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Abstract

Strategies adopted globally to mitigate the threat of COVID–19 have primarily involved lock-

down measures with substantial economic and social costs with varying degrees of suc-

cess. Morbidity patterns of COVID–19 variants have a strong association with age, while

restrictive lockdown measures have association with negative mental health outcomes in

some age groups. Reduced economic prospects may also afflict some age cohorts more

than others. Motivated by this, we propose a model to describe COVID–19 community

spread incorporating the role of age-specific social interactions. Through a flexible parame-

terisation of an age-structured deterministic Susceptible Exposed Infectious Removed

(SEIR) model, we provide a means for characterising different forms of lockdown which may

impact specific age groups differently. Social interactions are represented through age

group to age group contact matrices, which can be trained using available data and are thus

locally adapted. This framework is easy to interpret and suitable for describing counterfac-

tual scenarios, which could assist policy makers with regard to minimising morbidity bal-

anced with the costs of prospective suppression strategies. Our work originates from an

Irish context and we use disease monitoring data from February 29th 2020 to January 31st

2021 gathered by Irish governmental agencies. We demonstrate how Irish lockdown sce-

narios can be constructed using the proposed model formulation and show results of retro-

spective fitting to incidence rates and forward planning with relevant “what if / instead of”

lockdown counterfactuals. Uncertainty quantification for the predictive approaches is

described. Our formulation is agnostic to a specific locale, in that lockdown strategies in

other regions can be straightforwardly encoded using this model.
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1 Introduction

The global race to manage the existential threat posed by COVID–19 has used non-pharma-

ceutical interventions (NPIs) such as lockdowns (or restriction of movement) measures as a

central tenet. These will continue to play a major role in public health policy as new variants

emerge and before a full vaccine roll-out has been reached. As nations have come to terms

with COVID–19 throughout the past year and a half, the societal and economic impacts of the

pandemic have become clear. A systemic shock to the world of work, widespread job losses in

certain economic sectors, and a vast reduction in person-to-person social contact has given

rise to an epoch of uncertainty, anxiety and fear. While older individuals are observed to be

gravely threatened by the risk of infection, younger people have been particularly impacted by

deteriorating mental health during this time [1] in addition to reduced economic prospects

[2]. Governments have found themselves performing a difficult balancing act. Strict lockdown

measures are necessary for public safety and to prevent health systems from becoming over-

whelmed. However, periods of strict measures need to be punctuated by temporary easing of

restrictions whenever possible to give hope to businesses and reduce the psycho-social

demands placed on citizens. National “maps” and “road-plans” for emerging from COVID–19

that were proposed in the first quarter of 2020 by national Governments have been tweaked

and revised world-wide; the time elapsed since March 2020 has been characterised by an ebb

and flow of various forms of restriction of movement, both within and between nations.

It seems that lockdown measures and their consequences will be present in citizens’ lives

for some time to come. Certain measures or guidelines to citizens may target specific age

groups. For example, guidance has often urged extra protection for the elderly; in Ireland and

the UK, this has been termed “cocooning”. There has been much debate about the risks posed

by keeping schools for children open and as a result there has been variation in school closures

globally. Quantifying the potential impact of new or changing measures that target age cohorts

differently is thus essential. The exploration and consideration of counterfactuals can provide

valuable lessons and insights to policy makers at a time of much uncertainty.

Our contribution in this article is to propose and calibrate a flexible model within the Sus-

ceptible Exposed Infected Recovered (SEIR) class, which can characterise different forms of

lockdown measures with age structuring. The implied mortality burden of a lockdown archi-

tecture can be assessed through forward projection from the model. We show how this age-

structured SEIR model, which includes explicit modelling of social mixing, can be used to

assess and quantify the overall potential disease burden resulting from restriction of movement

measures. Social mixing is modelled using age group to age group contact rates, allowing for

assessment of the long run impact brought about by lockdowns which implicitly target specific

age groups. The primary benefit of this approach is the potential to evaluate the ‘cost’ of spe-

cific intervention actions in terms of impacts on the general public. If each of the public health

interventions that are being considered can be economically costed, then a strategy for disease

suppression in tandem with minimising economic costs can be explored. As an example, for-

ward projection can indicate costs to economic sectors such as the night–time economy which

relies heavily on young adults. This view is not constrained to economic costs alone, as public

health authorities may alternatively focus on health costs such as mental health impacts

brought about by constraints on social mixing amongst the general public.

There has been some exploration of age-structured SEIR models for disease incidence. A

SEIR model with age-structuring is used by [3] for the London area incorporating contact trac-

ing; their interest was detailing the impact of social mixing and contact tracing on the effective

reproduction rate of the disease as opposed to model calibration. In a similar vein, [4] use

assumed epidemiological parameters to simulate the impact of age-specific control measures
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and contact tracing impact with a focus on the impact of control measures on factors including

hospitalisations and deaths. The impact of four control measures (school closure, social dis-

tancing, quarantine, and isolation) are simulated by [5] to explore reproduction rates in South

Korea using an age-structured SEIR model of disease spread. Maximum likelihood estimation

is used to estimate contact scaling parameters, however no uncertainty in estimates or projec-

tions is presented. A two-cohort age-segmented model (age in years�65/>65) is proposed by

[6] for Mexican incidence counts, suggesting that age specific control measures may have util-

ity for public health policy decisions. The impact of three specific governmental interventions

on case incidence is discussed by [7] employing an age-structured SEIR model with predeter-

mined model parameters. A Susceptible Infected Recovered Dead model is fitted to data from

Brazil by [8] examining how different interventions affect different age groups. They expand

the model by including a hospitalisation compartment to project when demand on Intensive

Care Units could exceed supply under different interventions. A SEIRD (SEIR with death com-

partment) model is used by [9] to project the number of deaths over the course of the vaccine

rollout in the UK considering different lockdown scenarios. A Bayesian hierarchical model is

used to estimate the effect of government interventions in [10], similar to previous work by

[11] but harnessing data from multiple countries to disentangle the effects of different NPIs.

