits: one set includes traits typically available from in-lab PSG, uti-
lizing both respiratory and comprehensive sleep physiology meas-
ures, and the second set includes solely traits typically available in-
Home Sleep Apnoea Testing (HST), utilizing respiratory measures and
measures that do not require measurements of electroencephalogra-
phy (EEG) signals. The first set of sleep traits is all those available
from the National Sleep Research Resource [33]. We generated the
second set of traits by combining together REM and NREM specific
traits, and by removing sleep traits such as those related to stages
and arousal events (see code in the public repository https://github.
com/lijin0303/cSP-Hypertension). First, we filtered traits based on
marginal association with incident hypertension and low level of
missingness. Second, we performed penalized regression to select a
subset of traits and computed their weights in constructing
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Figure 1. Flowchart to develop cSP highly predictive of hypertension.
HST is “Home Sleep Test”, referring to information available from home sleep studies, without EEG data.
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composite traits based on PSG (cSPPSG) or HST (cSPHST) that predict
incident hypertension in SHHS. Finally, we studied the association of
the two developed cSP traits with hypertension in MESA.

2.1. The Sleep Heart Health Study (SHHS)

The SHHS was designed to investigate the role of SDB as a risk fac-
tor for the development of hypertension and incident cardiovascular
disease [34]. The NSRR sleep data included participants from four
established cohort studies (The Framingham Offspring cohort, The
Hagerstown, Sacramento and Pittsburgh sites of the Cardiovascular
Health Study, The Hagerstown and Minneapolis/St. Paul sites of the
Atherosclerosis Risk in Communities study, and a study of respiratory
disease in Tucson). In total, 5,804 individuals with mixed gender and
race/ethnicity participated in a first visit (1995 - 1998), and 4,080 of
these individuals participated in a second visit (2001 - 2003). We
excluded individuals with hypertension in visit 1, resulting in a sam-
ple size of 2,517 individuals with different levels of missingness in
various baseline (visit 1) sleep and pulmonary traits.

2.2. Sleep and pulmonary phenotypes

Using the Compumedics sleep diagnostic system, overnight PSG
was obtained at home for SHHS individuals. The collected data
included oximetry, heart rate/ECG, chest wall and abdominal induc-
tance plethysmography, nasal/oral airflow (thermocouple), body
position, C4/A1 and C3/A2 EEG, electrooculography, and chin electro-
myography as described before [35]. Pulmonary function was
assessed using spirometry performed according to the American Tho-
racic Society guidelines [36]. We calculated the % of predicted FVC
and FEV1 taking into account the contribution of age, age squared,
height squared and race/ethnicity [37].

We used 432 available sleep and pulmonary-based measures
(both PSG and pulmonary measures). In brief, the PSG phenotypes
quantify sleep architecture (sleep staging, sleep state transitions and
sleep duration), hypoxemia (blood oxygen saturation patterns during
sleep), breathing disturbance (numbers, duration, type, and state
specificity of apneas and hypopneas), arousal-related events and
heart rate measures during sleep [38]. Most PSG measures were eval-
uated separately by REM and non-REM sleep, by sleep position
(supine/non-supine); most respiratory event subtypes were also
evaluated according to the presence of arousals or a pre-set oxygen
desaturation threshold.

2.3. Hypertension outcome

Blood pressure was measured using a standardized protocol [34]
described in detail in [39]. In brief, blood pressure was measured on
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the right arm after 5 minutes rest using conventional mercury sphyg-
momanometer. Blood pressure was measured three times, and the
average of the second and third measures was taken. Hypertension
was defined as Systolic Blood Pressure (SBP) > 130 mmHg, diastolic
blood pressure (DBP) > 80 mmHg, or any history of antihypertensive
medication use.

2.4. Other covariates

Covariates including gender, race/ethnicity, body mass index
(BMI), waist-to-hip circumference ratio (WHR), neck girth, smoking
status and packs per year, collected as described before [34], were
used in the penalized regression to construct the cSP phenotype as
fixed (unpenalized) covariates.

2.5. Construction of HST trait set

Because EEG data often are unavailable in HST, we removed all
traits related to arousal events and sleep stages, and further com-
bined traits that were separately computed during REM and non-
REM phases but that otherwise capture the same signal. For example,
AHI measured during REM and non-REM phase were combined to a
single AHI by weighting the REM and non-REM AHIs using sleep time
spent in REM and non-REM. This resulted in a smaller sleep and pul-
monary trait pool of size 122.

2.6. Construction of composite Sleep and Pulmonary (cSP) trait

In what follows, we performed the same chain of analyses with
the complete (N = 432) and reduced HST set of traits (N=122), leading
to the development of cSPPSG and cSPHST. To construct the cSP pheno-
types, we first screened for traits marginally associated with hyper-
tension incidence [40] requiring p-value <0.2 [linear regression t-
test] and having low missingness percentage (<30%), and used these
as the predictors for penalized regression, as described below.

2.7. Penalized regression

Using the selected sleep and pulmonary traits after the screening
step, we constructed the cSP phenotype which best predicted inci-
dent hypertension in SHHS. The candidate pool of sleep and pulmo-
nary traits subject to penalized regression were winsorized outlying
values to their 0.5% or 99.5% quantile. Sleep and pulmonary traits
undergoing winsorization were determined by visualizing the den-
sity distribution of all traits in the pool.

We applied the penalized regression method Elastic Net with the
R package glmnet [41] to fit a generalized logistic regression model
with covariates fixed. Regularization parameter λ was selected with
10-fold cross-validation, with λ selected as the one with highest
cross-validated Area Under the Curve of ROC (AUC). We then re-eval-
uated the penalized regression model using the full data and the
selected λ, and determined the cSP phenotype using the selected
traits and coefficients. All traits were standardized before penalized
regression to ensure comparable feature magnitude and thus compa-
rable penalty. The resulting coefficients were converted back to the
original scale before they were used to construct cSP phenotypes.

