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The aim of the present studywas to test whether systemsmodels of training effects on performance in athletes can be used to explore
the responses to resistance training in rats. 11 Wistar Han rats (277± 15 g) underwent 4 weeks of resistance training consisting in
climbing a ladder with progressive loads. Training amount and performance were computed from total work and mean power
during each training session. Three systems models relating performance to cumulated training bouts have been tested: (i) with
a single component for adaptation to training, (ii) with two components to distinguish the adaptation and fatigue produced by
exercise bouts, and (iii) with an additional component to account for training-related changes in exercise-induced fatigue. Model
parameters were fitted using amixed-effectsmodeling approach.Themodel with two components was found to be themost suitable
to analyze the training responses (𝑅2 = 0.53; 𝑃 < 0.001). In conclusion, the accuracy in quantifying training loads and performance
in a rodent experiment makes it possible to model the responses to resistance training. This modeling in rodents could be used in
future studies in combination with biological tools for enhancing our understanding of the adaptive processes that occur during
physical training.

1. Introduction

Adaptations to training are related to the amount of work per-
formed during the exercise sessions. The sum of these inputs
yields increases and decreases in performance capacity
because both adaptation and fatigue are produced by exercise
bouts. Systemsmodels have been developed to quantify these
antagonistic effects of physical exercise on human perfor-
mance. In 1975, Banister et al. [1] proposed the first and most
frequently used model, which includes two components in
order to distinguish the adaptations and fatigue that occur
with training. A simplermodel with only one component was
also proposed to analyze the biological responses induced
by endurance training [2]. The most complex model is an
extension of that proposed by Banister et al., in which the

response to a single exercise depends on past training [3].
Using suchmodels with data from animal experiments would
offer the opportunity to go beyond the simple quantification
of the relationship between the amount of exercise training
and performance and would thereby improve our knowledge
about the nature of the adaptive processes that take place
during training.

Modeling training effects in rodents presents several
advantages over models in athletes. Animal models allow the
measurement of training effects for a broad range of training
situations, loads, and intensities, which would be unethical in
athletes. Moreover, the training load and performance can be
controlled with high precision, especially in the context of
resistance exercise (RE) on a climbing ladder. This precision
enables researchers to capture small details of the training
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process and, ultimately, to optimize the structure of the
model itself. Rodent models authorize greater invasiveness,
yield more biological information, and therefore provide
greater insight into the adaptive processes that occur dur-
ing training, particularly regarding the link between the
adaptive cell mechanisms and training effects. In addition,
the animal model could reduce the sources of variability in
response to training compared with a human model. The
interindividual variability is naturally decreased in animals
with the same genetic background. Obviously, parameters
external to training (nutrition, sleep quality, fatigue related to
activities other than training, etc.) are controlled in animals
as opposed to humans. This homogeneity in the responses to
physical exercise in animals allows us to take advantage of
mixed-effects modeling to analyze the responses of a group
of animals, taking interindividual variability into consider-
ation. When repeated measurements are made on several
related statistical units, mixed-effects modeling allows a
more robust estimation of model parameters than using only
available individual data [4–6]. The single-individual model
has generally been used in human studies, with the exception
of onework inwhich themixed-effectsmodelwas applied to a
group of elite swimmers [7].

Among the training programs, RE is particularly suitable
for animal studies because RE is associated with high gains in
performance, muscle strength, and muscle fiber cross-
sectional area. RE is characterized by exercise performed
between 60% and 80% of the maximum load, and several
experimentalmodels have been developed to evaluatemuscle
and physical performance in response to RE. In rats, vol-
untary exercise based on ladder climbing activity has been
shown to induce muscle hypertrophy, changes in muscle
typology, and increased force and power output [8]. One of
the first studies using ladder climbing as amodel of resistance
training [9] showed that, after 26 weeks of resistance training,
the trained rats were able to climb 40 cmwhile carrying up to
140%of their bodymass, without changes in the ratio between
body andmuscle (EDL and soleus) mass, in comparison with
controls.More recently we found that rats could climb 1meter
while carrying 150% of their body mass after 4 weeks of
resistance training, in associationwith hypertrophy of 48% of
fiber IIx in FDP muscle [10]. After 8 weeks, the rats could lift
up to 210% of their body mass. Another study [11] demon-
strated a 287% increase in the maximal amount of body
weight that the animals could carry after 8 weeks of training
(3 sessions a week).

