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Abstract
Background: Shedding of the Alzheimer amyloid precursor protein (APP) ectodomain can be accelerated by phorbol
esters, compounds that act via protein kinase C (PKC) or through unconventional phorbol-binding proteins such as
Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of
APP-bearing secretory vesicles at the trans-Golgi network (TGN) and toward the plasma membrane where APP becomes
a substrate for enzymes responsible for shedding, known collectively as α-secretase(s). However, molecular
identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES) responsible for
regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-
sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1.

Results: Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K
resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Roßner et al (2004), phorbol
ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable
from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This
pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM
adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in
regulated shedding of sAPPα.

Conclusion: Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential
criteria for identity as PMES for APP.
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Introduction
The main constituent of cerebral and cerebrovascular
amyloid found in the brains of Alzheimer's disease
patients is the amyloid-β peptide (Aβ). Aβ is derived from
a 695/751/770 amino acid precursor, termed the amyloid
precursor protein (APP) via a potentially amyloidogenic
pathway (for review, see [1]). In this pathway, APP is first
cleaved by BACE (beta-site APP-cleaving enzyme) or β-
secretase, that releases a large, extracellular portion called
soluble APP or sAPPβ, followed by cleavage by a second
enzyme, γ-secretase, that releases Aβ peptide and the cyto-
plasmic APP remnant called "AICD" (APP intracellular
domain). An alternative APP processing pathway – the
non-amyloidogenic pathway of APP proteolysis – pre-
cludes the production of the neurotoxic Aβ peptide. In
this pathway, the enzyme α-secretase cleaves APP between
residues K16 and L17 within the Aβ domain. This event
releases a large, soluble extracellular fragment or sAPPα
leaving a short, carboxyl-terminal fragment consisting of
83 amino acids (C83) associated with the cell membrane.
γ-secretase then cleaves C83 generating a non-amyloidog-
enic, 3-kDa fragment called p3.

Protein phosphorylation mediated by protein kinase C
(PKC) activates the proteolysis of APP by α-secretase caus-
ing an increase in shedding of the soluble APP ectodo-
main or sAPPα [2,3]. A number of enzymes can act as α-
secretases. All are members of the ADAM (a disintegrin
and metalloprotease domain) family, which is comprised
of transmembrane proteins responsible for extracellular
proteolysis of target proteins located on the cell surface or
within the extracellular matrix. ADAM activity results in
the ectodomain shedding of a number of substrates,
including APP. ADAM proteins such as ADAM9, ADAM10
and ADAM17/TACE have been demonstrated to consti-
tute a set of α-secretase enzymes that carry out either the
basal (constitutive) or the PKC/phorbol ester-regulated
proteolysis of APP [4-6], both at the plasma membrane
and within the trans-Golgi network (TGN) [7,8]. We have
previously demonstrated that application of phorbol
12,13-dibutyrate (PDBu) to intact cells or application of
purified PKC to TGN-rich fractions increases the biogen-
esis of APP-bearing, secretory vesicles from the TGN [9].
Therefore, we hypothesized that one or more phorbol
ester receptors/PKC substrates that are components of the
universal transport vesicle machinery of the central vacu-
olar pathway (responsible for vesicle budding, scission,
transport, priming and/or fusion) might play important
roles in trafficking of APP through the secretory pathway,
which conveys APP to the plasma membrane where α-
secretases/ADAM enzymes are concentrated.

Munc13-1 was the first candidate APP shedding regulator
that we considered. Munc13 (Murine homologue of unco-
ordinated-13) is the mammalian homologue of C. elegans

unc-13. Munc13 is a novel, non-PKC, diacylglycerol
(DAG)/phorbol ester receptor that is essential for vesicle
priming at the active zone [10,11]. Munc13-1 is one of
three brain-specific Munc13 isoforms [12]. Munc13-1
contains: an N-terminal Ca2+-binding or C2 domain; a C1
domain consisting of a high-affinity DAG/phorbol ester-
binding site tandem to and a second C2 domain; two
Munc13 homology domains (MHD1 and MHD2); and a
third, C-terminal C2 domain. Munc13-1-mediated prim-
ing is stimulated by the binding of DAG/phorbol esters to
the Munc13-1 C1 domain, followed by the translocation
of the cytoplasmic Munc13-1 protein to the plasma mem-
brane. A point mutation in the first histidine residue in
the C1 domain of Munc13-1, an H567K mutation, pre-
vents phorbol binding and, consequently, prevents
plasma membrane re-localization of Munc13-1 and abol-
ishes Munc13-1 vesicle priming activity. Most notably
with regard to the current study, Munc13-1 C1 domain
function (i.e., phorbol sensing) has been reported to con-
trol APP shedding [13].