The dynamics of the age-structured SEIR model we propose have a number of advantages

over these competing approaches. We account for the impact of movement restrictions on

population mixing by scaling age-structured contact matrices, as with [12], however our scal-

ing parameters are calibrated using the time series of observed Irish incidence counts as

opposed to best-guess estimates. Where the parameters governing dynamics of models cannot

be estimated due to data sparsity, we use recent results published in the COVID–19 literature

on infection dynamics as well as expert opinion from the Irish Epidemiological Modelling

Advisory Group (IEMAG); note that IEMAG developed an initial SEIR model [13] (see also

[Gleeson et al., in press]) that we extend through the introduction of age-structuring and

incorporation of the contact patterns, thus relaxing the assumption of homogeneous mixing

across population age groups. This assumption implies that the force of infection is the same

for all ages and may lead to the misrepresentation of disease dynamics for populations with

heterogeneous population mixing and non-random contact patterns. The force of infection in

our extended model reflects the age-related degree of mixing both within and among different

age-groups and this is seen as a more realistic transmission hypothesis. We use a statistical

bootstrapping approach to present uncertainties in learned parameters, in addition to provid-

ing uncertainty intervals for incidence projections.

The available data for calibration of social contacts consists of daily case counts and the spe-

cific lockdown measures implemented within Ireland from February 29th 2020 to January 31st

2021. While we present an analysis specific to an Irish context, we argue that the proposed

approach is adaptable to other locales, wherein region specific macro-level behaviours can be

calibrated. Furthermore, the framework we present can be easily adapted to incorporate more

in depth population mixing knowledge from contact-tracing initiatives as well as allowing for

estimation of all unknown model parameters.

Based on the SEIR model described in this article, we have developed an app that, given a

user specified lockdown regime, creates an 8 week ahead forecast for estimated deaths and eco-

nomic costs in Dublin. The app is written in the statistical programming language R version

4.1.1 [14] using the shiny package [15]. The interactive visuals produced by the app are cre-

ated using the plotly package [16] in conjunction with the ggplot2 package [17]. The

methodology and software used to produce the output is described in section 4, and is freely

available at https://github.com/fatimZJ/Covid-19-Project.
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The remainder of the paper is organized as follows. Section 2 provides an overview of

observed COVID–19 incidence data and lockdown architectures in Ireland, a model of the

effects of these lockdowns on social mixing by rescaling the population contact matrix over

time, and the associated economic impacts. In Section 3 we present our proposed age-structured

SEIR model which incorporates the scaled elements of the contact matrix, and, hence, lockdown

effects. Section 4 describes calibration of the free parameters in the model, and quantification of

uncertainty using a bootstrapping approach. Section 5 outlines the results of retrospective

model fitting to Irish data, with associated projections and examples of some interesting coun-

terfactual situations provided in Section 6. We conclude in Section 7 with a discussion.

2 Data sources

We restrict our data sources to those that are typically freely publicly available, allowing for

ease of implementation in other regions. The available data in an Irish context consists of daily

incidence counts and the dates of changes of lockdown restrictions. Estimated contact matri-

ces for age structured population mixing are sourced from literature. We defer discussion of

the mechanistic parameters sourced from the COVID–19 literature to Section 3.

2.1 Daily incidence counts

The Irish Health Surveillance Protection Centre (data.gov.ie) provide anonymised daily

COVID–19 incidences. We use the data from the period of February 29th 2020 to January 31st

2021 for model calibration. The daily COVID–19 count incidence is shown in Fig 1. Age struc-

tured case count data is not publicly available in Ireland, and hence we use aggregate case

counts at the population level. We use projected population data for 2019 provided by Irish

Central Statistics Office (CSO) (https://data.cso.ie/table/PEB07) to estimate the age-structured

population breakdown by county to estimate Dublin’s population. Given the constraints on

public movement, we make the assumption that the 2019 projections are representative of the

population since the beginning of the pandemic.

Fig 1. COVID–19 daily case incidence with corresponding lockdown levels in each period between February 2020 and January 2021. Descriptions

of individual lockdown levels are presented in S1 Table in S1 File.

https://doi.org/10.1371/journal.pone.0260632.g001
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2.2 Form of lockdown restrictions

Fig 1 shows the timeline and duration of varying degrees of restriction measures (vertical

dashed lines) implemented in Ireland from March 2020. In line with [13], we define the 28th

February 2020 as “day zero” of the Irish epidemic. As with many other countries, the Irish gov-

ernment introduced a strict lockdown in the early stages of the pandemic which lasted until

May 2020. This lockdown was followed by a gradual easing of restrictions throughout the sum-

mer until case numbers began to rise in early autumn, when harsher restrictions were reintro-

duced and another phase of a strict lockdown was announced for late October. Restrictions

were eased over the month of December but a subsequent wave of cases forced the implemen-

tation of a further strict lockdown immediately after the December holiday period. A more

detailed overview of the restrictions is provided in S1 Table in Appendix A of S1 File.

The nature of restrictions on public mobility in Ireland, announced by the Irish government

in April 2020, follow five levels. Level one is the least restrictive with this increasing to most

restrictive at level five. In level one, food venues and bars remain open, gatherings of up to fifty

people are permitted outdoors and sporting events can take place with restrictions on numbers.

Level five corresponds to a near total blanket close on all activities. As the public health situa-

tion evolved during 2020, small adjustments were made to these levels with slight easing of tar-

geted restrictions (for example, reopening of schools or childcare) within more severe

lockdowns. An overview of the five level lockdowns is provided in Table 1 with in-depth detail

available at gov.ie/en/campaigns/resilience-recovery-2020–2021-plan-for-living-with-covid-

19/. We denote the time intervals of lockdown measures using I k ¼ ðrk; rkþ1�, where rk is the

time of the beginning of the kth regime for k = 1, . . ., N where N = 12, with the first regime cor-

responding to no intervention from 29th February to 11th March 2020. Thus, we define r1 = 0

corresponding to 29th February 2020 and rN+1 = 336 corresponding to 31th January 2021.

2.3 Age structuring and social mixing

COVID–19 is an airborne virus, hence consideration of close social mixing in the population is

essential to capturing the observed patterns of infection. Furthermore, the strong association of

morbidity patterns with the elderly, and more recently younger persons [18], suggest consider-

ation of age structured social mixing will be a key component of future projections [6, 12].

Age-structured social mixing is typically captured in SEIR models through the use of age group

to age group contact matrices. Although such matrices cannot capture the granular complexity

of individual human interactions, they provide a reasonable approximation that can be

Table 1. Summary overview of the restrictions impacting on public gatherings for each of the five lockdown levels in Ireland. The numbers comprise the limits on

individuals allowed to gather together in each social setting unless otherwise specified as a household limit. Details on other restrictions, such as on private travel, have

been omitted for brevity.