2.8. The Multi-Ethnic Study of Atherosclerosis (MESA) cohort

MESA is a large longitudinal cohort study that prospectively col-
lected risk factors for cardiovascular disease from participants in six
field centers across the United States. For this analysis, we considered
N = 2,055 individuals who had available cross-sectional hypertension
data and participated in an in-home sleep visit to collect PSG meas-
ures. Both sets of measures were ascertained in conjunction with
MESA Exam 5 (2010-2013). Sleep study participants underwent
single night in-home PSG (Compumedics Somte Systems, Abbotsville,
Australia, AU), as described before [42]. These individuals also partici-
pated in MESA Exam 6 (2016-2018). In each of MESA exams, after 5
minutes of sitted rest, blood pressure was measured three times
within 2 minutes using an automated oscillometric sphygmomanom-
eter (Dinamap Pro 100, GE Medical Systems Information Technolo-
gies, Inc.). SBP and DBP values are the average of the second and third
readings.

2.9. Sleep-pulmonary traits, hypertension, and covariates in MESA

We identified MESA traits corresponding to those selected with
penalized regression in SHHS and constructed two cSP phenotypes
using these subsets of traits and their weights. We used only observa-
tions with all relevant phenotypes available to construct each of the
cSP phenotypes. We verified the association between hypertension
and developed cSP in MESA using cross-sectional data (incident data
had low sample size). Hypertension status is defined as SBP >

130 mmHg, SBP > 80 mmHg, or any use of hypertension medication.
Other covariates including age, sex, race/ethnicity, BMI, WHR, smok-
ing status and pack-year were collected during the clinic visit.

2.10. Model evaluation using the Net Reclassification Index

To further evaluate the informativeness of the developed cSP phe-
notypes, we calculated net reclassification index (NRI) by comparing
the prediction model with cSP phenotypes to the model that used
only the AHI as the sleep metric using R package nricens [43]. To
interrogate the influence of pulmonary functions in the developed
cSP phenotypes, we extended this comparison using NRI to cSP phe-
notype with pulmonary functions excluded (and developed the phe-
notype again using the same algorithm), and to each of the individual
pulmonary functions. The cut-off probability for categorizing hyper-
tension is determined when Youden index, denoted as J, defined as

J ¼ sensitivityþ specificity� 1;

is maximized for each predictive model [44-46].

2.11. Ethics

All SHHS participants provided written informed consent in their
recruitment site. The SHHS was approved by the institutional review
boards in all participating institutions. All MESA participants signed
written informed consent in their recruitment site. The MESA study
and ancillary sleep study were approved by the institutional review
boards in all participating institutions. This study was approved via
application to the National Sleep Research Resources and by the
MESA publication committee upon review of study policies. The Mass
General Brigham Institutional Review board approved this research.

2.12. Role of funders

The funding source did not take any part in this work.

2.13. Statistics

All the statistical analyses involved in this study have been
described in each subsection respectively, with the corresponding R
packages used clearly specified. All individuals fulfilling the inclu-
sion/exclusion criteria and with available data were included in our
analyses.

3. Results

When constructing cSPPSG, we first screened out 337 traits with
low association with incident hypertension (p-value �0.2; linear



Table 1
Baseline Characteristics of SHHS Participants Stratified by Incident HTN Status (PSG
Measures).

Characteristics at Baseline No incident HTN Incident HTN p-value

Sample Size N 569 291
Follow-up days 1920.43 § 97.45 1916.22 § 113.01 0.637
Age 60.66 § 9.63 65.65 § 9.53 <0.001
Sex = male (%) 296 (52.0) 149 (51.2) 0.877
Race/ethnicity (%) 0.523
Black 21 (3.7) 12 (4.1)
other 29 (5.1) 10 (3.4)
White 519 (91.2) 269 (92.4)
BMI 27.87 § 4.32 28.90 § 4.66 0.001
WHR 0.92 § 0.10 0.94 § 0.08 0.003
Neck Girth 37.74 § 4.09 38.24 § 4.10 0.093
Packet/Year 11.91 § 18.97 12.62 § 19.00 0.602
Smoking Status (%) 0.516
Current 61 (10.7) 24 (8.2)
Former 254 (44.6) 133 (45.7)
Never 254 (44.6) 134 (46.0)
FVC% 0.95 § 0.16 0.91 § 0.16 <0.001
FEV1% 0.95 § 0.16 0.92 § 0.16 0.016

1The format a § b represents mean § standard deviation while a (b) represents
number (percentage).

Table 2
Selected Sleep and Pulmonary Phenotypes for Constructing cSP and Their Weights.

Selected Traits Weight Standardized
weight

Description

FVC% -1.25 -1.97E-1 Percent Predicted Forced Vital
Capacity (SHHS visit 1)

FEV1% -3.67E-1 -6.05E-2 Percent Predicted Forced Expiratory
Volume (SHHS visit 1)

TmStg34P -3.44E-2 -7.26E-2 Number of rapid eye movement
sleep (REM) to stage 1 shifts dur-
ing sleep

MnHROA -1.18E-2 -1.28E-1 Percent of sleep time in stage 3 sleep
AvHROP -1.09E-2 -9.30E-2 Minimum Hypopnea length (REM,

Non-supine, all oxygen desatura-
tions, arousals)

AvHNOA3 -9.28E-3 -6.12E-2 Average Hypopnea length (REM,
Non-supine, all oxygen
desaturations)

AvHROP3 -7.41E-3 -3.81E-2 Average Hypopnea length (NREM,
Non-supine, >=3% oxygen desatu-
ration or arousal)

aMnBROH -5.87E-3 -5.66E-2 Average Hypopnea length (REM,
Non-supine, >=3% oxygen
desaturation)

rdi0ps 3.41E-3 3.83E-2 Minimum Heart Rate (REM, Non-
supine, all oxygen desaturations,
arousal)

OARDNBA 3.07E-3 8.74E-2 Overall Apnoea Hypopnea Index
(Supine, all oxygen desaturations)

MxHNOP 1.72E-3 1.80E-2 Obstructive Apnoea per hour (NREM,
Supine, all oxygen desaturations,
arousals)

MnHROA3 -1.37E-3 -2.70E-2 Maximum Hypopnea length (NREM,
Non-supine, all oxygen
desaturations)