Whilst Munc13 proteins regulate the priming step in the
transport of synaptic vesicles, another protein and PKC
target, Munc18-1 (Mammalian homologue of S. cerevisiae
Sec1p and of C. elegans uncoordinated-18) has been dem-
onstrated to control multiple steps in trafficking of mem-
brane proteins through the constitutive secretory
pathway. These include 1) vesicle docking, (i.e., tethering
of vesicles to the plasma membrane prior to their priming
for fusion), 2) priming per se (i.e., "maturation" of docked
vesicles ready for fusion), and 3) fusion of vesicles with
the plasma membrane. Munc18 is a SNARE (soluble N-
ethylmaleimide-sensitive fusion protein [NSF]-attach-
ment protein [SNAP] receptors) complex accessory pro-
tein that participates in the regulation of neurosecretion
by interacting with a SNARE protein syntaxin-1A, an event
that is incompletely understood [14,15]. However, it has
been demonstrated that Munc18 is phosphorylated by
PKC in neuronal and neuroendocrine or chromaffin cells
and that Munc18 phosphorylation state regulates the
spontaneous release of vesicular content by altering
Munc18-syntaxin-1 interaction [16-18]. This latter prop-
erty raised the question of whether Munc18 might be a
PMES for APP.

The third candidate regulator of APP shedding that we
considered was NSF itself. The tyrosine phosphatase PTP-
MEG2 is targeted by its amino-terminal Sec14p homology
domain to the membrane of secretory vesicles. There,
PTP-MEG2 regulates vesicle size by promoting homotypic
vesicle fusion by a mechanism that requires its catalytic
activity. Huynh et al [19] identified NSF as a substrate for
PTP-MEG2. Phosphorylation of NSF at Tyr 83, or an acidic
substitution at the same site, can prevent α-SNAP binding.
Conversely, expression of a Y83F mutant of NSF causes
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excessive spontaneous fusion events. Since such a mecha-
nism could conceivably underlie phorbol-enhanced intra-
cellular cleavage of APP by α-secretase [8], NSF was
identified as another potential PMES for APP.

Finally, the fourth molecule that we considered was Eve-
1, a protein identified in a two-hybrid screen using the
ADAM12 cytoplasmic tail [20]. Eve-1 was discovered to be
essential for phorbol-activated shedding of proEGF [20].
The proposed underlying mechanism in this case is that
phosphorylation of Eve-1 (or another protein of the Eve-
1/ADAM12 complex) dissociates ADAM12 from Eve-1 so
that ADAM12 relocalizes to the plasma membrane where
ADAM12 can cleave APP and shed the APP ectodomain.
The essential nature of the Eve-1 role in regulated shed-
ding of pro-EGF raised the question of whether Eve-1
might be a phosphoprotein and, if so, whether its phos-
phorylation state might modulate APP shedding.

In summary, in this study, we evaluated the roles of
wildtype and C1 mutant Munc13-1, as well as the roles of
wild type and phospho-site mutants of Munc18 and NSF.
We also evaluated ADAM adaptor Eve-1 for its potential
identity as a phosphoprotein and for its potential role as
a PMES for APP.

Results and Discussion
Munc13-1
Our investigations into the role of Munc13-1 in the
processing of the Alzheimer amyloid precursor protein
(APP) were carried out in human embryonic kidney 293
cells. This non-neuronal cell line has been extensively
used as a model system for analyses of different pathways
and molecules that regulate APP metabolism [21-28]. We
co-transfected HEK293 cells with cDNAs for human APP
and either Munc13-1 wild type or Munc13-1 H567K
mutant, and then studied the metabolism and sub-cellu-
lar distribution of APP in the absence or presence of phor-
bol ester 12-myristate 13-acetate (PMA).

Introduction of either Munc13-1 wild type or Munc13-1
H567K mutant resulted in a significant, 3–5 fold increase
in basal sAPPα release (Figure 1, lanes 1, 3, 5). Munc13-1
wild type and the Munc13-1 H567K mutant molecules
were identical in their effects on basal (constitutive)
sAPPα secretion (Figure 1, lanes 1, 3, 5). Since Munc13-1
is primarily a receptor for phorbol esters, which mimic the
effects of endogenous diacylglycerol, we applied the phor-
bol ester PMA in the presence of either the wild type or
mutant Munc13. Our results showed a typical increase in
sAPPα release [29] in both Munc13-1 wild type and
Munc13-1 H567K mutant transfected cells (Figure 1, com-
pare lane 1 vs 2, lane 3 vs 4, and lane 5 vs 6; Table 1) indi-
cating that phorbol ester interaction with histidine-567 of

the C1 domain of Munc13-1 is not a key step in regulated
shedding.