Level 1 Level 2 Level 3 Level 4 Level 5

House visits 10 (3 households) 6 (2–3 households) 1 household 0 0

Gatherings 15 outdoor 6 indoor

50 outdoor

0 0 0

Weddings 100 50 25 6 6

Indoor events 100 50 0 0 0

Sporting events 100 indoor

200 outdoor

50 indoor

100 outdoor

0 0 0

Food venues Open 6 (3 households) 15 outdoor 15 outdoor 0

Pubs Open 6 (3 households) 15 outdoor 15 outdoor 0

Public transport capacity 100% 50% 50% 25% 25%

https://doi.org/10.1371/journal.pone.0260632.t001
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incorporated into mathematical models for infectious diseases as demonstrated by [19], and

within this article. We follow [12] and stratify the population into five-year bands from age 0

up to age 75, with one category for all individuals aged 75 and above, giving A = 16 age groups.

Contact tracing has been a prominent factor in disease suppression in Asian countries to

date. However, such data is not available in an Irish context, and we are unaware of any large-

scale survey or study on age-structured social mixing patterns in Ireland. However, [20, 21]

provide a methodology for deriving contact patterns by leveraging mixing patterns studied in

other European countries. Our analysis relies on contact matrices given by [21] who projected

age and location specific contact matrices in 16 age bands for 152 countries including Ireland.

These are constructed from the POLYMOD study [19], which incorporated large-scale demo-

graphic household surveys (from the UN population division) and school and labour force

participation rates. The estimated Irish contact interactions are shown in Fig 2. For the pur-

pose of our work, we sum together expected contacts in the home, work, school and other

locations to give an overall matrix of expected contacts (‘All’ in Fig 2). We assume that the

Irish contact matrix applies to just Dublin.

Fig 2. Estimated social contact matrices for Irish population mixing at 5 year intervals [21].

https://doi.org/10.1371/journal.pone.0260632.g002
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Government interventions to suppress virus spread result in changes in population mixing.

Therefore, to reflect these changes, we introduce a free parameter, θk, which scales the aggre-

gate expected contact matrix for the time interval I k ¼ ðrk; rkþ1� corresponding to the kth of N
lockdown regimes. The aforementioned age-structured contact matrices are formed by entries

cij representing the average number of daily contacts between an individual in age category i
with an individual in age category j, where i, j = 1, . . ., A. Then, at time t 2 I k (i.e., during the

kth lockdown), the scaled contact matrix is

ykc1 1 . . . ykc1 A

..

.
. . . ..

.

ykcA 1 . . . ykcA A

0

B
B
B
B
@

1

C
C
C
C
A
¼ ykC; k ¼ 1; . . . ;N:

In Section 3 we outline the estimation of the scaling parameters θ = (θ1, . . ., θN) for each

lockdown period using observed incidences in Dublin. This allows an estimation of macro-

level behavioural changes in socialising brought about by specific measures. We explore the

robustness of the model results presented in Section 5 to the matrix C by exploring three alter-

native specifications of this matrix in SC Appendix.

2.4 Economic cost of lockdown measures

Our age-structured modelling approach offers the potential for evaluation of age-related eco-

nomic or health costs in tandem with public morbidity. Here, we explore costing economic

impacts of different lockdown measures used by the Irish government to date. There has been

much interest in the economic impact of COVID–19, with a rapidly expanding literature. For

example, [22] study the basic macroeconomics of epidemics while [23] attempt a partial litera-

ture review of the main approaches to macroeconomic costing of the epidemic to date. [24]

extend the canonical macroeconomic framework to SEIR models of the type we develop in

this paper. [25] produce initial estimates of the medium-term impact of the crisis on the Irish

economy. Relating to Ireland, we draw on the work of [26] in order to construct weekly esti-

mates of year on year (same week in different years) growth rate of Gross Domestic Product

(GDP). This existing approach makes forecasts based on a neural network modelling frame-

work, with training of the model done via quarterly GDP and Google Trends search intensity

data gathered over forty six countries from the beginning of 2005 for sixty one quarters. The

quarterly data is used to construct a forecasting model corresponding to a weekly resolution

making an assumption of frequency neutrality [26].

While there are obvious criticisms of using GDP as a sound economic measure, here we

employ it as a proxy to give a high level view of implied costs of lockdown to the economy. In

this frame of reference, we can justify the approximation in three ways. Firstly, GDP is an

aggregate flow measure containing values in euros of expenditures by households, firms, and

government, particularly the importing, and exporting parts of the Irish economy [27]. The

weekly GDP tracker combines the sometimes countervailing microeconomic elements of the

COVID crisis into a single variable. While expenditures by the household and corporate sec-

tors was reduced due to government restrictions, the government expanded its support activi-

ties in terms of direct payments to furloughed workers, turnover replacements and generous

liquidity packages for firms, debt and tax arrears-warehousing, and increases in direct spend-

ing on health-related measures [28]. Secondly, it is acknowledged that Ireland is a small open

economy with a very large multinational sector relative to other countries of similar size and

development level. While GDP is understood for example by [29] as being a relatively poor
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measure of the health of the Irish economy due to the influence of large multinational compa-

nies on the economy, these companies, particularly in the pharmaceutical and ICT sectors,

helped keep the government’s budget deficit lower than it otherwise would have been. Finally,

the weekly GDP calculations of [26] enable the production of a measure of the overall eco-

nomic impact of COVID–19 relative to each lockdown period. A weekly tracker of economic

activity allows for matching of economic predictions with the timescale of typical lockdown

duration. The generation of in-model behavioural elasticities using a panel of 46 countries

across several decades also means the model has the ability to react within a period of crisis, as

the economy’s participants learn from the first lockdown experience, and adapt themselves to

cope with further lock downs.

3 SEIR model specification

Irish population modelling of COVID–19 during the crisis has been carried out by the Irish

Epidemiological Modelling and Advisory Service (IEMAG) [13]. They present a model for the

Irish population where, at any point in time, an individual is assumed to be in one of a number

of distinct model compartments that describe COVID–19 status. Movement between compart-

ments over time is based on the current understanding of the epidemiology of COVID–19, as

evidenced by the extensive literature review and evidence synthesis conducted by [30–32].

We evolve this model to consider age-structured differences in population mixing. We

assume closed age classes, such that population Ni of age class i is the sum of susceptible (Si),

exposed (Ei), infected and removed (Ri) compartments for that age class. There is no movement

between age classes. Infected cases fall into a number of compartments: asymptomatic (IASi ),

pre-symptomatic (IPSi ), symptomatic and self-isolating without testing (ISIi ), symptomatic and

awaiting test results (ISTi ), symptomatic and isolating after receiving positive test results (IPIi ) and

symptomatic but not tested or isolating (ISNi ). The closed age class assumption implies that

Ni ¼ Si þ Ei þ IASi þ IPSi þ ISIi þ ISTi þ IPIi þ ISNi þ Ri; i ¼ 1; . . . ;A:
Exposed individuals are those incubating the disease but not yet infectious. Asymptomatic

individuals are infectious but do not exhibit symptoms. Pre-symptomatic individuals are infec-

tious but have yet to show symptoms. As pre-symptomatic individuals’ symptoms develop,

they will move to one of the infectious or symptomatic compartments, either self isolating and

following government guidance around testing, or neither getting tested nor isolating when

symptomatic, i.e., ignoring symptoms. Following infection, individuals move to the removed

class (Ri), which accounts for cases who recover and those who die.