AvDNOP3 -1.09E-3 -5.07E-3 Minimum Hypopnea length (REM,
Non-supine, >=3% oxygen desatu-
ration or arousal)

MxHROP 7.28E-4 6.79E-4 Average oxygen desaturation of
respiratory event (NREM, Non-
supine, >=3% oxygen
desaturation)

SlpPrdP -6.60E-4 -1.69E-2 Maximum Hypopnea length (REM,
Non-supine, all oxygen
desaturations)

AvHNOP -5.37E-4 -3.09E-2 Sleep Time
TimeBedP -4.90E-4 -2.11E-3 Average Hypopnea length (NREM,

Non-supine, all oxygen
desaturations)

MxDNBP -3.45E-4 -1.84E-2 Time in bed
MnHROP3 2.43E-4 1.05E-3 Maximum oxygen desaturation of

respiratory event (NREM, Supine,
all oxygen desaturations)

TmStg34P -1.71E-6 -1.15E-5 Minimum Hypopnea length (REM,
Non-supine, >=3% oxygen
desaturation)

*Standardized weight is the weight multiplied by SD of the corresponding phenotype.
The standardized weight corresponds to the estimated regression coefficient for one
standard deviation of the phenotype.
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regression t-test), and an additional 53 traits with high missingness
(>30%). Table 1 provides key characteristics of the SHHS cohort at
baseline, stratified by hypertension status in the follow-up visit. A
table that also includes the 42 sleep traits available after the screen-
ing step in SHHS is provided in the Supplementary Materials (Table
S1). Table S1 also includes the 12 sleep and pulmonary traits that
would be available (after screening step) from HST using a Type 3
portable monitor (out of 122 traits, 100 were removed due to low
association, and 10 were removed due to high missingness). We
applied Elastic Net to construct cSPPSG and cSPHST with respectively
860 and 1,382 complete observations.

The selected 20 traits (Table 2) that comprised the cSPPSG com-
bined information on sleep stages, sleep time, average/ minimum/
maximum hypopnea length, minimum heart rate, average/maximum
oxygen desaturation, hourly obstructive apnoea events, to AHI (with
events counted based on all apnoea and hypopnea, i.e., without an
oxyhemoglobin desaturation minimum) and pulmonary function.
The two traits with the largest weights were FVC% and percent of
sleep time in stage 3 sleep. Of the remaining 18 selected PSG meas-
ures, 9 represent various measures of hypopnea length (minimum,
mean, maximum, associated with events defined using different cri-
teria and state-specificity). Additional metrics reflected cardiac auto-
nomic function (heart rate changes), sleep architecture, and
hypoxemia. Supplementary Figure 2a visualizes the correlation
between the selected traits. Correspondingly, we integrated signals
from pulmonary function and the selected PSG metrics to construct
cSPHST (Supplementary Table 2; Supplementary Figure 2b). Results
from association analyses of cSPPSG, cSPHST, as well as for a model
only including the AHI as the exposure measure, are provided in
Table 4. For predicting incident hypertension in SHHS, the estimated
Odds Ratio (OR) of one standard deviation (SD) increase in cSPPSG
was 1.72 (95% confidence interval, CI [1.45, 2.04]), and the AUC was
0.71. For cSPHST, the estimated OR was 1.47 (95% CI [1.25, 1.74]), and
the AUC was 0.69. In contrast, the estimated OR for the AHI, defined
as number of all apneas and hypopneas events with �3% oxygen
desaturation per hour of sleep, was 1.13 per one SD (95% CI [0.97,
1.33]), and the AUC was 0.67. Considering NRI, the net proportion of
individuals assigned to the more appropriate risk category compared
to the AHI, using the threshold which Youden’s index is maximized,
is 0.12 when using cSPPSG, but lower when using cSPHST (0.009).
Removal of lung function traits from the construction process of the
cSP phenotypes (both PSG and HST setting) slightly reduces the esti-
mated OR (Table 4). Figure 2 visualizes the proportions of SHHS
individuals with incident hypertension by quantiles of the cSPPSG
phenotype.

Next, we used the MESA cohort to verify the association of
cSPPSG and cSPHST with hypertension. Table 3 demonstrates key
characteristics of the MESA cohort at Exam 5, stratified by cross-
sectional hypertension status. MESA individuals were 5 years
older on average than SHHS individuals at Exam 5, and 71% had
hypertension. Due to high missingness present in selected sleep
and pulmonary traits, the number of complete cases for con-
structing two cSP phenotypes is less than 50% of original popula-
tion (Supplementary Fig. 1). Results from association analyses in
MESA of cSPHST, cSPHST, as well as the AHI, each using complete-
case analysis, are provided in Table 5. We used the mean and SD
of each of the compared measures in SHHS to standardize the
traits in MESA, so that estimated effect sizes are comparable, i.e.,



Figure 2. Proportion of Individuals with HTN in Different Quantiles of cSPPSG in SHHS.

Table 4
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one unit increase in the score is the same in SHHS and in MESA.
In MESA cSPPSG had OR = 1.26 (95% CI [1.10, 1.45], p-value
=0.001), cSPHST had OR = 1.26 (95% CI [1.12, 1.42], p-val-
ue<0.001), and the AHI had OR=1.22 (95% CI [1.05, 1.42], p-
value=0.009). Thus, all these associations were statistically
Table 3
Characteristics of Participants Stratified by Cross-sectional Hypertension Sta-
tus in MESA Exam 5.

Characteristics at Baseline No HTN HTN p-value

Sample Size N 690 1365
Age 64.80 § 7.98 70.29 § 9.16 <0.001
Sex = Male (%) 324 (47.0) 629 (46.1) 0.742
Race/ethnicity (%) <0.001
Asian 106 (15.4) 143 (10.5)
Non-Hispanic Black 107 (15.5) 465 (34.1)
Hispanic 174 (25.2) 317 (23.2)
Non-Hispanic White 303 (43.9) 440 (32.2)
Smoking Status (%) 0.018
Current 54 (7.8) 91 (6.7)
Former 285 (41.4) 650 (48.0)
Never 349 (50.7) 613 (45.3)
BMI 27.24 § 5.05 29.38 § 5.65 <0.001
WHR 0.92 § 0.08 0.95 § 0.08 <0.001
Pack/Year 8.96 § 17.83 10.35 § 19.09 0.114

1The format a § b represents mean § SD while a (b) represents number
(percentage).
significant with AHI having lower estimated OR and the least sig-
nificant and least precise estimate. The AUC was 0.75 for AHI and
0.77 for both cSPPSG and cSPHST. Comparing NRI relative to the
Comparison among Predictions Models on Incident Hypertension using SHHS
Participants.