REmodel offers the opportunity to quantify both training
work and performance in animal with a great accuracy.Thus,
the twofold aim of the present study was to (i) test whether
the systems models used to describe the training response in
athletes could be applied in rats and (ii) verify the applica-
bility of the mixed-effects model in animals with the same
genetic background in order to improve the statistical
strength of the training response model.

2. Methods

2.1. Animals and Experimental Design

2.1.1. Ethics Statement. This study was approved by the Com-
mittee on the Ethics of Animals Experiment of Languedoc

Table 1: Change in additional loads lifted by rats during the training
program.

Training sessions Load (% body mass) Mean load ± SD (g)
1 to 5 50 143.8 ± 10.2
6 80 248 ± 20.1
7 and 8 100 312.6 ± 24.6
9 to 13 120 397.1 ± 34.7
14 to 16 130 450.9 ± 37.8
17 and 18 140 497.5 ± 41.6
19 150 539.7 ± 47.6

Roussillon in accordance with the guidelines from the French
National Research Council for the Care and Use of Labora-
tory Animals (permit number: CEEA-LR-1069).

2.1.2. Animal Model. Eight-week-old Wistar Han rats (277 ±
15 g; 𝑛 = 11) obtained from Charles River Laboratories
(L’Arbresle, Rhône, France) were housed at a constant room
temperature and humidity and maintained in a 12 : 12 h light-
dark cycle. They had access to standard rat chow (A04,
Scientific Animal Food & Engineering, Augy, France) and
water ad libitum.

2.1.3. Resistance Training Protocol. The rats underwent 4
weeks of progressive resistance training. The exercise con-
sisted of climbing a 1-meter-high homemade ladder inclined
at 85∘ ten times. The ladder was adapted from the apparatus
of Lee et al. [12]. Training sessions were held in the afternoon,
five times aweek.A cloth bag containingweightswas attached
to the base of the tail with tape.Three days before training, the
rats were familiarized with the apparatus by climbing it twice
with 50% of body weight. In accordance with the protocol
proposed by Begue et al. [10], the initial weight attached to
the tail was 50% of the rat body weight and was increased
progressively until 150% after 4 weeks (Table 1). Each training
session consisted in one set of 10 repetitions with 2min
rest between trials. All rats were able to perform ten climbs
per training session. Rats from the same cage were trained
together. Precisely, rats were placed on a platform on the top
of the ladder and one of them was put on the floor at the base
of the ladder. The working rat quickly joined its congeners
spontaneously.

2.2. Training and Performance Quantification. Training work
(TW in J) was calculated as the potential work developed
during the training sessions:

TW = (𝑚load + 𝑚rat) ⋅ 𝑔 ⋅ Δℎ ⋅ 𝑁, (1)

where mass (𝑚) is expressed in kg, 𝑔 is the constant of the
gravity on earth expressed in m⋅s−2, ℎ is the distance climbed
in m, and𝑁 is the number of repetitions.

Performance was the power output developed during the
full climbing session, computed as the work done against
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gravity (TW) divided by total climbing time (s) and expressed
in W:

Performance = TW
time

. (2)

Each climb generally lasted between 3 and 25 s depending
on the load carried by the rats.

2.3. Modeling of the Training Effects

2.3.1. Basic Frameworks. Since the original work of Banister
and coworkers [1], systemsmodeling has been used to analyze
the adaptations to physical training in subjects enrolled in
controlled experiments or in athletes in real-life situations
[13, 14]. This approach considers the body as a system whose
output is the performance varying with the amounts of train-
ing ascribed to input. Systems theory allows the analysis of a
dynamical process using abstraction from mathematical
models. A system is characterized by at least one input and
one output, and the system behavior is characterized by a
transfer function 𝐻(𝑡, 𝜃) relating output at a given time to
previous inputs. Assuming the formulation of the transfer
function, the set of parameters characterizing a subject’s
behavior (noted 𝜃) is estimated by fitting the model output to
the actual data. The number of parameters which can be
introduced in the model is limited by the precision of the
data that can be collected to quantify training input and per-
formance output. An analysis of the goodness-of-fit is needed
to test the statistical significance of the model, especially to
compare models differing in complexity, that is, the number
of equations and related parameters giving the degrees of
freedom of the competing models (df).