The subcellular localization of APP was similar following
phorbol ester treatment of cells transfected with either the
wild type Munc13-1 or H567K Munc13-1 mutant (Figure
2, panels "b" and "d") whilst the characteristic difference
in phorbol ester binding and intracellular localization
between the wild type Munc13-1 and H567K Munc13-1
mutant was observed (Figure 2, panels "a" and "c"). As
previously reported [11], in contrast to the wild type
Munc13-1 (Figure 2, panel "a"), the H567K Munc13-1
mutant failed to translocate to the plasma membrane fol-
lowing phorbol ester application (Figure 2, panel "c").

Munc13-1 increases constitutive and phorbol-stimulated sAPPα secretion in a fashion that is independent of the integ-rity of its phorbol-sensing C1 domainFigure 1
Munc13-1 increases constitutive and phorbol-stimu-
lated sAPPα secretion in a fashion that is independ-
ent of the integrity of its phorbol-sensing C1 domain. 
Levels of soluble APPα (sAPPα) ectodomain were measured 
by Western blotting of cell supernatants with anti-APP anti-
body, 6E10, following the treatment of cells with DMSO (-) 
or 100 nM PMA (+) for 2 hours in a 37°C, 5% CO2 cell cul-
ture incubator. Levels of holoAPP were measured from cell 
lysates with anti-APP antibody 369. Levels of Munc13-1 wild 
type and Munc13-1 H567K mutant proteins were measured 
by anti-GFP antibody. Equal protein loading was verified by 
measuring the levels of actin protein in all cell lysates.
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Our evidence for the role of Munc13-1 in the constitutive
sAPPα secretion in HEK293 cells is in agreement with
recently published results by Roßner et al. that show
increased basal sAPPα release from the brains of Munc13-
1 wild-type mice compared with the brains from the
Munc13-1 knock-out mice [13]. However, our results also
demonstrate that the phorbol ester-sensing C1 domain of
Munc13-1 is dispensable in the phorbol-stimulated shed-
ding of APP from HEK293 cells. This is in contrast to the
results reported by Roßner et al. who showed a marked
reduction in the phorbol-regulated release of sAPPα in the
presence of the phorbol-insensitve H567K Munc13-1
mutant in mouse neurons and in the human neuroblast-
oma cell line [13]. With regard to these contrasting results,
we cannot exclude the possibility that our results disagree
with those of Roßner et al. due to differences in experi-
mental cell systems that were employed by each group to
study the role of Munc13-1 in the APP metabolism (i.e.,
human neuroblastoma and wildtype APP in the case of
Roßner vs HEK293 and Swedish APP in the current
study). Of note, Munc13-1 apparently plays its usual role
in constitutive sAPPα release (Figure 1, panels "a" and
"e"), suggesting that Munc13-1-mediated vesicle priming
is, at a first approximation, fully functional in HEK293
cells.

In reconciling our data, plus much published literature,
together with the Munc13-1 data of Roßner, our best for-
mulation is that there is redundancy at the level of effector
molecules linking PKC/diacylglycerol signaling to APP
shedding. In other words, in some circumstances, the
effector seems highly likely to be phospho-state-sensitive
since inhibition of protein phosphatases 1 and 2A with
okadaic acid leads to the activated shedding phenotype.
Okadaic acid would not be expected to interact with the
C1 domain of Munc13-1, strengthening the case for the
existence of a phospho-state-sensitive effector as opposed
to a phorbol-sensitive nonphosphorylatable protein such
as Munc 13-1. Though we were unable to confirm
Roßner's data, because of the caveats mentioned above,
we cannot definitively exclude the possibility that phor-
bols can activate APP shedding not only through a con-
ventional PKC-dependent phospho-state-sensitive
mechanism but also via a second, parallel, unconven-
tional, PKC-independent, phospho-state-independent
pathway involving Munc13-1.

Albeit nonparsimonious, this formulation does account
for all the existing literature in this area. The existence of
redundant mechanisms by which to transduce a wide vari-
ety of signals into altered rates of APP shedding suggests
that the activated shedding phenomenon may be impor-
tant for normal cellular or organ homeostasis. The best
example of a known function for activated shedding
involves leukocyte rolling in which selectins are used as
anchors for cell motility at the leading edge of the advanc-
ing cell, but, once the cell has translocated, and the lead-
ing edge becomes the trailing edge, ectodomains must be
released (shed) in order to permit forward movement to
proceed. This comparison (among others) has been used
to suggest that the normal function of APP may be in cell
adhesion or cell-cell contact.

Munc18
As discussed above, Munc18-1/Munc18-a/nSec/rbSec1
(Murine homologue of S. cerevisiae Sec1p and of C. elegans
unc18) protein has been demonstrated to control multiple
trafficking steps in the secretory pathway. These include 1)
vesicle docking; i.e., attachment or tethering of vesicles to
the plasma membrane (that occurs prior to the priming),
2) priming or "maturation" of docked vesicles ready for
fusion, and 3) fusion of vesicles with the plasma mem-
brane. Munc18 is a SNARE (soluble N-ethylmaleimide-
sensitive fusion protein [NSF]-attachment protein [SNAP]
receptors) complex accessory protein that participates in
the regulation of neurosecretion by interacting with a
SNARE protein syntaxin-1A [14,15]. Munc18 is phospho-
rylated by PKC on serines 306 and 313 in neuronal and
neuroendocrine or chromaffin cells and the phosphoryla-
tion state of Munc18 regulates the spontaneous release of
vesicular contents [16-18].