Prediction model OR per SD 95% CI p-value AUC NRI

AHI 1.13 [0.97, 1.33] 0.110 0.67 \
cSPPSG 1.72 [1.45, 2.04] <0.001 0.71 0.121
cSPHST 1.47 [1.25, 1.74] <0.001 0.69 0.009
cSPPSG, no lung function 1.66 [1.41, 1.98] <0.001 0.71 0.112
cSPHST, no lung function 1.29 [1.11, 1.51] 0.001 0.68 0.027
FVC% 0.78 [0.66, 0.92] 0.004 0.68 0.016
FEV1% 0.80 [0.68, 0.94] 0.007 0.68 0.002

The number of participants was 860.
* Within the same population, alternative AHI measures defined based on 1) respi-
ratory (both apneas and hypopneas) events with �3% oxygen desaturation or
arousal; 2) respiratory (both apneas and hypopneas) events with �4% oxygen desa-
turation; 3) with solely obstructive respiratory events with �4% oxygen desatura-
tion are not significantly associated with incident hypertension (p values = 0.2, 0.1
and 0.1)
1All NRIs are compared to the AHI model
2The cut-off probability for categorizing hypertension is determined when Youden
index is maximized
3All prediction models adjust for age, sex, race/ethnicity, BMI, waist/hip ratio, neck
girth, smoking status and smoking pack years



Table 5
Comparison among Association Models on Cross-sectional Hypertension using MESA Participants.

Association model Sample Size Case Number OR per SD* 95% CI p-value AUC NRI

AHI 2015 1365 1.22 [1.05, 1.42] 0.009 0.75 \
cSPPSG 923 615 1.26 [1.10, 1.45] 0.001 0.77 0.04
cSPHST 1242 820 1.26 [1.12, 1.42] <0.001 0.77 0.03
cSPPSG, no lung function 1255 841 1.10 [0.99, 1.21] 0.072 0.75 0.04
cSPHST, no lung function 1697 1126 1.08 [1.00, 1.17] 0.042 0.75 0.01
FVCpp 3079 2147 0.80 [0.74, 0.87] <0.001 0.75 0.04
FEV1pp 3074 2142 0.83 [0.77, 0.90] <0.001 0.74 0.01

The number of participants varies across models due to missing data patterns. Case number is the number of individuals
with hypertension in the specific association model.
1 All NRIs are calculated in regard to AHI model
2 The cut-off probability for categorizing hypertension is determined when Youden index is maximized
3 All prediction models adjust for age, sex, race/ethnicity, BMI, waist/hip ratio, smoking status and packet year
4 SD here all calculated from corresponding phenotype in SHHS.
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AHI, cSPPSG had 0.04 and cSPHST had 0.03. The contribution of the
two lung function measures towards the cSPPSG and cSPHST asso-
ciation with hypertension was important in MESA, and the associ-
ation between the cSP measures and hypertension substantially
weakened when removing these traits (Table 5). We also consid-
ered the association of the cSP measures with incident hyperten-
sion in MESA. However, because most eligible MESA individuals
already developed hypertension in visit 5, and importantly, 82%
of the individuals with highest decile of values of the cSPPSG trait
Figure 3. Proportion of individuals with HTN
already had hypertension at visit 5 (Figure 3), and the number of
individuals with available phenotypes and free from hypertension
at MESA visit 5 was low (N=272 when using cSPPSG and N=375
when using cSPHST), the power was low as well. Indeed, the esti-
mated ORs were higher than the ones based on cross-sectional
analysis, yet p-values were higher, with OR=1.47 (p-value =0.27)
for cSPPSG and OR=1.40 (p-value = 0.28) for cSPHST. All p-values
shown in this section were computed with t-test in linear regres-
sions.
across deciles of cSPPSG in MESA Visit 5.
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4. Discussion

In this study, we performed a multi-step analysis utilizing
machine learning to identify a set of overnight-sleep and pulmonary
phenotypes that jointly predict the development of hypertension in
SHHS. We then developed two cSP phenotypes combining these
measures. One phenotype was based on full PSG data that included
indices of breathing disturbances, sleep architecture, overnight hyp-
oxemia and heart rate, sleep duration, arousals, and shifts from REM
to NREM sleep, and the second was based on a more limited set of
variables from HSTs that did not require collection of EEG for compu-
tation. The comprehensive cSPPSG composite significantly predicted
incident hypertension, with evidence of improved prediction over
the use of only the traditional PSG metric, the AHI. Notably the com-
posite included multiple metrics from the PSG not routinely consid-
ered in clinical decision making, including 9 measures of hypopnea
length. Use of a simpler cSPHST derived using only 122 metrics (none
requiring EEG collection) also provided improved prediction of inci-
dent hypertension over the AHI. Moreover, while FVC% and FEV1%
contributed to these composite biomarkers of hypertension, exclud-
ing those traits did not substantially weaken the predicted associa-
tion in SHHS. In a cross-sectional analysis in the smaller MESA
sample, we confirmed that the new composite biomarkers predicted
hypertension prevalence. However, in contrast to SHHS, these indices
were not superior to use of the AHI and prediction was substantially
influenced by the lung function variables. Our results highlight the
potential for better understanding chronic disease outcomes with
use of multiple physiological measures- such as from both PSG and
spirometry- rather than focus on single indices, with inclusion of
indices that reflect multiple physiological traits.