We write the system of ordinary differential equations (ODEs) describing the SEIR model

for age class i = 1, . . ., A:

dSi

d t
¼ � b

giðt; z; θÞ
Ni

Si

dIASi

d t
¼ pAS

Ei

tL
�

IASi

tD

dISIi

d t
¼ pSI

IPSi

tC � tL
�

ISIi

tD � tC þ tL

dISNi

d t
¼ ð1 � pSI � pTÞ

IPSi

tC � tL
�

ISNi

tD � tC þ tL

dEi

d t
¼ b

giðt; z; θÞ
Ni

Si �
Ei

tL

dIPSi

d t
¼ ð1 � pASÞ

Ei

tL
�

IPSi

tC � tL

dISTi

d t
¼ pT

IPSi

tC � tL
�

ISTi

tR

dIPIi

d t
¼

ISTi

tR
�

IPIi

tD � tC þ tL � tR

dRi

d t
¼

IASi

tD
þ

ISIi

tD � tC þ tL
þ

IPIi

tD � tC þ tL � tR
þ

ISNi

tD � tC þ tL

ð1Þ
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where the function gi(t, z, θ) in the mass relation for being exposed when susceptible is

giðt; z; θÞ ¼
XN

k¼1

Ið t 2 I k Þ
XA

j¼1

yk cij ½ a IASj þ IPSj þ k ISIj þ ISTj þ k IPIj þ ISNj �

where z denotes the entire state vector

z ¼ ð S1;E1; . . . ; S2;E2; . . . ; SA; EA; . . . ;RA Þ;

and Ið t 2 I k Þ is an indicator function which equals one when t 2 I k and is zero otherwise. A

graphical illustration of the model is presented in Fig 3. Susceptible individuals in age class i
are exposed to the virus through contacts with infected individuals in all age classes and this is

described through the function gi(t, z, θ). The level of exposure is modulated by the scaled

average number of daily contacts with each age class, with a scaling factor for each lockdown

regime. The parameters α and κ are used to describe transmission dynamics with respect to

the various infected compartments. The reduction of transmission due to being asymptomatic

is given by α which is taken as 0.55 [33]. Individuals in isolation are expected to have a reduced

infectious burden on those they interact with. This is described using κ = 0.05 [13] and we

assume an identical reduced burden from those who are positive and isolating.

The SEIR model makes extensive use of β, the multiplicative force of infection. The value of

β is chosen based on a specified value of R0, the baseline reproduction rate. Baseline here high-

lights that this is the expected reproduction rate in Dublin, with a fully susceptible population

(i.e., Si = Ni, i = 1, . . ., A), under no intervention. R0 can be expressed as the largest absolute

eigenvalue of the next generation matrix, Q = F V−1 [34], where F and V are block matrices

which describe the transmissions and the transitions between compartments, respectively. The

analytic form of these matrices is given in Appendix B in S1 File. Factoring β out of the F

Fig 3. Diagram representing interactions in the age-structured SEIR system of ODEs with rate of movement between classes indicated. The

compartments are susceptible (S), exposed (E), infected and removed (R), asymptomatic (IAS), pre-symptomatic (IPS), symptomatic and self-isolating

without testing (ISI), symptomatic and awaiting test results (IST), symptomatic and isolating after receiving positive test results (IPI) and symptomatic

but not tested or isolating (ISN). A full description is given in Eq (1).

https://doi.org/10.1371/journal.pone.0260632.g003
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matrix, F ¼ b F̂, the dominant eigenvalue of Q can be expressed as a product of β and the

dominant eigenvalue of F̂ V� 1. Hence, if R0 is determined and β is desired, the expression can

easily be rearranged to give β as follows:

b ¼ R0=x ð2Þ

where ξ is the largest eigenvalue of F̂ V� 1. Note, the values of R0 and β are only calculated once

as they are baseline values; shifts in infection dynamics away from the baseline are captured by

θ. Our choice for R0 is 3.4, based on [35]. This leads to β = 0.031 when not under intervention.

A full list of parameter value settings used in our modelling is given in S3 Table in S1 File. We

note here that the θk, k = 1, . . ., N are unknown. The next section describes how these are esti-

mated using observed case incidences.

4 Model fitting

Specification of the model in Section 3 uses parameters θ = (θ1, . . ., θN) to rescale, for each of

the N = 12 lockdown intervention policies, what would have been the assumed average con-

tacts between individuals in the various age classes under normal circumstances (i.e., prior to

the pandemic). Estimation of these parameters is of interest in predicting behaviour during

lockdown, and hence for forecasting the benefit of specific interventions. Note that the

remaining parameters (i.e., those other than θ) on which the dynamics of the SEIR model (1)

depend, describing the flow of individuals between compartments, are based on expert opin-

ion [13, 35]. The data currently available is not sufficiently rich to estimate these. We first

describe estimation of θ and then a parametric bootstrap method [36] to provide uncertainty,

which can be propagated through model forecasts.

In order to link the model with observed data we monitor the cumulative number of cases

up to time t for each age class. It is only cases exiting the ISTi ; i ¼ 1; . . . ;A compartment that

can be linked to observed incidence counts in the general population. We can think of a vari-

able, counting infected cases as they exit compartment ISTi before going into IPIi . For scaling θ,

age class i and time t, denote this by Xi(t; θ). This can be related to the other model compart-

ments through

dXi

d t
¼

ISTi

tR
; i ¼ 1; . . . ;A: ð3Þ

To compare outputs from the SEIR model with observed data, we use this count aggregated

over age classes:

Xðt; θÞ ¼
XA

i¼1

Xiðt; θÞ ð4Þ

which gives total cumulative case counts to time t. Evaluating this at td = hd, d = 1, . . ., n where

h generates a time discretisation corresponding to consecutive days, we can then compare

X(td; θ) to observed cumulative cases at day d. We denote the observed cumulative counts at

day d by xd.