Localization of APP following PMA treatmentFigure 2
Localization of APP following PMA treatment. 
HEK293 cells were co-transfected with the following 
cDNAs: (a, b) APPSWE-pPrk5 and Munc13-1WT-pEGFP-N1 
and (c, d) APPSWE-pPrk5 and Munc13-1H567K-pEGFP-N1. 
Treatment with 100 nM PMA was carried out for 2 hours. 
GFP immunofluorescence allowed visualization of (a) 
Munc13-1WT and (c) Munc13-1H567K mutant molecules 
(green). (b, d) APP was immunolabeled with rabbit polyclonal 
anti-APP-specific antibody 369 followed by rhodamine red 
conjugated secondary antibody (red).
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Munc18 would be predicted to interact with APP via adap-
tor proteins of the X11 family, two of which (X11α and
X11β) contain Munc18 interacting domains (MIDs; [30]).
These adaptors have been demonstrated to modulate traf-
ficking and, consequently, processing of APP, resulting in
an increased generation of sAPPα and decreased genera-
tion of Aβ [22,31,32]. Because APP interacts with Munc18
via X11, we analyzed the potential impact of wildtype and
PKC-site phospho-mimetic mutant forms of Munc18 on
APP processing in the absence or presence of X11. Serines
at positions 306 or 313, or both, were changed to
glutamic acid to generate the phospho-mimetic forms of
Munc18.

Figure 3A shows immunoblots of the lysates of cells
expressing various combinations of the molecules of
interest. The presence of X11 appeared to stabilize the APP
holoprotein, as reported [32]. No Munc18 Ser306- or
Ser313-phospho-state-specific modulation of APP holo-
protein levels was evident in the absence (lanes 4–7) or
presence (lanes 8–11) of X11. Figure 4B shows that all
forms of Munc18 enhanced sAPPα release, but sensitivity
of sAPPα secretion to stimulation by PMA was observed
regardless of the integrity or phospho-mimetic mutation
of either or both Munc18 PKC phosphorylation sites. Fur-
ther, since serine-to-glutamate (S-to-E) phospho-site
mutants are designed to mimic constitutively phosphor-
ylated amino acids, one might predicted that S-to-E phos-
pho-site mutants would yield effects resembling those
caused by phospho-forms of Munc18. In this case, one
might predict that single S-to-E mutant forms of Munc18
or double S-to-E mutant Munc18 might enhance basal
sAPPα release to an extent that would be greater than that
of wildtype Munc18, but such an effect was not observed
(Figure 4B). In some experiments, S-to-E double mutant
Munc18 was associated with lower fold-effects in
response to phorbol esters as compared with single
mutant forms. This altered pattern appeared not to be
attributable to phorbol sensitivity per se, but to a relative
instability of the double mutant or enhanced sensitivity to
proteolysis, as revealed by immunoblotting for Munc18
(data not shown).

NSF
Recently, Huynh et al. identified a novel mechanism for
regulation of vesicle fusion through the phosphorylation/
dephosphorylation state of NSF at tyrosine 83 by the pro-
tein tyrosine phosphatase PTP-MEG2 [19]. The stoichi-
ometry of NSF tyrosine phosphorylation in cells is very
low, suggesting that this mechanism of vesicle fusion reg-
ulation is limited to a small subcellular secretory compart-
ment. Huynh et al. proposed that PTP-MEG2 promotes
secretory vesicle biogenesis or homeostasis by regulating
the homotypic fusion of immature secretory vesicles, per-
haps beginning with the first post-Golgi transport vesicles

destined to become secretory vesicles [19]. PKC regulates
α-secretase activity (and hence sAPPα levels) within the
TGN [8]. It is possible that regulated sAPPα generation in
the TGN may be due, at least in part, to regulation of
fusion of APP-bearing vesicles with separate vesicles bear-
ing α-secretase. To test this hypothesis we expressed wild
type NSF (WT) or the tyrosine 83 substitution mutants
Y83E and Y83F in HEK293 cells stably expressing APP695
(HEK293-695; [21]). Neither of the NSF constructs had
any effect on either the basal or the PDBu-stimulated
shedding of sAPPα (Figure 4) suggesting that the phos-
pho-state of NSF does not control co-compartmentaliza-
tion of APP transport vesicles and α-secretase transport
vesicles or their fusion.