We used the Elastic Net penalty for the penalized regression. This
penalty allows multiple correlated variables to be selected, rather
than selecting one of them. The selected trait sets for both cSPHST and
cSPPSG represent a combined effect of sleep and pulmonary pheno-
types on hypertension from multiple physiological processes. The
negative weights of the lung function traits FEV% and FVC% for cSP
traits agree with previous findings associating reduced lung function
with hypertension, as described in the introduction. The sleep staging
variable selected into the cSPPSG phenotype describes the frequency
of transitions between REM sleep to stage N1. While there is evidence
that REM-specific SDB poses higher risk for adverse health effects,
including hypertension, compared to non-REM SDB [20,47,48], prior
research has not previously reported REM transitions as a predictor
of hypertension. REM sleep is associated with relatively high levels of
sympathetic nervous system activity and respiratory events in REM
tend to be long and associated with the most marked hypoxemia. It is
possible that individuals who more likely transition from REM to
NREM sleep experience some cardio-protection related to state
changes. Other sleep architecture traits negatively contributing to
cSP phenotypes are all related to sleep time, in accordance with find-
ings about relationship between duration of sleep and hypertension
[13]. We also found that increased total sleep duration as well as
time in N3 sleep were associated with reduced incidence of hyper-
tension, consistent with positive effects of sleep duration and slow
wave sleep on blood pressure.

There were nine traits measuring hypopnea durations in the
cSPPSG trait, including traits measuring minimum, maximum, and
average hypopnea durations, and three hypopnea duration traits in
the cSPHST trait. The findings were consistent with shorter hypopnea
duration (measured across sleep states and with different associated
hypopnea definitions) increases risk of hypertension. This adverse
effect of shorter event duration on blood pressure is consistent with
prior findings showing that shorter event duration is associated with
higher mortality as well as with a lower arousal threshold [49,50],
consistent with greater autonomic nervous system activation. Mini-
mum and average hypopnea lengths were computed over hypopnea
events with different oxygen desaturation thresholds: either all oxy-
gen desaturation levels or larger than 3% oxygen desaturation. Traits
under both oxygen desaturation thresholds were selected in penal-
ized regression, suggesting that important information is potentially
lost when a specific oxygen desaturation threshold is chosen. Addi-
tionally, maximum and minimum hypopnea length used information
from both REM and non-REM phases. Other selected traits reflecting
minimum heart rate, hourly counts for obstructive apneas and the
more general index AHI (defined as the hourly frequency of all
apneas and hypopneas regardless of oxygen desaturation). High min-
imum heart rate is a marker of augmented cardiac sympathetic acti-
vation during sleep—a key pathway linking SDB to hypertension. A
higher frequency of apneas and hypopneas may reflect the multiple
pathways involved in SDB-related hypertension � frequency of oxy-
gen desaturation/resaturation, sleep fragmentation and arousal, and
airway collapsibility. Lastly, we detected contributions from both
average and maximum oxygen desaturation level which can be
explained by previous findings suggesting the importance of hypox-
emia on activating the sympathetic nervous system and the effects of
reactive oxygen species, and activation of HIF-1 pathways on vascular
control mechanisms. Overall, the factors that contributed to the cSP
are directionally consistent with existing background knowledge
about sleep physiology, pulmonary function and hypertension.

While OSA is recognized as a cause of hypertension, and the prev-
alence and incidence of hypertension increase with increasing AHI in
the general population [34,51-53], there is a growing recognition of
the limitations of the AHI as the sole measure of sleep apnea severity
[54,55]. This reflects not only inconsistency in the measurement of
OSA and respiratory event definitions that result in unreasonably
high estimates of the prevalence of OSA, but more importantly the
failure of AHI to capture the physiologic diversity of apneas and
hypopneas [56]. It has been argued that hypopnea and apnea events
that differ by duration and degree of desaturation contribute to a dif-
ferent degree to symptoms such as hypertension and excessive day-
time sleepiness [57,58]. Recent studies have sought to identify
physiological measures that are better predictors than AHI of hyper-
tension and cardiovascular risk. Promising measures include hypoxic
burden, which is associated with both blood pressure [19] and car-
diovascular mortality [59], as well as heart rate response to respira-
tory events [60] and respiratory event duration [61], which are
associated with cardiovascular morbidity and mortality. Our work
contributes to the evidence that combining multiple dimensions of
sleep and related measures can provide additional information
beyond that provided by the AHI alone. The predictive value of lung
function in addition to direct measures of OSA suggests that multiple
pathways that influence breathing, during both wake and sleep, and
subsequent patterns of gas exchange and abnormalities in sympa-
thetic activation and endothelial function may influence hyperten-
sion risk. It is also possible that the cSP phenotypes capture an OSA
subtype where low lung function, associated with greater level of air-
way collapsibility, coupled with high AHI represents a more “collaps-
ible” phenotype compared to high lung function coupled with high
AHI. While each of these measures requires validation in indepen-
dent cohorts before being employed in clinical practice, it is likely
that some combination of these and other novel measures will soon
be able to provide more precise OSA-related risk assessments in indi-
vidual patients.

Notable strengths of our study include a disciplined analysis of
multiple objectively collected sleep and the novel inclusion of lung
function traits to derive cSP phenotypes. To our knowledge, this is
the first study to construct composite markers of sleep and pulmo-
nary-related hypertension. Both the SHHS and MESA cohorts are
from community-samples and include diverse samples of both men
and women. In both cohorts, the cSP phenotypes improved predic-
tion of hypertension compared to AHI based on NRI improvement,
and additionally had more significant associations. A study limitation
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was that while we attempted to replicate findings, we had lim-
ited incident data on hypertension in our independent cohort
(MESA). MESA individuals were on average 5 years older than
SHHS individuals at the time of the sleep exam, perhaps contrib-
uting to the difference in results, where lung function and AHI
contributed relatively more to cross-sectional assessment of
hypertension compared to cSPPSG. There are several factors limit-
ing the generalizability of this study. The study participants are
relatively old and cSP phenotypes utilized comprehensive PSG
measures, not often available. Finally, while the models that we
considered included standard measures used for hypertension
risk prediction, we did not include diet and physical exercise, as
they were not available in SHHS.