4.1 Estimation of regime specific contact scaling parameters

To estimate θ, we minimize the squared error loss, i.e., the residual sum of squares,

RSSðθÞ ¼
Xn

d¼1

ðxd � Xðtd; θÞÞ
2
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on cumulative case counts. Minimization is carried out using the default Nelder-Mead alog-

rithm [37] provided in the R package optimx [38]. Note that each step of this algorithm, cor-

responding to a proposed θ vector, requires the calculation of X(td; θ) to evaluate the

suitability of θ through RSS(θ). In order to obtain X(td; θ), the system of ODEs given in (1) are

numerically solved using the R package deSolve [39]. Specifically, we have found the

lsoda function within this package to be particularly flexible, providing automatic selection

of stiff or non-stiff methods; see [38] for details. When solving the system of ODEs for a candi-

date θ, we take IPSi ¼ 1=A, Ei = 15/A and hence Si = Ni − 16/A as the initial values for i = 1, . . .,

A, as per [13]. The initial values for the remaining compartments are set to 0. Multiple random

initialisations of θ are used to improve robustness of the overall algorithm with respect to the

issue of convergence to local minima. When generating these initial vectors, we assume that

the effect of lockdown measures is to reduce social mixing below pre-pandemic levels, and,

therefore, use a U(0, 1) draw to initialise each parameter, i.e., θ0

k � Uð0; 1Þ; k ¼ 1; . . . ;N. A

summary of our estimation procedure is given in Algorithm 1.

Algorithm 1 Estimation of θ
1: procedure ESTIMATION M, xd, d = 1, . . ., n
2: for m = 1, . . ., M do
3: y

0ðmÞ
k � Unifð0; 1Þ, k = 1, . . ., N

4: RSSðθÞ≔
Pn

d¼1
ðxd � Xðtd; θÞÞ with X(td; θ) given by lsoda

5: θ̂ðmÞ ¼ argmin
y
RSSðθÞ using optimx initialised at θ0(m)

6: RSSðmÞ ¼ RSSðθ̂ðmÞÞ
return θ̂ ¼ fθ̂ðmÞ j RSSðmÞ ¼ minðRSSð1Þ; . . . ;RSSðMÞÞg

Since we have to solve the ODEs (1) numerically using lsoda of each iteration within the

optimx optimisation, the above procedure is computationally intensive. On average it takes

approximately 28 minutes to run the optimisation for each random initialisation on an Intel

Core i5–8250U CPU with 4 cores. We use C = 300 random initialisations. Thus, to improve

the computational feasibility, we have run initialisations in parallel on an EC2 instance hosted

by Amazon Web Services with 32 cores and 64 GB memory.

The publicly available Irish data consists of case counts aggregated across all age classes at

present. If more granular age data is available, a modification to the residual sum of squares

objective above can be made. For example, if all A age classes as prescribed here are publicly

available such that we can access xdi, the observed cumulative counts at day d for age class

i = 1, . . ., A, the objective

RSSðθÞ ¼
Xn

d¼1

XA

i¼1

ðxdi � Xiðtd; θÞÞ
2

could instead be used.

4.2 Propagating uncertainty in contact scaling parameters

We explore uncertainty in the estimation of θ and investigate how this propagates into the

reproductive rate. In order to quantify uncertainty we follow [40] by using a parametric boot-

strap approach. This approach makes use of an assumed generative parametric model for daily

case counts based on the observed case counts. This model is then used to re-generate B syn-

thetic instances of the daily new case series; each of these instances is used to re-estimate the

vector θ. The resulting empirical distribution of the re-estimated vectors can be used as an

approximation to the sampling distribution of θ̂ (the estimate based on the original cumulative

case counts).

PLOS ONE An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland

PLOS ONE | https://doi.org/10.1371/journal.pone.0260632 December 7, 2021 11 / 25

https://doi.org/10.1371/journal.pone.0260632


The estimate θ̂ is found using the observed daily cumulative counts as described in Section

4.1. Given this estimate, the expected daily case count m̂d for day d can be predicted using

m̂d ¼ Xðtd; θ̂ Þ � Xðtd� 1; θ̂Þ; d � 1

where t0 ≔ 0 and X(0; θ) ≔ 0. We assume a negative binomial distribution [40] as a generative

model for daily case counts Yd � NegBinðm̂d; rÞ with expected value m̂d and dispersion param-

eter ρ:

PrðYd ¼ yÞ ¼
Gðrþ yÞ
y!GðrÞ

m̂d

m̂d þ r

� �y

1þ
m̂d

r

� �� r

ð5Þ

where we have parameterised the negative binomial distribution through its expected value

and dispersion. The value of ρ used for generating bootstrap Yd series is the maximum likeli-

hood estimate r̂ based on the observed daily cases.

For each of b = 1, . . ., B bootstrap replications, we generate daily counts yðbÞd and convert to

cumulative counts xðbÞd ; d ¼ 1; . . . ; n. Then the method of Section 4.1 is applied to the xðbÞd to

produce a bootstrap estimate θ̂ðbÞ. Collectively, the B estimates θ̂ðbÞ provide an approximation

to the sampling distribution of θ̂. The steps are summarized in Algorithm 2.

Algorithm 2 Parametric bootstrapping
procedure BOOTSTRAP(B, r̂, m̂d; d ¼ 1; . . . ; n)
for b = 1, . . ., B do

xðbÞ0 ≔0

for d = 1, . . ., n do
Yd � NegBinðm̂d; r̂Þ

xðbÞd ¼ xðbÞd� 1 þ yd

θ̂ðbÞ obtained from Algorithm 1
return Bootstrap sample fθ̂ðbÞ; 1; . . . ;Bg

5 Results

In this section we present the results of fitting the age-structured SEIR model to Irish data

using the methodology described in Section 4, and also discuss some economic findings.

5.1 Fitted SEIR model

Fig 4(a) shows the model fit to the daily cumulative cases data (i.e., Xðtd; θ̂Þ and xd respec-

tively), while Fig 4(b) shows a plot of the model fit to the daily new cases data (i.e., Xðtd; θ̂Þ �

Xðtd� 1; θ̂Þ and xd − xd−1 respectively). Both figures illustrate that the model provides a good fit

to the observed data albeit with slight deviations in the early days of the epidemic and later

around the December holiday and New Year period. We observe from the model fit to daily

new cases that these periods were characterised by larger variability in the daily recorded num-

ber of new cases. The presence of outliers may be as a result of data reporting issues, especially

over the December holiday period. For example, in Ireland a testing backlog developed over

this period with test results from multiple days being subsequently batched together. An

advantage of our age-structured model is the availability of a breakdown of cases by age-group

and in fact all compartments. The mixing patterns for each age group determine its rate of

infection which in turn determines the number of observed cases for each age group. Fig 5

demonstrates the differences in model-based case numbers across selected age groups (see also

S2 and S3 Figs in S1 File). We can see that the case numbers are higher for the middle-aged
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group (35–39) than for the younger (5–9) or older (65–69) groups, and note from Fig 2 that

the number of contacts is higher for the middle-aged group.