APP metabolism and sAPPα release are not modulated by the phospho-state of Munc18 at serine 306, serine 313, or by dual phosphorylation at both residuesFigure 3
APP metabolism and sAPPα release are not modu-
lated by the phospho-state of Munc18 at serine 306, 
serine 313, or by dual phosphorylation at both resi-
dues. (A) HoloAPP levels (top panel) were determined in 
the absence (lane 2) or presence of wildtype or phospho-site 
mutant forms of Munc18 (lanes 4–7) and in the presence of 
X11 alone (lane 3) or the combination of X11 plus each form 
of Munc18 (lanes 8–11). (B) Basal and PMA-stimulated sAPPα 
release were determined in the absence (lanes 1 and 6) or 
presence of wildtype (lanes 2 and 7) or phospho-site mutant 
forms of Munc18 (lanes 3–5 and 8–10).
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Eve-1
Another candidate for phorbol ester receptors/PKC sub-
strates are so called adaptor proteins that can modify α-
secretase activity directly by binding to the ADAM pro-
teases. A number of such adaptors have been identified
using yeast two hybrid systems. These are Src homology 3
(SH3) domain-containing proteins that bind to proline-
rich sequences in the cytoplasmic domains of ADAMs.
Among these are endophilin I and SH3PX1, which bind
ADAM9 and ADAM15 [33], p85α [34], Src [35,36], Grb
[36] and Fish [37], which bind to ADAM12. More recently
an additional adaptor, Eve-1, was identified using the
cytoplasmic domain of ADAM12 as bait [20]. We were
particularly interested in Eve-1 since it regulates the phor-
bol-stimulated shedding of pro heparin-binding EGF-like
growth factor (HB-EGF), thus making it an excellent can-
didate as a PMES for APP. Furthermore, Eve-1 has been
shown to interact with known α-secretases ADAMs 9, 10
and 17 in addition to ADAM12 [20].

We therefore tested the involvement of Eve-1 in phorbol-
stimulated sAPPα generation by transiently expressing
Eve-1-c and Eve-1-d (the two isoforms shown to bind
ADAMs 9, 10 and 17) in HEK293-695 cells. We found no
consistent effect of Eve-1c or Eve-1d on either basal or
phorbol-stimulated sAPPα secretion (Figure 5), although,
in some experiments, Eve-1c showed a nonsignificant
trend toward potentiation of shedding. Further work on
Eve-1 isoforms is ongoing. No 32PO4 incorporation into
either Eve-1c or Eve-1d was detectable in response to
phorbol ester treatment (not shown) despite the existence
of consensus PKC phosphorylation sites. It is possible that
separate adaptors exist that correspond to each protein
that undergoes shedding (i.e., that Eve-1, the pro-EGF/
ADAM adaptor, is not employed as an adaptor for APP/
ADAM). To date, no adaptor has been identified that reg-
ulates α-secretase shedding of the APP ectodomain
according to the phosphorylation state of the adaptor.

Conclusion
The non-amyloidogenic processing of Alzheimer amyloid
precursor protein is characterized by increased secretion
of neurotrophic and neuroprotective soluble sAPPα spe-
cies and by diminution of Aβ generation. The activation of

Phorbol-stimulated sAPPα secretion is not modulated through Eve-1Figure 5
Phorbol-stimulated sAPPα secretion is not modu-
lated through Eve-1. HEK293-695 were transiently trans-
fected with either Eve1-b or Eve1-c. Empty vector was used 
as control (Cont). Cells were treated with PDBu and proc-
essed as above. (A) Representative Western blot for sAPPα 
in the absence (-) or presence (+) of PDBu. (B) Quantifica-
tion of 3 such experiments.

Phorbol-stimulated sAPPα secretion is not sensitive to the phospho-state of NSF at tyrosine 83Figure 4
Phorbol-stimulated sAPPα secretion is not sensitive 
to the phospho-state of NSF at tyrosine 83. HEK293 
cells stably expressing APP695 (HEK293-695) were tran-
siently transfected with either wild type NSF (WT), the tyro-
sine 83 phospho state mimetic NSF mutant (Y83E), or the 
the tyrosine 83 dephospho state mimetic NSF mutant 
(Y83F). Empty vector was used as control (Cont). Cells were 
treated with PDBu for one hour after which media were col-
lected and immunoprecipitated with antibody 6E10. Western 
blotting for sAPPα was performed using 6E10. (A) Repre-
sentative Western blot for sAPPα in the absence (-) or pres-
ence (+) of PDBu. (B) Quantification of 3 such experiments.
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the α-secretase pathway, that governs the non-amyloidog-
enic APP processing, represents one of the most important
therapeutic targets for preventing and/or alleviating the
Alzheimer's disease neuropathology. Indeed, a recent
study by Postina et al. [38] has clearly demonstrated that
overexpression of α-secretase ADAM10 leads to a reduc-
tion in amyloid burden in a mouse model of Alzheimer's
disease [38]. In addition, the reduction in Aβ both in vitro
and in vivo can be achieved through an activation of sec-
ond messenger cascades, including protein phosphoryla-
tion. Activation of protein kinase C (with phorbol esters)
[2,3,39], activation of protein kinase A (with forskolin)
[40], inhibition of protein phosphatase 1 (with calyculin
A) [41], and inhibition of protein phosphatases 1 and 2A
(with okadaic acid) [4,41,42] are all intracellular signals
that cause an increase in the release of non-amyloidogenic
sAPPα and a concomitant decrease in Aβ when tested in
continuous cell lines. In primary neuronal culture, the
effect of okadaic acid on Aβ reduction is more substantial
than the effect of phorbol esters [41], demonstrating that
protein dephosphorylation pathways are especially
important in regulating processing in neurons.