In conclusion, we performed variable selection to identify sets
of sleep and pulmonary phenotypes associated with hypertension,
and combined them to composite phenotypes to evaluate their
overall, joint contribution, to hypertension development. We
studied the generalization of the association of the composite
phenotypes with hypertension in an independent cohort and con-
firmed their stronger association compared with the traditional
AHI. Our findings support the use of composite measures that
take advantage of the rich data routinely collected during PSG
which is often under-utilized, as well as use of spirometry data,
which can be easily collected in sleep centers. Potential future
directions to extend our study involve applying the cSP pheno-
types in cohorts with diverse age and exploring potential clinical
use of the new phenotypes for better identification of at-risk pop-
ulation for hypertension. More precise identification of at-risk
population for hypertension related to sleep physiology and pul-
monary function can potentially lead to early intervention and
better treatment adherence.
Contributors

Michael Rueschman and Ruitong Li verified the underlying data.
Ruitong Li, Michael Rueschman, Susan Redline, and Tamar Sofer had
full access to the data and reviewed the data for identifying ranges of
plausible values and detection of outliers. Ruitong Li performed sta-
tistical analysis, and prepared tables and figures. Tamar Sofer super-
vised the analysis. Ruitong Li and Tamar Sofer drafted the
manuscript. Daniel Gottlieb, Susan Redline, and Tamar Sofer inter-
preted the results. All authors critically reviewed the manuscript for
important intellectual content. All authors read and approved the
final version of the manuscript.
Data sharing statement

The SHHS dataset is available from the National Sleep Research
Resources sleepdata.org. The MESA dataset is available via a dbGaP
application to study accession phs000209.v13.p3, or by a data use
agreement following an approved paper proposal from the MESA
study https://www.mesa-nhlbi.org/.
Declaration of Competing Interest

Susan Redline reports receiving NIH grant support for the present
manuscript, with payments made to the institution; a contract from
Jazz Inc with payments made to the institution; receiving direct con-
sultant fees from Eisai Inc, Apnimed Inc, and Jass Inc; support from
Eisai Inc to attend a meeting to discuss insomnia; an unpaid position
on the patient advocacy group Alliance for Sleep Apnea Partners; and
receiving equipment loans from Nox Medical and Philips Respironics
for use in an NIH multi-center study. All other authors declare no
conflict of interests.
Acknowledgements

The authors thank the data provided from MESA and SHHS data
cohorts and the National Sleep Research Resource. This research was
supported by National Heart, Lung, and Blood Institute (NHLBI) con-
tracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-
HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-
95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, and N01-HC-
95169 and by National Center for Advancing Translational Sciences
grants UL1-TR- 000040, UL1-TR-001079, and UL1-TR-001420. The
MESA Sleep ancillary study was supported by NHLBI grant HL-56984.
Pulmonary phenotyping in MESA was funded by NHLBI grants R01-
HL077612 and R01-HL093081. This work was supported by NHLBI
grant R35HL135818 to Susan Redline.
Supplementary materials

Supplementary material associated with this article can be found
in the online version at doi:10.1016/j.ebiom.2021.103433.
References

[1] Casey Jr DE, Thomas RJ, Bhalla V, Commodore-Mensah Y, Heidenreich PA, Kolte D,
et al. 2019 AHA/ACC clinical performance and quality measures for adults with
high blood pressure: a report of the american college of cardiology/American
heart association task force on performance measures. Circulation: Cardiovascul
Qual Outcomes 2019;12(11):e000057.

[2] Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT, et al. Potential US
population impact of the 2017 ACC/AHA high blood pressure guideline. J Am Col-
lege Cardiol 2018;71(2):109–18.

[3] Calhoun DA, Harding SM. Sleep and hypertension. Chest 2010;138(2):434–43.
[4] Pack AI. Sleep apnea: Pathogenesis, diagnosis and treatment. CRC Press; 2016.
[5] Caples SM, Somers VK. Sleep disordered breathing and atrial fibrillation. Progr

Cardiovasc Diseas 2009;51(5):411.
[6] Young T, Peppard PE, Gottlieb DJ. Epidemiology of obstructive sleep apnea: a pop-

ulation health perspective. Am J Respirator Crit Care Med 2002;165(9):1217–39.
[7] Wang L, Hu Y, Wang X, Yang S, Chen W, Zeng Z. The association between sleep

duration and hypertension: a meta and study sequential analysis. J Hum Hyper-
tens 2020:1–6.

[8] Javaheri S, Redline S. Sleep, slow-wave sleep, and blood pressure. Curr Hypertens
Rep 2012;14(5):442–8.

[9] Javaheri S, Zhao YY, Punjabi NM, Quan SF, Gottlieb DJ, Redline S. Slow-wave sleep
is associated with incident hypertension: the sleep heart health study. Sleep
2018;41(1):zsx179.

[10] Javaheri S, Barbe F, Campos-Rodriguez F, Dempsey JA, Khayat R, Javaheri S, et al.
Sleep apnea: types, mechanisms, and clinical cardiovascular consequences. J Am
College Cardiol 2017;69(7):841–58.

[11] Baguet J, Barone-Rochette G, P�epin J. Hypertension and obstructive sleep Apnoea
syndrome: current perspectives. J Human Hypertens 2009;23(7):431–43.

[12] Somers VK, Javaheri S. Cardiovascular effects of sleep-related breathing disorders.
Sleep Breath Disord E-Book 2016:270.

[13] Wang Y, Mei H, Jiang Y-R, Sun W-Q, Song Y-J, Liu S-J, et al. Relationship between
duration of sleep and hypertension in adults: a meta-analysis. J Clin Sleep Med
2015;11(9):1047–56.

[14] Liu L, Cao Q, Guo Z, Dai Q. Continuous positive airway pressure in patients with
obstructive sleep apnea and resistant hypertension: a meta-analysis of random-
ized controlled trials. J Clin Hypertens 2016;18(2):153–8.

[15] Varounis C, Katsi V, Kallikazaros IE, Tousoulis D, Stefanadis C, Parissis J, et al. Effect
of CPAP on blood pressure in patients with obstructive sleep apnea and resistant
hypertension: a systematic review and meta-analysis. Int J Cardiol 2014;175
(1):195–8.

