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Delayed cerebral ischemia (DCI) is a major determinant of patient outcome following 
aneurysmal subarachnoid hemorrhage. Although the exact mechanisms leading to 
DCI are not fully known, inflammation, cerebral vasospasm, and microthrombi may all 
function together to mediate the onset of DCI. Indeed, inflammation is tightly linked 
with activation of coagulation and microthrombi formation. Thromboinflammation is the 
intersection at which inflammation and thrombosis regulate one another in a feedforward 
manner, potentiating the formation of thrombi and pro-inflammatory signaling. In this 
review, we will explore the role(s) of inflammation and microthrombi in subarachnoid 
hemorrhage (SAH) pathophysiology and DCI, and discuss the potential of targeting 
thromboinflammation to prevent DCI after SAH.

Keywords: thromboinflammation, delayed cerebral ischemia, subarachnoid hemorrhage, thrombosis, 
inflammation, cerebral vasospasm

inTRODUCTiOn

Aneurysmal subarachnoid hemorrhage (aSAH) affects 9 per 100,000 individuals per year in the 
United States (1) and has high rates of morbidity and mortality (2). Since the mean affected age is 
45–55 years old (3), the socioeconomic burden is great, and despite advances in aneurysmal secure-
ment technique and management of aSAH in the last 20 years, many of those who survive the initial 
insult develop significant neurological and cognitive disabilities (1, 4–6).

A major contributor to poor outcomes after aSAH is delayed cerebral ischemia (DCI) (1, 5, 6). 
DCI affects 20–30% of survivors and occurs between 4 and 10 days after subarachnoid hemorrhage 
(SAH), leading to cognitive decline (7–9), ultimately causing severe disability and worse quality of 
life or death (10–12). DCI is the clinical syndrome used to describe delayed development of neuro-
logical impairment (9). Historically, DCI was thought to be caused by cerebral vasospasm. However, 
multiple studies indicate that DCI is multifactorial, with vasospasm being just a contributing fac-
tor (13–17) along with cortical spreading depression, disrupted/altered cerebral autoregulation, 
microthrombosis, and inflammation (6, 18). Due to the multi-faceted nature of DCI involving both 
inflammation and microthrombosis, in this review, we will provide evidence that thromboinflam-
mation is an unexplored therapeutic target for preventing DCI in aSAH patients.
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SAH PATHOPHYSiOLOGY

Following the initial bleed and subsequent treatment of the rup-
tured aneurysm, the accumulated blood within the subarachnoid 
space triggers several response mechanisms, as well as patho-
logical events. In response to extravascular blood, endogenous 
mechanisms of repair are initiated, including removal of the 
red blood cells (RBCs) (19). To this end, specific cell adhesion 
molecules are rapidly expressed on the luminal endothelial cell 
surface (19), which allows circulating macrophages and neutro-
phils to enter into the subarachnoid space. Extravasated blood is 
phagocytosed by infiltrating macrophages (20), and as a result, 
inflammatory cytokines are released by the infiltrated leukocytes 
and activated resident microglia, stimulating the immune cas-
cade. Indeed, inflammation has been shown to be a major player 
in early brain injury (21, 22), and may be a factor leading to DCI 
(23, 24), contributing to long-term deficits (25–27).

A second pathological factor triggered after SAH is hyperco-
agulability (28). Although the coagulation cascade is immediately 
activated following aneurysm rupture to stop bleeding, the 
hypercoagulable state does not end when the bleeding ceases; a 
sub-set of aSAH patients will continue to have hypercoagulabil-
ity for several days post-SAH which has been shown to correlate 
with the development of DCI (28) and result in poorer outcome 
(28, 29).

Mechanism of Thromboinflammation  
after SAH
While there are distinct mechanisms by which both inflammation 
and thrombosis can lead to deleterious events after SAH, both of 
these pathological events have cross talk by which they potentiate 
each other (30). The overlap between inflammation and throm-
bosis, called thromboinflammation, has been reported to play 
roles in a number of brain diseases/damage, including ischemia 
(31–34). Since ischemia also plays a role in patient outcome as a 
downstream deleterious event from SAH, thromboinflammation 
may be an overlooked pathophysiology after SAH.