Because of the biological and potential clinical impor-
tance of regulated shedding, we embarked upon two strat-
egies to elucidate its molecular basis. First, we identified
the molecular machinery responsible for α-secretase
cleavage in Saccharomyces cerevisiae [43]. In that case,
endogenous α-secretase was identified as yapsin [44], a
PI-linked intravesicular/cell surface protease rather than
the integral metalloproteinases that catalyze the reaction
in mammalian cells. Thus, this molecular diversity
thwarted our strategy of discovering the basis for regulated
shedding via a yeast genetics approach. In the current
study, we took a "candidate molecule approach", examin-
ing four molecules that might plausibly underlie phorbol-
or PKC-regulated APP ectodomain shedding. Potential
mechanisms for how each of the four PMES candidates
tested herein might act to regulate APP shedding are
depicted in cartoon form in Figure 6; however, none of
these four proteins appears to fulfill the essential criteria
for a PMES.

The release of sAPPα and Aβ into the brain interstitium is
dynamically regulated by neurotransmission and hormo-
nal status [45-48] as a result of a series of phospho-state-
sensitive reactions, including: (1) PKC-regulated intracel-
lular α-cleavage at the TGN (8); (2) PKC-sensitive fission
at the trans-Golgi network [10]; and (3) PKC-sensitive
enzyme/substrate events intrinsic to the plasma mem-
brane [49]. Further work will be required to identify the
phospho-state-sensitive mediators of these reactions and
to identify which reactions in the regulated ectodomain
shedding process are most relevant to the pathogenesis,

treatment, or prevention of the cerebral amyloidosis of
Alzheimer's disease.

Methods
Materials
Phorbol 12-myristate 13-acetate (PMA), anti-actin anti-
body, streptavidin-linked horseradish peroxidase (HRP)
antibody, IGEPAL (NP-40), Triton X-100 and other com-
mon chemicals were purchased from Sigma. APP-specific
antibody 6E10 was purchased from Signet. Transfection
reagent FuGENE, tablets containing a cocktail of protease
inhibitors (Complete) and collagen were purchased from
Roche Applied Science. Reagents for enhanced chemilu-
minescence assay (ECL) were purchased from Amersham
Biosciences. Biotinylation reagent, Sulfo N-hydroxysulfo-
succinimide ester (EZ-Link Sulfo-NHS-LC-Biotin) was
purchased from Pierce. All cell media were obtained from
Cellgro and all cell culture plastics was obtained from Nal-
gene, Nunc International. Rhodamine red- and Alexa
Fluor 488-conjugated secondary antibodies were pur-
chased from Invitrogen. Anti-Munc18 antibody was
obtained from BD Transduction Laboratories. Mounting
medium containing anti-fading agents was obtained from
Biomeda. The pEGFP-N1 mammalian expression plasmid
was purchased from Clontech. The pcDNA3 mammalian
expression plasmid was purchased from Invitrogen.

Cell lines
All experiments were performed in human embryonic
kidney cells, HEK293. Untransfected cells were purchased
from the American Type Culture Collection (ATCC).
HEK293 cells over-expressing APP695 were described pre-
viously [21].