[16] Pedrosa RP, Drager LF, de Paula LK, Amaro AC, Bortolotto LA, Lorenzi-Filho G.
Effects of OSA treatment on BP in patients with resistant hypertension: a random-
ized trial. Chest 2013;144(5):1487–94.

[17] Salman LA, Shulman R, Cohen JB. Obstructive sleep apnea, hypertension, and car-
diovascular risk: epidemiology, pathophysiology, and management. Curr Cardiol
Rep 2020;22(2):6.

[18] Dean DA, Wang R, Jacobs Jr DR, Duprez D, Punjabi NM, Zee PC, et al. A systematic
assessment of the association of polysomnographic indices with blood pressure:
the Multi-Ethnic Study of Atherosclerosis (MESA). Sleep 2015;38(4):587–96.

[19] Kim JS, Azarbarzin A, Wang R, Djonlagic IE, Punjabi NM, Zee PC, et al. Association
of novel measures of sleep disturbances with blood pressure: the Multi-Ethnic
Study of Atherosclerosis. Thorax 2020;75(1):57–63.

[20] Varga AW, Mokhlesi B. REM obstructive sleep apnea: risk for adverse health out-
comes and novel treatments. Sleep Breath 2019;23(2):413–23.

[21] Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP. Pathophysiology of sleep apnea.
Physiol Rev 2010;90(1):47–112.

https://www.mesa-nhlbi.org/
https://doi.org/10.1016/j.ebiom.2021.103433
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0001
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0001
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0001
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0001
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0001
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0002
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0002
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0002
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0003
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0004
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0005
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0005
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0006
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0006
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0007
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0007
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0007
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0008
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0008
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0009
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0010
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0010
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0010
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0011
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0011
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0011
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0012
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0012
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0013
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0014
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0014
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0014
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0015
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0016
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0016
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0016
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0017
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0017
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0017
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0018
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0018
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0018
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0019
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0019
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0019
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0020
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0020
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0021
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0021


10 R. Li et al. / EBioMedicine 68 (2021) 103433
[22] Heinzer RC, Stanchina ML, Malhotra A, Jordan AS, Patel SR, Lo YL, et al. Effect of
increased lung volume on sleep disordered breathing in patients with sleep
Apnoea. Thorax 2006;61(5):435–9.

[23] Owens RL, Malhotra A, Eckert DJ, White DP, Jordan AS. The influence of end-expi-
ratory lung volume on measurements of pharyngeal collapsibility. J Appl Physiol
(Bethesda, Md: 1985). 2010;108(2):445–51.

[24] Squier SB, Patil SP, Schneider H, Kirkness JP, Smith PL, Schwartz AR. Effect of end-
expiratory lung volume on upper airway collapsibility in sleeping men and
women. J Appl Physiol (Bethesda, Md: 1985) 2010;109(4):977–85.

[25] Schnabel E, Nowak D, Brasche S, Wichmann H-E, Heinrich J. Association between
lung function, hypertension and blood pressure medication. Respir Med
2011;105(5):727–33.

[26] Wu Y, Vollmer WM, Buist AS, Tsai R, Cen R, Wu X, et al. Relationship between lung
function and blood pressure in Chinese men and women of Beijing and Guangz-
hou. Int J Epidemiol 1998;27(1):49–56.

[27] Enright PL, Kronmal RA, Smith V-E, Gardin JM, Schenker MB, Manolio TA. Reduced
vital capacity in elderly persons with hypertension, coronary heart disease, or left
ventricular hypertrophy: the cardiovascular health study. Chest 1995;107(1):28–35.

[28] Sparrow D, Weiss ST, Vokonas PS, Cupples LA, Ekerdt DJ, Colton T. Forced vital
capacity and the risk of hypertension: the normative aging study. Am J Epidemiol
1988;127(4):734–41.

[29] Kannel WB, Hubert H, Lew EA. Vital capacity as a predictor of cardiovascular dis-
ease: The Framingham study. Am Heart J 1983;105(2):311–5.

[30] Marcus EB, Curb JD, Maclean CJ, Reed DM, Yano K. Pulmonary function as a pre-
dictor of coronary heart disease. Am J Epidemiol 1989;129(1):97–104.

[31] Engstr€om G, Lind P, Hedblad B, Wollmer P, Stavenow L, Janzon L, et al. Lung func-
tion and cardiovascular risk. Circulation 2002;106(20):2555–60.

[32] Schroeder EB, Welch VL, Couper D, Nieto FJ, Liao D, Rosamond WD, et al. Lung
function and incident coronary heart disease: the atherosclerosis risk in commu-
nities study. Am J Epidemiol 2003;158(12):1171–81.

[33] Zhang G-Q, Cui L, Mueller R, Tao S, Kim M, Rueschman M, et al. The national sleep
research Resource: towards a sleep data commons. J Am Med Inf Assoc 2018;25
(10):1351–8.

[34] Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of
sleep-disordered breathing, sleep apnea, and hypertension in a large community-
based study. JAMA 2000;283(14):1829–36.

[35] David HRapoport, Smith Philip M, James LKiley, SHHRGRSspceSMHLBKQS-
FICGDJBW P. Methods for obtaining and analyzing unattended polysomnography
data for a multicenter study. Sleep 1998;21(7):759–67.

[36] Society AT. Standardization of spirometry. Am J Respir Crit Care Med
1995;152:1107–36.

[37] Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sam-
ple of the general US population. Am J Respir Crit Care Med 1999;159(1):179–87.

[38] Zinchuk AV, Jeon S, Koo BB, Yan X, Bravata DM, Qin L, et al. Polysomnographic
phenotypes and their cardiovascular implications in obstructive sleep apnoea.
Thorax 2018;73(5):472–80.

[39] O'Connor GT, Caffo B, Newman AB, Quan SF, Rapoport DM, Redline S, et al. Pro-
spective study of sleep-disordered breathing and hypertension. Am J Respir Crit
Care Med 2009;179(12):1159–64.

[40] Fan J, Lv J. Sure independence screening for ultrahigh dimensional feature space. J
R Stat Soc: Se B (Statistical Methodology) 2008;70(5):849–911.