Fig 6 displays the estimated scaling parameters θ with bootstrapped 2.5% and 97.5% percen-

tiles for each government policy observed over the period of study. The associated numeric

values are given in S5 Table in S1 File.

The scaling parameter estimate for the no-intervention period, ŷ1 � 1.27 (95% confidence

interval (CI) 0.90–1.94), indicates that the social contact patterns based on the POLYMOD

study may be slightly under-estimating the current Irish contact patterns. Perhaps somewhat

surprisingly, the parameter ŷ2, corresponding to an initial school closure period, is greater

than one (95% CI 1.78–2.72). However, this might be explained by the fact that it corresponds

to a short period of time where no other measures had yet been introduced (apart from pub

closures later in the period), but with an imminent government announcement of a strict

nationwide lockdown expected—in line with what had been observed in other countries

already by this stage in the global pandemic. During this period there was frenzied panic buy-

ing and stock piling of goods, increased travel across the country, and possibly increased social

gatherings prior to movement restrictions. The remaining scaling parameters behave as

expected based on the level of restrictions in place at that time: the higher the levels of restric-

tions, the smaller the scaling parameter, corresponding to reduced social mixing. The confi-

dence intervals just prior to and including the holiday period indicate that social mixing

returned to a near normal level at that time where a dramatic spike in the case numbers was

also observed. This was followed immediately by a heavy lockdown and consequent drop in

case numbers; indeed, the scaling parameter for this final period has the smallest value of all.

Over the period of study, note that we have witnessed two lockdown Level 3 periods (Sep-

tember/October and December 2020). However, although in theory both periods were desig-

nated as “Lockdown Level 3” by the Irish government, we have applied two separate scaling

parameters for these two periods as the December lockdown included some relaxations com-

pared to a full Level 3 lockdown. Specifically, non-essential retail and services were open once

again and indoor service in restaurants and cafes was also permitted. This was done to facilitate

Fig 4. Model fit to daily recorded cases with bootstrapped 95% uncertainty bounds.

https://doi.org/10.1371/journal.pone.0260632.g004
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people’s social needs around the holiday period, and indeed we see that the estimated parame-

ter value for lockdown Level 3+ (December) is much larger than that for lockdown Level 3

(September/October). Again because of modifications in the execution, we have separate scal-

ing parameters for the lockdown Level 5 in October/November and what we call the lockdown

Level 5+ January 2021; the latter was stricter following the large rise in case numbers during

the holiday period, and this is reflected in the small scaling value for this period as previously

mentioned. Since the lockdown levels commenced with (what we label as) a Level 2 in August

2020, we have not observed a Level 1 or 4 lockdown. Prior to August 2020, the lockdowns and

relaxations were more ad-hoc and do not fit into any particular governmental lockdown level.

Fig 5. Case numbers for selected age classes obtained from the forward simulations of the SEIR with 95% intervals from bootstrapping. The age

classes are 5–9 (orange), 35–39 (blue), and 65–69 (green).

https://doi.org/10.1371/journal.pone.0260632.g005

Fig 6. Estimates of the contact matrix scaling parameters for each lockdown period with 95% uncertainty intervals obtained through

bootstrapping.

https://doi.org/10.1371/journal.pone.0260632.g006
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The contact matrices corresponding to the policy interventions based on our fitted model are

displayed in S4 Fig in S1 File.

An important epidemiological metric is the effective reproductive number, R(t), the expected

number of secondary infections at time t. It differs from R0, the baseline reproduction number,

in that it changes over time and takes into account that the whole population will not be fully

susceptible. A common estimate of R(t) is the product of R0 and the total proportion suscepti-

ble in the population at time t (see for example Section 2.2 of [41]). In the context of our

model, the baseline reproductive number is R0 θk (rather than just R0) to account for the rate

at which individuals interact with each other; recall from Section 2.3 that θk is the scaling

parameter corresponding to the time interval I k ¼ ðrk; rkþ1�. So our estimate of the effective

reproductive number is

RðtÞ ¼ R0yk
~SðtÞ ð6Þ

where ~SðtÞ ¼
PA

i¼1
SiðtÞ=

PA
i¼1

NiðtÞ is the proportion of susceptible individuals in the the

entire population at time t. Fig 7 displays the estimate of R(t) based on our fitted model. We

see here that prior to the first heavy lockdown in April, R(t) was initially very large. This

dropped below one following that first lockdown, but gradually increased again over the sum-

mer period when relaxations were introduced. It was brought back under control with

Fig 7. The effective reproduction number R(t). The solid line was calculated from the best fit parameters, and the uncertainty intervals were drawn by

computing R(t) for each bootstrap replicate and selecting the 2.5% and 97.5% quantiles at each time point.

https://doi.org/10.1371/journal.pone.0260632.g007
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successive Level 3 and Level 5 lockdowns, but markedly increased over the run-up to the

December holiday period; R(t) was then driven towards zero with the lockdown Level 5+.

5.2 Assessing the economic cost of policy interventions

The approach of [26] provides us with a trained model to estimate weekly GDP growth during

the pandemic. The inputs to the model are the Δsl,w, year on year differences in weekly log

search intensities on Google Trends for l = 1, . . ., 24 search terms over w = 1, . . ., 52 weeks.

The model has a country specific fixed effect resulting in country targeted forecasts (denoted

here by “ire” for Ireland). The inputs are passed to a nonlinear function f̂ ð�; �Þ, which has been

trained using historic data as described in Section 2.4. This results in

ĝ ire;w ¼ f̂ ðfDsl;wgl;w
; “ire”Þ

where ĝ ire;w, is a forecast of GDP growth for week w in Ireland.

Assuming weights equal to 1/48 (due to a 48 week working year) and an average counter-

factual annualised growth of 5.8% given by a naive forecast, the impact on growth rates per

week can be calculated as 1

48
ð5:8 � ĝ ire;wÞ. Multiplying these by 2019 measures of GDP in euros

gives an estimated cost per week in nominal euros. A counter-factual “no COVID” scenario

can be constructed by naively forecasting the 2019 estimated weekly growth rate forward using

an ARIMA(1, 1, 1) model to provide ~g ire;w, with GDP in nominal euros is estimated in the

same way. Fig 8 shows the weekly estimates of GDP for each approach, with the difference in

weekly GDP figures between the approaches suggesting an estimate of the economic cost per

week of pandemic related measures. Linking estimated weekly costs to the lockdown strategies

implemented results in the estimated economic costs shown in Table 2.