Following SAH, activated macrophages release pro-inflam-
matory cytokines/chemokines for the recruitment of circulating 
macrophages to aid in RBC clearance (19). Phagocytosis of RBCs 
and subsequent death of the infiltrated leukocytes (occurring 
2–4 days post-ictus) in the cerebrospinal fluid leads to release of 
a plethora of toxic molecules (35) including endothelins, oxygen 
free radicals, and hemoglobin/heme (and byproducts), thereby 
potentiating pro-inflammatory pathways and endothelial cell-
mediated thrombosis. The latter event induces a positive feed-
forward loop, potentiating thromboinflammation by continuing 
to recruit systemic immune cells for debris clean-up, causing cell 
adhesion molecules to continuedly activate platelets, leading to 
microthrombi formation (36) (Figure 1).

Production/release of reactive oxygen species and nitric 
oxide adds to endothelial damage (37), stimulating endothelial 
expression of adhesion molecules (e.g., ICAM-1, P-selectin, 
VCAM, collagen, fibrinogen, etc.) (37, 38), and release of tis-
sue factor and vWF, thereby activating platelets. This process is 
controlled by ADAMTS13 (a disintegrin-like metalloprotease 

with thrombospondin type 1 repeats-13), which acts to control 
clot formation by cleaving hyperactive ultralarge vWF to prevent 
platelet adherence (39). Interestingly, aSAH patients who go on 
to develop DCI are more hypercoagulable than aSAH patients 
who will not develop DCI (40, 41). Auxiliary to greater/sustained 
microthrombi formation, continued activation of coagulation by 
endothelial cells and platelets further promote inflammation via 
activation of circulating leukocytes through protease activated 
receptor-1 and toll-like receptor 4 signaling (36).

Finally, emerging evidence further displays the delicate balance 
that inflammation plays in modulating coagulation (36). In the 
non-diseased state, systemic leukocytes aid in preventing coagu-
lation by expressing several anticoagulant factors (42–44). Yet, 
when pro-inflammatory signaling is initiated, leukocytes change 
phenotypes, thereby aiding in coagulation through the release of 
procoagulant factors (45, 46) and reduced expression and deg-
radation of anti-coagulation factors (47–49). While leukocytes 
play a critical role in inducing and propagating inflammation, 
leukocytes also promote a hypercoagulable state after SAH (36) 
and may play a crucial role in DCI via thromboinflammation.

Clinical Evidence
To date, the exact role thromboinflammation plays in patients suf-
fering from aSAH is not known. Yet, the following clinical studies 
suggest that thromboinflammation may be a key contributor to 
DCI after aSAH, and thus should be considered as a therapeutic 
target.

First, microthrombi have been reported as an associative 
cause of DCI and worse neurological outcome (50, 51). In human 
autopsy studies, microthrombi, reported to be throughout the 
brain, are associated with regions of infarct (50, 51), and also 
develop with a timing similar to DCI (6). Following aSAH, 
platelet activation is over-stimulated, resulting in microthrombi 
within small arterioles (51), peaking within 2 days and then again 
from 1 to 2 weeks post-ictus (50). Platelet-derived thromboxane 
B2 is higher and platelet count is lower in DCI patients compared 
to non-DCI patients (52, 53), suggesting platelet aggregation as a 
potential cause of microthrombi. In addition, aSAH patients are 
hypercoagulable with changes in platelet-activating factor (54), 
vWF (40, 54), and tissue plasminogen activator (55, 56) correlat-
ing with the incidence of DCI (54, 55) and poor patient outcome 
(28). Specific polymorphisms of plasminogen activator inhibitor 
(PAI) have higher PAI activity (57) leading to a higher incidence 
of DCI (41). Finally, in addition to an over active coagulation cas-
cade, fibrinolysis after aSAH is impaired (40, 56). ADAMTS13, 
proposed as a critical link between inflammation and thrombosis 
(39), has been observed to have low activity after aSAH, and is 
associated with an increased risk of ischemic stroke (58) and may 
potentiate microthrombi formation. The inherent roles of leuko-
cytes and platelets in inflammation and thrombosis, as well as 
the involvement of ADAMTS13, argue for thromboinflammation 
being considered as a therapeutic target after SAH.