Determination of soluble APP or sAPPα in cells expressing 
APP and Munc13-1
HEK293 cells were grown in 10 cm tissue culture dishes.
Transfections were performed on 70–80% confluent cell
monolayers with the following cDNAs: 1. 5 μg APPSWE-
pPrk5 and 5 μg p-EGFP-N1; 2. 5 μg APPSWE-pPrk5 and 5
μg Munc13-1WT-pEGFP- N1; 3. 5 μg APPSWE-pPrk5 and 5
μg Munc13-1H567K-pEGFP-N1, by using FuGENE transfec-
tion reagent according to manufacturer's instructions.
Munc13-1 mammalian expression plasmids were a gift
from Dr Nils Brose, Max-Plank-Institute for Experimental
Medicine, Goettingen, Germany. They contain either a
full-length Munc13-1WT (Munc13-1WT-pEGFP-N1) or a
full-length Munc13-1 with a point-mutation, H567K, in a
phorbol ester binding C1 domain (Munc13-1H567K-
pEGFP-N1). Both the Munc13-1WT and the Munc13-
1H567K mutant sequences are fused with a green fluores-
cent protein (GFP) at their C-termini, as described previ-
ously [11]. The pEGFP-N1 plasmid contains a sequence
encoding only GFP and was used as a control plasmid in
co-transfection experiments with the APPSWE-pPrk5 plas-
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mid. Additionally, the pEGFP-N1 plasmid allowed the
monitoring of transfection efficiencies between different
experiments. 48 hours after the initiation of transfections,
treatment of cells with phorbol 12-myristate 13-acetate
(PMA) was carried out at a final concentration of PMA of
100 nM, in a serum-free medium, for 2 hours. Soluble
APP or sAPPα was measured from collected cell culture
medium by Western blotting with APP-specific antibody
6E10. Signal detection in all Western blotting experiments
was carried out by using the enhanced chemilumines-
cence (ECL) assay. Visualization of signals and quantifica-
tions were performed by using LabWorks Imaging and

Analysis Software (Ultra-Violet Products Bioimaging Sys-
tems).

Cell surface content of APP
Following the collection of cell culture medium for sAPPα
measurement, cell surface labeling of APP was carried out
by using 0.5 mg/ml of a cell membrane-impermeable
biotinylation reagent, Sulfo N-hydroxysulfosuccinimide
ester (EZ-Link Sulfo-NHS-LC-Biotin). The biotinylation
reagent was applied dissolved in ice-cold Dulbecco's
Phosphate-Buffered Saline solution (DPBS) and incu-
bated for 30 minutes on ice. The excess reagent was

Possible mechanisms for how the PMES candidates tested in this study might modulate shedding of the APP ectodomainFigure 6
Possible mechanisms for how the PMES candidates tested in this study might modulate shedding of the APP 
ectodomain. a, This cartoon depicts how phorbol esters (PMA) might promote translocation of wildtype but not H567K 
Munc13-1 to the PM. b, This cartoon depicts how phosphorylation of Munc18 by PKC might facilitate fusion of APP transport 
vesicles with α-secretase transport vesicles, thereby facilitating shedding. c, This cartoon depicts how dephosphorylation of 
phospho-NSF might disinhibit NSF-mediated vesicle fusion; as in b, the notion is that APP and α-secretase might be traveling in 
separate vesicles prior to phosphorylation-state mediated facilitation of vesicle fusion. d, This cartoon depicts how the phos-
phorylation state of Eve-1 (or some theoretical accessory Eve-1 binding protein) might modulate vesicle interactions with the 
PM or they might modulate the physical docking between APP and α-secretase.
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quenched with 50 mM Tris (pH 7.4). Cell lysates were pre-
pared in phosphate-buffered saline (PBS)-containing 1%
IGEPAL (NP-40) and a cocktail of protease inhibitors
(Complete). Equal protein amounts were used for immu-
noprecipitation of APP with the APP-specific antibody
369. Western blotting and detection of cell-surface bioti-
nylated APP were performed with streptavidin-linked
HRP antibody.

Determination of soluble APP or sAPPα in cells expressing 
APP and Munc18
HEK293 cells were grown in 6-well cell culture plates and
transfected at 70–80% confluency with the following
cDNAs, by using the FuGENE transfection reagent: 1. 1 μg
APPSWE-pPrk5, 1 μg pcDNA3 and 1 μg pEGFP-N1; 2. 1 μg
APPSWE-pPrk5, 1 μg Munc18wt-pcDNA3 and 1 μg pEGFP-
N1; 3. 1 μg APPSWE-pPrk5, 1 μg Munc18dGlu-pcDNA3
and 1 μg pEGFP-N1; 4. 1 μg APPSWE-pPrk5, 1 μg
Munc18S306E-pcDNA3 and 1 μg pEGFP-N1; 5. 1 μg
APPSWE-pPrk5, 1 μg Munc18S313E-pcDNA3 and 1 μg
pEGFP-N1. Munc18 plasmids have been described and
used previously by Barclay et al. [16]. 100 nm PMA treat-
ment of transfected cells was carried out approximately 48
hours following the start of transfections. Detection of
soluble or sAPPα was performed from cell culture super-
nates by SDS-PAGE and Western blotting with anti-APP
antibody 6E10.

Measurement of holoAPP, Munc13 and Munc18 in cell 
lysates
Following the collection of cell culture medium for detec-
tion of sAPPα, cell lysates were prepared in lysis buffer
containing 1% Triton X-100 and a cocktail of protease
inhibitors (Complete) in phosphate-buffered saline
(PBS). Levels of holoAPP were determined by using 8%
Tris-glycine SDS-PAGE system and Western blotting with
anti-APP antibody 369 [3]. Munc13-1 levels were detected
by using anti-GFP antibody and Munc18 levels were
detected with anti-Munc18 antibody. For verification of
equal protein loading, Western blotting was also per-
formed with rabbit polyclonal anti-actin antibody.