This simple analysis shows that relative to the counterfactual “no COVID” experiment, the

majority of cost to society was incurred during the first intense lockdown period. Recoveries

Fig 8. Comparison of weekly GDP estimates in Ireland for the naive no-pandemic ARIMA(1, 1, 1) (bold) and weekly

tracker (dashed) approaches.

https://doi.org/10.1371/journal.pone.0260632.g008
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tended to overshoot the naive forecasted values (hence the negative readings in Table 2 for the

relaxation of interventions) for a number of reasons. For example, pent up demand in the

household sector, once released, is very easily produced and consumed. The economy was also

supported by large-scale government intervention which began at scale in May and June of

2020 involving government injection of cash directly into the economy to support households

and firms. Participants in the economy adapted and adjusted to their changed circumstances.

This is why the calculation of elasticities in [26] is important to include. Once people moved

their consumption online, and government supports were in place, the impact of the crisis was

substantially attenuated.

6 Forward projection and counterfactual scenario analysis

A key strength of our modelling framework is that it enables forward projection, and quantifi-

cation of projection uncertainty, of anticipated case numbers under specific health interven-

tions. In the following we simulate epidemiological and economic costs of a number of

counterfactual scenarios based on hypothetical policy decisions taken by the Irish Govern-

ment. We compare these to observed epidemiological data for that period to evaluate predic-

tive performance. S6 Table in S1 File presents the Irish Health Protection and Surveillance

Centre’s (HPSC’s) total number of cases and deaths up to 28th December 2020 [42]. The data

was no longer broken down by age category to the same granularity after that date. From this

we can establish approximate estimates of death rates for each age class that we can apply to

the forecasts of the SEIR model.

6.1 Projected cases, economic costs and deaths

Evaluation of the health impact of government restrictions on population mobility requires a

contact scaling matrix for lockdown levels 1 to 5. However, as described in Section 5.1, Level 1

and Level 4 lockdowns have not been used to date (and hence not observed), while Level 3 and

Level 5 lockdowns were used twice but with modifications on each of the second occasions.

Moreover, seasonal shifts in social dynamics (for example, in December), may play a role in

the effectiveness of a given lockdown. Our chosen scaling estimates for projection, based on S4

Table in S1 File, make a pragmatic best approximation. For Level 0 (No Intervention), we use

the ‘No intervention’ scaling from the fitted model; Level 1 (unobserved) uses a linear interpo-

lation of scalings from Level 0 and 2; Level 3 was enacted twice with slight changes the second

Table 2. Estimated economic costs for each lockdown period.

Start End Policy Cost (€bn)

29/02/2020 11/03/2020 No Intervention -2.47

12/03/2020 26/03/2020 School Closure -3.68

27/03/2020 18/05/2020 Intense Lockdown 37.14

19/05/2020 07/06/2020 Relax Intervention 1 -11.74

08/06/2020 28/06/2020 Relax Intervention 2 5.07

29/06/2020 17/08/2020 Relax Intervention 3 4.77

18/08/2020 17/09/2020 Lockdown Level 2 3.69

18/09/2020 20/10/2020 Lockdown Level 3 0.90

21/10/2020 30/11/2020 Lockdown Level 5 8.03

01/12/2020 18/12/2020 Lockdown Level 3+ 1.30

19/12/2020 03/01/2021 Holiday period 1.67

04/01/2021 31/01/2021 Lockdown Level 5+ 5.00

https://doi.org/10.1371/journal.pone.0260632.t002

PLOS ONE An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland

PLOS ONE | https://doi.org/10.1371/journal.pone.0260632 December 7, 2021 17 / 25

https://doi.org/10.1371/journal.pone.0260632.t002
https://doi.org/10.1371/journal.pone.0260632


time, but we use the scaling from the October 2020 lockdown (‘Lockdown Level 3’); Level 4

was unobserved, so we use again a linear interpolation, this time from Level 3 to Level 5; Level

5 was used twice, but similar to Level 3 case, we use the scaling from November 2020 corre-

sponding to ‘Lockdown Level 5’. The resulting scaling parameter estimates mapped to lock-

down levels are presented in S6 Fig in S1 File for completeness, and for reference we list values

in S5 Table in S1 File.

The SEIR model was projected from the 1st of February to 30th March 2021 (8 weeks)

under different lockdown scenarios implemented in two 4 week chunks (the date of the second

lockdown implemented was 2nd March). Lockdown levels used for each four week period are

specified in Table 3. A forward projection is made by adopting the corresponding scaling of

contacts from S5 Table in S1 File, with the SEIR system solved forward in time. Projection

uncertainty bounds are obtained by taking the bootstrap replicate estimates of the correspond-

ing scaling parameters and completing a forward projection for each of these, with 2.5% and

97.5% sample quantiles of these projections giving uncertainty bounds. Estimated daily eco-

nomic costs are shown in the left panel of Fig 9.

An estimate of the number of deaths was obtained by taking the product of the proportions

from S6 Table in S1 File and the corresponding age group from the daily removed count, esti-

mated by

ISI þ ISN

tD � tC þ tL
þ

IPIi

tD � tC þ tL � tR
ð7Þ

for each day and age group. The cost, case and death estimates are shown in Table 3. While the

daily COVID-19 case incidence information for the Dublin region is available, the daily death

data is not provided at this level of geographic granularity.

During this time, Ireland was under Level 5 lockdown. This corresponds to our third lock-

down scenario above, though as can be seen in Fig 10, the projection underestimates the true

case count of 15, 334 that was observed during that period. In contrast, the upper bound of our

estimated number of daily cases during this period is approximately 7, 200. This underestima-

tion may be due to the public not treating this Level 5 as seriously as the Level 5 intervention

last year. A closer look at the actual case counts over that period is given in the right panel of

Fig 9, showing that cases plateaued after February 15th oscillating around an average of

approximately 200 cases per day instead of falling. A comparison across the different interven-

tions of the total number of estimated cases for the period between 1st February 2021 and 30th

March 2021 is shown in S7 Fig in S1 File.

7 Discussion

In this article we propose a modelling framework that attempts to answer the question of how

best public health strategies can be weighed against the attendant social and economic costs of

Table 3. Estimated cases, deaths and costs for the 8 week period between 1st February 2021 and 30th March 2021. Where there are two scenarios listed, the shift

occurred on the 2nd March. The observed number of cases in the given period was 15,334 for the Dublin region. 95% intervals are given in parentheses.