The transfer function 𝐻(𝑡, 𝜃) gives the model perfor-
mance at time 𝑡 by using the product of convolution as
follows:

𝑝 (𝑡) = 𝑝 (0) + 𝑤 (𝑡) ∗ 𝐻 (𝑡, 𝜃) , (3)

where 𝑝(0) is the initial performance and the product of
convolution is defined by

𝑤 (𝑡) ∗ 𝐻 (𝑡, 𝜃) = ∫

𝑡

0

𝑤 (𝑠) ⋅ 𝐻 (𝑡 − 𝑠, 𝜃) 𝑑𝑠. (4)

The discretization of (2) gives

𝑝 (𝑛Δ𝑡) = 𝑝 (0) +

𝑛−1

∑

𝑖=1

𝑤 (𝑖Δ𝑡) ⋅ 𝐻 ((𝑛 − 𝑖) Δ𝑡, 𝜃) , (5)

where 𝑡 = 𝑛Δ𝑡 and 𝑤(0) is assumed to be equal to 0. Fixing
the value of Δ𝑡 to 1 day led us to consider 𝑤(𝑡) as a discrete
function, that is, a series of impulses each day: 𝑤𝑖 on day 𝑖,
and the product of convolution as a summation in which the
model performance𝑝𝑛 on day 𝑛 is estimated bymathematical
recursion from the series of 𝑤𝑖 before day 𝑛.

2.3.2. Systems Models. The most often used model initially
proposed by Banister et al. [1] is named Model-2Comp in
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Figure 1: Schematic representation of the response to 1 unit of
training according to Model-2Comp. Performance results from the
difference between two training components. In the case where 𝑘
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bout. Afterwards, the negative component decreases more quickly
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resulting in performance recovery and peaking when the difference
between the negative and positive components is the greatest. The
response to a training bout is characterized by 𝑡

𝑛
, the time necessary

to recover initial performance after the training session, 𝑡
𝑔
, the time

necessary to reach maximal performance, and 𝑝
𝑔
, the maximal gain

in performance for 1 training unit.

the present study (Figure 1). The system operates in accor-
dance with a transfer function resulting from the difference
between two components: one acting positively on perfor-
mance ascribed to training adaptations and the second acting
negatively on performance ascribed to the fatiguing effects of
exercise. Responses to training are thus characterized by the
set of model parameters including two gain-terms 𝑘

1
and 𝑘

2

and two time constants 𝜏
1
and 𝜏

2
. The equation of Model-

2Comp is

𝑝
𝑛
= 𝑝 (0) + 𝑘

1
⋅

𝑛−1

∑

𝑖=1

𝑤
𝑖
⋅ 𝑒
−(𝑛−𝑖)/𝜏

1
− 𝑘
2
⋅

𝑛−1

∑

𝑖=1

𝑤
𝑖
⋅ 𝑒
−(𝑛−𝑖)/𝜏

2
.

(6)

To assess the statistical significance of Model-2Comp, its
goodness-of-fit was compared with that of a systems model
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comprising only one training component (Model-1Comp),
whose equation is

𝑝
𝑛
= 𝑝 (0) + 𝑘

1
⋅

𝑛−1

∑

𝑖=1

𝑤
𝑖
⋅ 𝑒
−(𝑛−𝑖)/𝜏

1
. (7)

It was shown that the fitting of performance can be sig-
nificantly improved with a model with 𝑘

2
varying over time

in accordance with system input [3]. We tested this model,
noted here as Model-3Comp, whose equation is

𝑝
𝑛
= 𝑝 (0) + 𝑘

1
⋅

𝑛−1

∑

𝑖=1

𝑤
𝑖
⋅ 𝑒
−(𝑛−𝑖)/𝜏

1

−

𝑛−1

∑

𝑖=1

(𝑘 (0) − Δ𝑘
𝑖

2
) ⋅ 𝑤
𝑖
⋅ 𝑒
−(𝑛−𝑖)/𝜏

2

(8)

in which the value of 𝑘
2
at day 𝑖 is estimated by mathematical

recursion using a first-order filter with a gain term 𝑘
3
and a

time constant 𝜏
3

Δ𝑘
𝑖

2
= 𝑘
3
⋅

𝑖

∑

𝑗=1

𝑤
𝑗
⋅ 𝑒
−(𝑖−𝑗)/𝜏

3
. (9)

We added the value of 𝑘
2
at time 0 in this study, noted

𝑘
2
(0).