[41] Friedman J, Hastie T, Tibshirani R. glmnet: Lasso and elastic-net regularized gen-
eralized linear models. R package version 2009;1(4).
[42] Dean DA, Goldberger AL, Mueller R, KimM, RueschmanM, Mobley D, et al. Scaling
up scientific discovery in sleep medicine: the national sleep research resource.
Sleep. 2016;39(5):1151–64.

[43] Inoue E, Inoue ME. Package ‘nricens’. 2018.
[44] YoudenWJ. Index for rating diagnostic tests. Cancer 1950;3(1):32–5.
[45] Pencina MJ, Steyerberg EW, D'Agostino Sr RB. Net reclassification index at event

rate: properties and relationships. Stat Med 2017;36(28):4455–67.
[46] Cook NR. Quantifying the added value of new biomarkers: how and how not.

Diagnostic Prognostic Res 2018;2(1):14.
[47] Peter J, Grote L, Fus E, Ploch T, Stammnitz A. REM-sleep-hypertension in obstruc-

tive sleep apnea. Eur J Med Res 1995;1(3):132.
[48] Mokhlesi B, Finn LA, Hagen EW, Young T, Hla KM, Van Cauter E, et al. Obstructive

sleep apnea during REM sleep and hypertension. Results of the wisconsin sleep
cohort. Am J Respir Crit Care Med 2014;190(10):1158–67.

[49] Butler MP, Emch JT, Rueschman M, Sands SA, Shea SA, Wellman A, et al.
Apnea�hypopnea event duration predicts mortality in men and women in the
sleep heart health study. Am J Respir Crit Care Med 2019;199(7):903–12.

[50] Borker PV, Reid M, Sofer T, Butler MP, Azarbarzin A, Wang H, et al. NREM apnea
and hypopnea duration varies across population groups and physiologic traits.
Am J Respiratory Crit Care Med 2020 (ja).

[51] Young T, Peppard P, Palta M, Hla KM, Finn L, Morgan B, et al. Population-based
study of sleep-disordered breathing as a risk factor for hypertension. ArchInternal
Med 1997;157(15):1746–52.

[52] Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association
between sleep-disordered breathing and hypertension. N Engl J Med 2000;342
(19):1378–84.

[53] Hou H, Zhao Y, Yu W, Dong H, Xue X, Ding J, et al. Association of obstructive sleep
apnea with hypertension: a systematic review and meta-analysis. J Glob Health
2018;8(1):010405 -.

[54] Pevernagie DA, Gnidovec-Strazisar B, Grote L, Heinzer R, McNicholas WT, Penzel
T, et al. On the rise and fall of the apnea�hypopnea index: a historical review and
critical appraisal. J Sleep Res 2020;29(4):e13066.

[55] Malhotra A, Ayappa I, Ayas N, Collop N, Kirsch D, McArdle N, et al. Metrics of sleep
apnea severity: beyond the AHI. Sleep 2021.

[56] Punjabi NM. COUNTERPOINT: is the apnea-hypopnea index the best way to quan-
tify the severity of sleep-disordered breathing? No. CHEST. 2016;149(1):16–9.

[57] Koch H, Schneider LD, Finn LA, Leary EB, Peppard PE, Hagen E, et al. Breathing dis-
turbances without hypoxia are associated with objective sleepiness in sleep
Apnea. Sleep. 2017;40(11).

[58] Kulkas A, Duce B, Lepp€anen T, Hukins C, T€oyr€as J. Severity of desaturation events
differs between hypopnea and obstructive apnea events and is modulated by
their duration in obstructive sleep apnea. Sleep Breath 2017;21(4):829–35.

[59] Azarbarzin A, Sands SA, Stone KL, Taranto-Montemurro L, Messineo L, Terrill PI,
et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related
mortality: the osteoporotic fractures in men study and the sleep heart health
study. Eur Heart J 2019;40(14):1149–57.

[60] Azarbarzin A, Sands SA, Younes M, Taranto-Montemurro L, Sofer T, Vena D, et al.
The sleep apnea-specific pulse rate response predicts cardiovascular morbidity
and mortality. Am J Respir Crit Care Med 2021.

[61] Butler MP, Emch JT, Rueschman M, Sands SA, Shea SA, Wellman A, et al. Apnea-
hypopnea event duration predicts mortality in men and women in the sleep heart
health study. Am J Respir Crit Care Med 2019;199(7):903–12.

http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0022
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0022
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0022
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0023
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0023
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0023
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0024
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0024
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0024
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0025
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0026
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0026
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0026
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0027
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0027
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0027
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0028
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0028
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0028
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0029
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0029
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0030
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0030
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0031
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0032
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0033
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0034
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0035
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0036
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0036
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0037
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0037
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0038
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0038
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0038
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0039
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0039
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0039
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0040
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0040
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0041
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0041
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0042
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0042
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0042
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0044
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0045
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0045
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0046
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0047
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0047
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0048
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0048
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0048
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0049
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0049
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0049
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0049
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0050
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0050
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0050
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0051
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0051
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0051
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0052
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0052
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0052
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0053
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0053
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0053
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0054
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0054
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0054
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0054
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0055
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0055
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0056
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0056
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0057
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0057
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0057
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0058
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0058
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0058
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0058
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0058
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0058
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0059
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0059
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0059
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0059
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0060
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0060
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0060
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0061
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0061
http://refhub.elsevier.com/S2352-3964(21)00226-7/sbref0061

	A composite sleep and pulmonary phenotype predicting hypertension
	1. Introduction
	2. Methods
	2.1. The Sleep Heart Health Study (SHHS)
	2.2. Sleep and pulmonary phenotypes
	2.3. Hypertension outcome
	2.4. Other covariates
	2.5. Construction of HST trait set
	2.6. Construction of composite Sleep and Pulmonary (cSP) trait
	2.7. Penalized regression
	2.8. The Multi-Ethnic Study of Atherosclerosis (MESA) cohort
	2.9. Sleep-pulmonary traits, hypertension, and covariates in MESA
	2.10. Model evaluation using the Net Reclassification Index
	2.11. Ethics
	2.12. Role of funders
	2.13. Statistics

	3. Results
	4. Discussion
	Contributors
	Data sharing statement
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	References