Subcellular localization of APP, Munc13-1, and Munc18
HEK293 cells were transiently transfected, as described
previously. 24 hours post transfections, cells were plated
onto chamber slides coated with 2 mg/ml collagen. Fol-
lowing treatments with DMSO or 100 nM PMA, cells were
fixed with 4% Paraformaldehyde in PBS for 10 minutes
and then washed twice with PBS supplemented with Ca2+

and Mg2+ (PBS-CM) for 5 minutes per wash. For antibody
uptake, cells were permeabilized with 0.5% Trition X-100
in PBS-CM at room temperature for 20 minutes. Non-spe-
cific binding of antibodies was blocked by incubating the
cells with 10% bovine serum albumin (BSA) in PBS-CM
for 30 minutes. For APP detection, APP-specific antibody

369 [3] was diluted at 1:300 in 5% BSA in PBS-CM and
applied to cells at room temperature for 1 hour, followed
by anti-rabbit rhodamine red-conjugated secondary anti-
body diluted at 1:400 in 5%BSA in PBS-CM also for 1
hour. Following three washes with PBS-CM and one wash
with sterile deionized water, chamber walls were removed
and cells were covered with a glass coverslip by using an
aqueous mounting medium containing anti-fading
agents. The immunofluorescence emitted from the GFP
allowed visualization of Munc13-1WT and Munc13-
1H567Kmolecules. Munc18 was detected with anti-Munc18
antibody diluted at 1:300 in 5%BSA-PBS-CM at room
temperature for 1 hour followed by anti-mouse Alexa
Fluor 488-conjugated secondary antibody diluted at
1:400 in 5% BSA/PBS-CM for 1 hour. Specificity of pro-
tein localization for APP and Munc18 was confirmed by
omitting primary antibodies from the labeling experi-
ment. All fluorescently labeled molecules were detected
with the Olympus BX51 fluorescent microscope.

Determination of soluble APP or sAPPα in cells expressing 
APP and NSF or APP and Eve-1
HEK293 cells stably expressing APP695 (HEK293-695;
[21]) were seeded onto 6-well plates at 1.5 × 105 cells per
well. The following day, cells were transiently transfected
with NSF and Eve-1 cDNAs using Fugene-6 (Roche)
according to the manufacturer's protocol, and allowed to
incubate for 48 hours. Empty vector was used as control.
Cells were then treated either with 1 μM PDBu in DMSO
or DMSO alone for 1 hour. Media were collected and
immunoprecipitated with antibody 6E10. Precipitates
were subjected to SDS-PAGE, blotted, and probed with
6E10. sAPPα levels were quantified by densitometry.

Phosphorylation of Eve-1
Cells were cultured in a 35 mm dish and transfected with
2 μg of EVE-1 DNA for 48 hr. Prior to application of phor-
bol esters, cells were incubated in phosphate-free DMEM
supplemented with 0.5 mCi/ml of 32Pi for 2 hr. Cells were
then treated with vehicle or with 1 mM PDBu for various
intervals (0–45 min). At the end of treatment, cells were
washed twice in PBS and lysed in RIPA buffer, containing
50 mM sodium fluoride, 200 mM sodium vanadate, and
aprotonin. The lysate was spun for 15 minutes at 14,000
× g, and 180 ml of lysate were immunoprecipitated with
2.5 mg of anti-EVE antibody and Protein A. Precipitates
were washed three times with PBS, and samples were
boiled in sample buffer for 3 min, separated in a 7.5%
polyacrylamide gel, and transferred to nitrocellulose and
exposed to a phosphorimaging screen.

Data analysis
Levels of sAPPα and surface APP, from seven independent
experiments, were normalized against the levels of
holoAPP (369 signal) and Munc13 levels (GFP signal),
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where appropriate, from the corresponding cell lysates.
Grubbs' outlier tests were performed to assess and reject
extreme values. The two group comparison of normalized
values for sAPPα and surface APP, that represent compar-
ison between HEK293 cells co-transfected with APPSWE

with a control plasmid and HEK293 cells co-transfected
with either APPSWE and Munc13-1WT or APPSWE and
Munc13-1H567K mutant, was performed by using a two-
tailed t test. The same type of analysis was used to com-
pare results obtained from HEK293 cells co-transfected
with APPSWE and Munc13-1WT and from HEK293 cells co-
transfected with APPSWE and Munc13-1H567K mutant. Dif-
ferences were considered significant at a p value of < 0.01.

For experiments involving EVE-1 and NSF, levels of sAPPα
secreted from HEK293-695 cells were quantified by densi-
tometry. All sAPPα levels were normalized to basal secre-
tion.
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