2.3.3. Estimation of Model Parameters and Statistics. The
parameters for the models were determined by fitting the
model performances to actual performances for the entire
group of rats using a mixed-effects model. This model incor-
porated a systematic component for the mean response of
the population and a random component for each animal’s
response around the mean. The general model included (i)
common time constants: 𝜏

1
for Model-1Comp, 𝜏

1
and 𝜏
2
for

Model-2Comp, and 𝜏
1
, 𝜏
2
, and 𝜏

3
for Model-3Comp; (ii) a

subject-specific intercept 𝑝(0); and (iii) subject-specific mul-
tiplying factors for each component: 𝑘

1
for Model-1Comp, 𝑘

1

and 𝑘
2
for Model-2Comp, and 𝑘

1
, 𝑘
2
(0), and 𝑘

3
for Model-

3Comp. The set of model parameters was calculated to pro-
duce the equation that most closely fit the data points. Using
the generalized reduced gradient (GRG) algorithm in the
Excel solver, the parameters were determined by minimizing
the residual sum of squares (RSS) between the modeled and
measured performances given by

RSS =
𝑅

∑

𝑟=1

𝑁

∑

𝑛=1

(𝑝
𝑛

𝑟
− 𝑝
𝑛

𝑟
)
2

, (10)

where 𝑟 is an integer corresponding to each rat (total number
𝑅 being 11) and 𝑛 to each day during which performance was
measured (total number being 19 for each rat).𝑝𝑛

𝑟
is the actual

performance and 𝑝𝑛
𝑟
is themodel performance at day 𝑛 for rat

𝑟.
Indicators of goodness-of-fit were estimated for each

model used in this study. The Shapiro-Wilk test was used to
check the normality of the distribution of both the training
loads, that is, input of the model, and the performances, that

is, input of the model. The statistical significance of the fit
was tested by analysis of variance of the RSS in accordance
with the degrees of freedom (df) of eachmodel: 12 forModel-
1Comp, 24 for Model-2Comp, and 36 for Model-3Comp.The
adjusted coefficient of determination (Adj.𝑅2) was computed
to take into account the difference in df between the models.
The mean square error on performance estimation (SE) was
computed as RSS/(𝑁−df−1).The level of confidence for each
level ofmodel complexity was tested by analysis of variance of
the related decrease in residual variation.The decrease in RSS
explained by the introduction of further model parameters
was tested using the 𝐹-ratio test in accordance with the
increase in df as described previously [15]. Data in the text
and Table 1 are expressed as means ± SD and the responses to
training are showed with SEM in Figures 2 and 3.

2.3.4. Modeled Responses to Training. With Model-2Comp,
the time response of performance to a single training bout
was characterized by 𝑡

𝑛
, the time to recover performance, and

𝑡
𝑔
, the time to peak performance after training completion

[16], computed as

𝑡
𝑛
=

𝜏
1
𝜏
2

𝜏
1
− 𝜏
2

ln(𝑘2
𝑘
1

) , 𝑡
𝑔
=

𝜏
1
𝜏
2

𝜏
1
− 𝜏
2

ln(𝜏1𝑘2
𝜏
2
𝑘
1

) .

(11)

𝑝
𝑔
, the maximal gain in performance for 1 unit of training,

was estimated as

𝑝
𝑔
= 𝑘
1
𝑒
−𝑡
𝑔
/𝜏
1
− 𝑘
2
𝑒
−𝑡
𝑔
/𝜏
2
. (12)

To distinguish the short-term negative effect of the
training doses from the long-term benefit, the positive and
negative influences of training on performance (ip and in,
resp.) were estimated as described previously [17]. The
amount of training on day 𝑖 had an effect on performance on
day 𝑛 quantified by