Not only is the coagulation cascade not functioning properly, 
so too is inflammation continually hyperactive. Several pro-
inflammatory cytokines have been linked with worse clinical 
outcome after aSAH (25–27, 59, 60). Increases in tumor necrosis 
factor α, interleukin-1α, interleukin-1β, interleukin-6, and 
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FiGURe 1 | Initiation of inflammation and thrombosis after subarachnoid hemorrhage. Following rupture of an aneurysm, red blood cells spill into the subarachnoid 
space, activating macrophages which release cytokines. In response, endothelial cells express adhesion molecules to activate circulating leukocytes and platelets. 
This results in leukocyte infiltration, phagocytosis of red blood cells, and release of more cytokines. Activated platelets develop into thrombi which may travel 
downstream to occlude distal microvessels or may cross into the brain parenchyma. Platelet activation and aggregation signal for leukocyte activation, and 
vice versa, such that even when the aneurysm is treated, thromboinflammation continues via feedforward mechanisms.
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interleukin-8 have all been found in the cerebrospinal fluid and 
blood (59, 61–68), with several factors also being associated with 
poor outcome and DCI (59, 61). Additionally, elevated adhesion 
molecules in the blood have also been observed after aSAH in 
patients, remaining elevated for 6–8 days, and are associated with 
DCI (69–71). Blood P-selectin is elevated in patients with DCI, 
suggesting that inflammation and platelet activation adhesion 
are associated with DCI (72, 73). Indeed, adhesion molecules are 
well documented to be at the crux of thromboinflammation (39, 
74–76). These findings, which suggest thromboinflammation is 
active, are also supported by increased leukocyte infiltration into 
the brain following SAH (77–80) and also correlate with ischemia 
after SAH (81). Thus, the so-called “leukocyte–endothelial cell 
interaction” (78) may play a role in SAH pathophysiology (i.e., 
thromboinflammation).

A recent study on 106 aSAH patients showed that platelet acti-
vation and inflammation (via C-reactive protein measurement) 
occurred simultaneously and were associated with worse early 
brain injury and 3-month outcome (82). Similar to others (40, 
54), Frontera et al. found that platelet activation and C-reactive 
protein levels were associated with DCI, but even more inter-
esting, the authors reported that higher platelet activation and 
C-reactive protein levels at 72  h post-SAH correlate with DCI 
(82). The findings by Frontera et al. further support the potential 
role of thromboinflammation in DCI after aSAH, suggesting 
thromboinflammation may be an unexplored therapeutic target 
for improving aSAH outcome.

Evidence from Experimental Models
Thromboinflammation has also not been specifically studied in 
experimental models of SAH, nor has it been examined for cor-
relation with microthrombi, ischemia, or DCI in animals. While 
DCI is unmeasurable in animals, several pathological measures 
are used as correlates for DCI (e.g., vasospasm, microthrombi 
formation, ischemia/infarct/cell death).

Several groups have reported the existence of microthrombi 
within the vasculature both locally, as well as distally from the 
SAH insult in experimental SAH models (83–86). In rodent mod-
els of SAH using autologous blood infusion, microthrombi and 
occluded blood vessels have been reported to occur throughout 
the brain at 2 days post-SAH (84) and can be observed for up to 
7 days post-ictus (86). While microthrombi have been observed in 
puncture models of SAH (87, 88), it is the blood infusion models 
which offer the most insight into the potential role of thrombo-
inflammation in clot formation after experimental SAH. Indeed, 
thrombi may be thrown downstream from the vessel rupture in 
endovascular perforation models as the mechanism by which 
microthrombi occur in the vasculature; however, no such vessel 
rupture is present in the autologous blood infusion models. In the 
blood injection SAH models, the likely cause of microthrombi 
formation and deposition within the cerebral vasculature distal 
from the SAH insult is inflammation.

Furthermore, following experimental SAH, endothelial 
damage resulting from leukocyte infiltration may lead to 
the downward spiral that is thromboinflammation. Indeed, 
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post-SAH inflammation is devastating (19) and includes cytokine/
chemokine upregulation (89, 90), increased expression of adhe-
sion molecules (91, 92), and leukocyte infiltration (93–95). In 
fact, either depleting neutrophils or reducing neutrophil activity 
decreases microvascular injury following SAH in rats (93).

Similar to clinical findings, P-selectin has been observed to 
increase after experimental SAH, leading to activation of platelets 
and thrombi formation (84). Interestingly, platelet aggregates 
have been observed to extravasate into the brain parenchyma in 
the rodent SAH autologous blood injection model which likely 
propagates pro-inflammatory signaling (22), further showing 
that there is cross talk between inflammation and thrombosis 
after SAH.

Evidence from experimental models of SAH, similar to 
clinical findings, suggest that significant overlap between 
inflammation and thrombosis occurs post-SAH and may be 
involved in secondary injury and neurological deterioration. 
Future studies are warranted to investigate the exact role(s) 
thromboinflammation plays in SAH and its potential as a 
therapeutic target.