Lockdown Scenario Estimated cases / 100 (Lower, Upper) Estimated deaths (Lower, Upper) Estimated cost (€bn)

No Intervention 5073 (1797, 8735) 2785 (881, 7230) -12.6

Level 3 122 (78, 307) 51 (34, 121) 1.6

Level 5 25 (16, 72) 17 (12, 39) 11.2

Level 3! Level 5 87 (60, 211) 41 (29, 92) 6.4

Level 2! Level 5 118 (75, 306) 53 (35, 129) 9.1

https://doi.org/10.1371/journal.pone.0260632.t003
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Fig 9. Left: Estimated economic costs for the 8 week period between 1st February 2021 and 30th March 2021. Right:

Time series of actual daily cases for 8 week period between 1st February 2021 and 30th March 2021.

https://doi.org/10.1371/journal.pone.0260632.g009
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Fig 10. Projected infection rates and deaths under different lockdown scenarios. The death data is not available for

the Dublin region for this period.

https://doi.org/10.1371/journal.pone.0260632.g010

PLOS ONE An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland

PLOS ONE | https://doi.org/10.1371/journal.pone.0260632 December 7, 2021 20 / 25

https://doi.org/10.1371/journal.pone.0260632.g010
https://doi.org/10.1371/journal.pone.0260632


such measures, taking into account age-specific contact rates. We have presented an age-struc-

tured SEIR model for the Irish epidemic that can be deployed to an international context with

the appropriate data. Where feasible, the parameters of our model governing disease spread

have been estimated from publicly available Irish epidemiological data with a bootstrapping

approach used to determine parameter uncertainties. Our fitted model captures much of the

structure observed in daily case numbers. Our approach allows for local adaptions and calibra-

tions of models in any region or location where such data is available. We also present inci-

dence projections under a number of hypothetical government intervention strategies, in

conjunction with approximate economic costings allowing for their consideration in the deci-

sion making process. This framework is easy to interpret and suitable for describing counter-

factual scenarios, which could assist policy makers with regard to minimising morbidity

balanced with the costs of prospective suppression strategies. We are not aware of any frame-

work with this level of modelling detail that has been presented to date, especially in the Irish

context.

However, there are a number of limitations to our present approach that provide opportu-

nities for substantial further refinements. These chiefly revolve around access to sufficiently

detailed public health and economic data which enable the development of more complex

models around social mixing, in addition to further refinement of estimation of parameters

characterising disease spread and economic costings.

We currently assume that the disease spread parameters are uniform across all age groups.

This is a simplifying assumption but a necessary one due to the unavailability of such informa-

tion for the Irish population and the limited literature on such parameters elsewhere at the

time of writing this article. Whenever this information becomes available, our proposed model

can be extended straightforwardly to incorporate age-dependent disease spread parameters.

We have also assumed that the effect of the non-pharmaceutical interventions is uniform

across age-groups. This could be relaxed by allowing age-dependent scaling parameters for all

interventions as follows
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; k ¼ 1; . . . ;N:

Here, the non-zero elements of the leading diagonal matrix represent the effect of lockdown

on each age group, and these are free parameters which would need to be inferred. Thus, with

A = 16 (age groups) and N = 12 (lockdown periods), this extension yields almost 200 parame-

ters to be estimated. We can simplify slightly by adding constraints on some diagonal elements

to be equivalent (for example, group them into young/middle/old) or perhaps use a regularisa-

tion approach to reduce the effective number of estimated parameters, but even this may be

over-reaching for shorter lockdown periods where there is very little data. Such approaches

might be more feasible if the daily case data were available broken down by each age, as it

could essentially be viewed as 16 separate optimisation problems. However, notwithstanding

the fact that such data are not publicly available in Ireland, at such a fine scale we would expect

to have sparse case count data for some age groups wherein estimation of the intervention

effects would be challenging.

We build upon the social interaction matrices provided by [21] which are confined to four

social settings, where we model changes due to public mobility restrictions through a rescaling

PLOS ONE An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland

PLOS ONE | https://doi.org/10.1371/journal.pone.0260632 December 7, 2021 21 / 25

https://doi.org/10.1371/journal.pone.0260632


approach. However, with contact tracing for confirmed cases being used as a control strategy

in a number of countries, access to such data would provide an avenue to substantially

improve social mixing models, perhaps in conjunction with carefully constructed large scale

public mobility surveys. For example, we could expand the number of social mixing venues to

more than four with a better understanding on disease transmission settings. This would allow

for incorporation of specific venues such as bars or restaurants. Alternatively, we could model

the sociability parameters using covariates to describe the specific lockdown (e.g., schools

open/closed, pubs open/closed, public events, restrictions in households etc.) rather than fix-

ing these to have a constant value in a given lockdown level. This would allow us to make com-

parisons between Level 5 and Level 5+ for example—a holiday period effect could be included

as another covariate. It would also allow us to construct new hypothetical lockdown regimes.

Another extension to our approach would be to incorporate uncertainty estimates around

the mechanistic parameters of the SEIR model. If one could obtain reasonable uncertainty

intervals on these parameters, one direction might be to use a central composite design scheme

used in response surface construction [43], based on some transformation of these uncertainty

intervals. However, such an approach would introduce a steep computational overhead and

would require sufficient coding and hardware solutions to enable a feasible (in time) imple-

mentation. If attention is focused on a small subset of mechanistic parameters then the prob-

lem is less demanding and this can be handled instead by straightforward bootstrapping, for

example [12] fits a model and quantifies uncertainty via bootstrapping when only allowing R
to vary. Another option is to include these parameters in the optimisation alongside the con-

tact matrix scales, while imposing heavy box constraints on the range of candidate values for

these parameters within the optimisation, as used by [35]. Another potential complication

with modelling infectious diseases is their propensity to mutate over time. More infectious

strains will manifest in the data as rising case numbers that we can feed into the model but if it

evolves rather drastically, as seems to be the case with the Delta variant [44], then it may be

necessary to re-evaluate the parameters.

We have extended the model developed by IEMAG, the Irish national modelling group

whose work has informed government throughout the pandemic. Our proposed approach

moves closer to reality by incorporating age-specific social dynamics, and, consequently, pro-

vides a more flexible framework in which age-specific infection characteristics could also be

included whenever these are better understood. Further extensions, as discussed in the preced-

ing paragraphs, are also possible within this framework but are beyond the scope of the current

article; these will be a focus of future work.

Supporting information

S1 File. The supporting information file includes S1–S7 Figs and S1–S6 Tables, in addition

to some additional explanation and discussion.
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