𝐸(
𝑖

𝑛

) = 𝑘
1
𝑤
𝑖
𝑒
−(𝑛−𝑖)/𝜏

1
− 𝑘
2
𝑤
𝑖
𝑒
−(𝑛−𝑖)/𝜏

2
. (13)

The values of in and ip on day 𝑛 were estimated from the
sum of influences of each past training amount, depending
on whether the result was negative or positive:

in𝑛 =
𝑛−1

∑

𝑖=1



𝐸 (
𝑖

𝑛

)



, when 𝐸( 𝑖
𝑛

) < 0

ip𝑛 =
𝑛−1

∑

𝑖=1



𝐸 (
𝑖

𝑛

)



, when 𝐸( 𝑖
𝑛

) > 0.

(14)

3. Results

Figure 2 shows the evolution in training work and per-
formance. Table 2 shows the statistics for the fitting of
performance with the three tested models. Although the fit
was statistically significant for allmodels, onlyModel-2Comp
significantly improved the fit when compared with Model-
1Comp (𝑃 < 0.05). The third component in Model-3Comp
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Figure 2: Quantification of training (systems input) and performance (systems output). Values are expressed in mean ± SEM. Note that, for
the training input, the variability is very low because the animals had the same age and the same training load calculated as a percentage of
body mass. Thus, SEM bars are hardly visible.

Table 2: Statistics of model fitting.

Model 𝑅
2 Adj.𝑅2 𝐹 ratio df 𝑃 SE

Model-1Comp 0.48 0.45 14.97 12, 196 <0.001 0.209
Model-2Comp 0.53∗ 0.47 8.78 24, 184 <0.001 0.202
Model-3Comp 0.54 0.45 5.68 36, 172 <0.001 0.198
Model-1Comp, model using one first-order component; Model-2Comp,
model using two first-order components; Model-3Comp, model with two
components where the gain term for the negative component varies by using
one further first-order filter. Adj.𝑅2, adjusted coefficient of determination;
df, degrees of freedom; SE, standard error. Statistical difference compared to
Model-1Comp: ∗𝑃 < 0.05.

failed to give a description of performance variations com-
pared with Model-1Comp and Model-2Comp (𝑃 > 0.05). It
is noteworthy that the coefficient of determination adjusted
to the model df was lower for Model-3Comp than for Model-
2Comp.

Because of its statistical significance, the results from
Model-2Comp were retained for the analysis of the effects of
training. With the estimates of parameters of Model-2Comp
(𝜏
1
= 5.31 days, 𝜏

2
= 4.3 days, 𝑘

1
= 0.0186 ± 0.0134, and

𝑘
2
= 0.0200± 0.0157 s−1), the response to a training bout was

characterized by 𝑡
𝑛
= 1.07 ± 1.46 days, 𝑡

𝑛
= 5.29 ± 2.04 days,

and 𝑝
𝑔
= 0.0011 ± 0.0005W. The variations in ip and in are

shown on Figure 3. ip, which can be regarded as an index of
the adaptations to physical training, increased progressively
all along the experiment, whereas in, the index of fatigue,
increased during the first days of training each week before it
plateaued with the daily sessions.The 2 days without training
between weeks allowed a complete recovery of past sessions.

4. Discussion

In the present study, Model-2Comp was retained as the
optimal model because statistically it provided the best
description of the effect of the response to resistance training
in rats. Contrary to the results in a previous report [3],Model-
3Comp did not statistically improve the fit of the model,
possibly because of an insufficient amount of training work.
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Figure 3: Mean ± SEM of the sum of positive and negative
influences of training on performance.

This model is based on the assumption that the relation-
ship between daily training work and performance has an
inverted-U shape, which implies that when the amount of
training exceeds an optimal value of daily work, performance
will decline because of the transient oversolicitation. The
amounts of training in the present study may not have been
great enough to allow the detection of such an effect. The
variations in fatigue elicited by the exercise over the entire
study period were relatively small and Model-3Comp did
not increase the response to training compared to Model-
2Comp.This is supported by the estimates for the small values
obtained for 𝑡