THROMBOinFLAMMATiOn AS A 
THeRAPeUTiC TARGeT TO PRevenT DCi

The detrimental roles thromboinflammation play in brain 
pathologies has led to thromboinflammation to be suggested 
as a therapeutic target (32, 96), but not for SAH. Based on the 
review presented above, thromboinflammation should also be 
considered a therapeutic target for patients of SAH (54). Potential 
targets of thromboinflammation may include expression of adhe-
sion molecules, release of factors activating leukocytes and plate-
lets simultaneously (e.g., selectins), disrupting platelet-leukocyte 
formations, and targeting ADAMTS13. To date, no clinical trials 
have studied these factors as specific therapeutic targets. Below 
we review some of the clinical trials which have targeted either 
coagulation or inflammation, and show that targeting these 
physiological events separately does not seem to hold the answer 
for SAH treatment.

Previous Trials
Targeting Coagulation and Clot Clearance
Several early clinical trials investigated therapeutics directed at 
targeting coagulation following SAH, many of which used anti-
platelet therapies. However, meta-analysis of antiplatelet therapy 
indicates that antiplatelet therapy has a trend for improving 
outcome in aSAH patients, with tendencies to decrease secondary 
ischemia (except for acetylsalicylic acid which shows no benefit) 
(97). Some of the antiplatelet therapies thus far investigated are 
acetylsalicylic acid, ticlopidine (adenosine diphosphate receptor 
inhibitor), dipyridamole (phosphodiesterase inhibitor), OKY-
046/Calaclot (thromboxane synthetase inhibitor), a thromboxane 
A2 antagonist, and E5880 (inhibitor of platelet-activating factor 
receptor) (97). Of these agents, Calaclot and E5880 seemed to 
improve functional outcome, but additional studies need to be 
undertaken to determine the therapeutic benefit associated with 
antiplatelet therapies.

Studies have also examined the benefit of targeting clot clear-
ance. In this regard, recombinant tissue plasminogen activator 
(administered intraventricularly) has been investigated in several 
clinical trials which have shown that although recombinant tis-
sue plasminogen activator can improve clot clearance, it fails to 
attenuate cerebral vasospasm or DCI (98), reduce mortality (99), 
or improve functional outcome (100). These findings indicate 
that clot clearance alone may not be enough for aSAH.

Targeting Inflammation
Trials targeting inflammation have had varied success. 
Erythropoietin-β, despite having mechanisms of action against 
vasospasm and inflammation (101), had no effect on cerebral 
vasospasm, but did reduce DCI and improve functional outcome 
(102). This was a small study and is at high risk for bias (103), so 
additional trials are needed. Another anti-inflammatory agent, 
methylprednisolone, was found to improve functional outcome 
at 1  year despite having no effect on cerebral vasospasm or 
hypodensity on CT scans (104). It should be noted that methyl-
prednisolone is an anti-inflammatory and thus may have no effect 
on vasospasm, although the lack of change in CT hypodensity 
is puzzling. Regardless, these trials suggest that inflammation 
indeed plays a major role in SAH outcome. Since there is con-
siderable feedforward/back mechanisms between thrombosis 
and inflammation, anti-inflammatory agents may indirectly 
reduce thromboinflammation. While previous trials have shown 
promise, additional studies are needed to determine any benefit 
to patient outcome for anti-inflammatory agents as well as the 
relationship to thromboinflammation.

Current Trials
The lack of promising data for therapeutics targeting either 
cerebral vasospasm (100, 103) or clot clearance suggest that SAH 
prognosis may lie within inflammation, platelet activation, or at 
the intersection of the two (i.e., thromboinflammation). To date, 
the only FDA approved treatment after aSAH is nimodipine. 
While the initial mechanism of action was purported to be via 
anti-vasospasm (105, 106), its effects seem to be more than just 
preventing vasospasm. Indeed, nimodipine can improve patient 
outcome irrespective of vasospasm attenuation (107). Although 
the exact mechanism of nimodipine is unknown, it may reduce 
microthrombosis, be neuroprotective, and inhibit cortical 
spreading ischemia (14, 108). Furthermore, nimodipine has been 
implicated as being anti-inflammatory (109), and it is important 
to note that calcium channel blockers may reduce leukocyte 
infiltration (110), and therefore reduce thromboinflammation. 
Mechanistic studies for the role(s) of nimodipine are needed to 
clarify the mechanisms by which nimodipine improves patient 
outcome after SAH. These studies may also shed light onto the 
therapeutic targets for thromboinflammation.

Fasudil is currently used in Asia instead of nimodipine, because 
the latter is not commercially available. Fasudil is a rho-kinase 
inhibitor which is reported to reduce hemodynamic dysfunction 
(i.e., vasoconstriction, endothelial injury) and inflammation 
through downstream signaling pathways via inhibition of rho-
kinase (111). Initially, fasudil was used to target cerebral vasos-
pasm, but fasudil was found to also reduce cerebral infarction, 
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and improve functional outcome after aSAH (112). Thus, fasudil 
also seems to provide therapeutic benefit for aSAH patients, but 
still requires validation in large randomized controlled clinical 
trials (113). Being a rho-kinase inhibitor, fasudil may prevent 
a number of downstream signaling pathways involved in SAH 
pathophysiology [smooth muscle cell contraction and endothe-
lial dysfunction (95, 114), inflammation, and leukocyte activation 
(115)], arguing that drugs with pleiotropic effects may be an 
answer. Similar to nimodipine, the exact mechanisms by which 
fasudil improves outcome following SAH remain a mystery, and 
translational studies for SAH will benefit for additional studies on 
the mechanism(s) of fasudil.

The recent study by Wessell et al. found that infusion of low-
dose heparin administered with nimodipine is associated with 
increased odds of patient discharge (116), and, in a preliminary 
trial, heparin reduced cerebral vasospasm and infarct (117). 
These studies support the notion that combining therapies which 
reduce distinct injury mechanisms can provide increased effec-
tiveness. Furthermore, these studies indicate that there may be 
therapeutic potential in anti-coagulation and anti-inflammation 
(103). Currently, heparin is currently being explored in the 
ASTROH trial (NCT02501434) which will examine the efficacy 
of heparin for reducing vasospasm and delayed neurological 
deficits in SAH patients.

Specific information regarding the role of thromboinflamma-
tion and its potential as a therapeutic target may be elucidated 
through the SoSTART trial (NCT03153150) and the etanercept 
(TNFα receptor antagonist) trial (NCT01865630). The SoSTART 
trial is set to investigate seven anti-coagulants for therapeutic 
benefit in patients of cerebral hemorrhage, including aSAH. 
These proposed drugs are known to be reduce coagulability and 
prevent inflammation (118, 119), which may reduce the overall 
thromboinflammation.

Challenges in Targeting 
Thromboinflammation
Several challenges exist when considering thromboinflammation 
as a therapeutic target for preventing DCI. First and foremost, 
special care needs to be taken when identifying potential thera-
pies for thromboinflammation since the ideal candidate will only 
target newly formed microthrombi and not have any significant 
effect on the clot formed at the site of aneurysm rupture. Once the 
aneurysm has been secured with clip or coil, the aneurysm is of 

less concern, but potential complications such as post-operative 
bleeding or bleeding along the ventriculostomy remain a risk.

In most pathologies, including SAH, both pro- and anti-
inflammatory pathways are activated to promote debris/toxin 
clearance and repair of injured tissue, respectively. Since pro-
inflammatory cytokines and downstream signaling is linked with 
thromboinflammation (34), it is critical to pursue agents which 
mitigate pro-inflammatory cytokines. So far research has largely 
focused on this, however, anti-inflammatory signaling aids in 
repair and healing, thus this arm of inflammation should remain 
active (or upregulated) after reducing thromboinflammation.

Finally, although experimental studies are required to under-
stand pathophysiology, uncover signaling mechanisms, and 
investigate novel drugs and potential therapeutic targets, animals 
(including non-human primates) have differences when it comes 
to coagulation (120, 121), as well as inflammation (122, 123). 
Therefore, it follows that animals may have distinct differences 
when it comes to thromboinflammation and its treatment. Future 
studies should examine these differences to aid in therapeutic 
development against thromboinflammation.

COnCLUSiOn

Thromboinflammation, the cross talk between the thrombotic 
and inflammatory pathways, likely plays a critical role in the 
development of DCI after SAH, thereby having significant 
impact on overall patient outcome. The current understanding 
of thromboinflammation and its role in SAH pathophysiology is 
only beginning to emerge, but evidence from experimental and 
clinical studies suggest that preventing thromboinflammation 
has the potential for benefiting patients of aSAH.
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