𝑛
and 𝑡
𝑔
, which suggested that the rats coped

well with the trainingwork. Nevertheless,Model-3Comp is of
a great interest for exercise prescription because it allows for
more detailed analysis of the detrimental effects of training
with heavy/supraoptimal loads. For this reason, this prelim-
inary study with an experimental animal model provides a
basis for further research using Model-3Comp. Indeed, to
optimally capture the process of training, it will be necessary
to increase the amount of training work and to use contrasted
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training programs with periods of more intensified training
followed by reduced training work. Moreover, this systematic
mathematical procedure of modeling offers the possibility of
simulating training effects in order to test different strategies,
and it may thus be useful for advocating individualized
training programs, which constitute the optimal adaptive
stimulus. This type of approach was developed to optimize
the training process in athletes [18, 19], but, with the animal as
an experimental model, it could be extended to those chronic
diseases for which exercise presents curative properties as
already employed in cardiac rehabilitation [20, 21]. It would
thus be of interest to extend these strategies of rehabilitation
programs to rodent models suffering from other chronic
diseases (e.g., ob/obmice, db/dbmice for type 2 diabetes, and
the streptozotocinmodel for type 1 diabetes), as direct testing
in patients would not be ethical.

Another advantage of the animal model compared with
human modeling of training effects is the high precision in
the quantification of training work and performance. In the
present study, the training work was directly computed by the
mechanical work of the center of mass [22]. Here, the unit
was the joule, whereas the training load for athletes is
indirectly evaluated by the variation in heart rate, as initially
proposed by Banister, or the number of repetitions in each
exercise bout [17, 23, 24].Themeasure of performance is also
more accurate because it is computed from the power devel-
oped according to the reference method of the center of mass
[22]. This measure in each training session also allows the
collection of a high number of performance values needed to
fit the model.

This study is the first to blend the mixed-effects model in
that proposed by Banister, that is, Model-2Comp. This
advance in the technical sophistication of the modeling led
us to pool the data of the entire group of animals which offers
two main advantages over the classical single-individual
model. The first advantage is that it provides great robustness
in the determination of the model parameters and insofar
it increases the number of performance criteria, without
increasing the degrees of freedom of the model in the same
proportion. The second advantage is that it offers the pos-
sibility of sacrificing several animals during training to gain
information about the dynamics of the biological processes
involved, without appreciably degrading the precision of the
training response quantification. The only precaution that
needs to be taken is to adapt the number of animals included
in the study according to the number of biological measures
planned at different times so that the training response at the
end of the training period is still representative with regard to
a sufficient sample size.

Last, comparedwith studies on training effects in athletes,
the animal model offers optimal conditions to link both the
positive andnegative effects of training to the transitory adap-
tivemechanisms induced by the cell signaling pathways.Until
now, the process of training adaptation was considered to be
like a black box, wherein performance output is the response
to training work. With an animal model that conforms to the
standards for the ethical treatment of experimental animals, it
is possible to give the real physiological signification to the
components of the transfer function used to describe the

training effects on performance. New hypotheses can thus
be formulated to explain the positive and negative training
effects on performance. For example, is the positive influence
(ip) linked to the main protein synthesis-signaling pathway
under the control of the mechanistic (or mammalian) target
of rapamycin MTOR or is it related to the signaling scaffold
that is responsible for morphological adaptions (phenotype,
ATPase activity, and hyperplasia)? On the other hand, can
the negative influence (in) be explained by exercise-induced
proteolysis, a phenomenon which seems to be attenuated at
least in part by resistance training through attenuated induc-
tion of atrogenes, such as the muscle ring finger 1 (MuRF-1)
[25]?

5. Conclusion

Modeling the effects of resistance training is fully applicable
in rodent and allows for the detailed analysis of the training
adaptation process. Model-2Comp was the most appropriate
model to describe the training responses in the present
study. The addition of contrasted periods to our training
program may be promising for the application of Model-
3Comp, which would yield information on the optimal
value of daily training work, a major focus in research on
individualized training and rehabilitation programs. The
mixed-effects model offers two main advantages compared
with individual classicalmodeling, with (i) greater robustness
in the determination of the model parameters and (ii) the
possibility to determine the kinetic of the biological parame-
ters by sacrificing several animals at critical times during the
training program.The accuracy in quantifying training loads
and performance in the experimental condition of resistance
training with rodents, as well as the possibility of tightly
controlling external factors, makes it possible to upgrade the
structure of the training effects model and establish the
biological significance of the model components.
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