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There is an old saying that you must walk a mile in someone’s shoes to truly understand

them. This mini-review will synthesize and discuss recent research that attempts to

make humans “walk a mile” in an artificial musculoskeletal system to gain insight into

the principles governing human movement control. In this approach, electromyography

(EMG) is used to sample human motor commands; these commands serve as inputs

to mathematical models of muscular dynamics, which in turn act on a model of skeletal

dynamics to produce a simulated motor action in real-time (i.e., the model’s state is

updated fast enough produce smooth motion without noticeable transitions; Manal et al.,

2002). In this mini-review, these are termedmyoelectric musculoskeletal models (MMMs).

After a brief overview of typical MMM design and operation principles, the review will

highlight how MMMs have been used for understanding human sensorimotor control

and learning by evoking apparent alterations in a user’s biomechanics, neural control,

and sensory feedback experiences.

Keywords: motor learning, motor control, musculoskeletal, neuromusculoskeletal, modeling, sensorimotor

control, biomechanics

MYOELECTRIC MUSCULOSKELETAL MODEL DESIGN AND
OPERATION

Basic Components
As the name implies, an essential component of an MMM is a musculoskeletal model: a
mathematical representation of bones, muscles, and connective tissue. The model specifics depend
on the application (Winters, 1995). For simulation of gross motor activities, many MMMs use
Hill-type lumped parameter muscle models (Hill, 1938) and rigid-body skeletal models due to their
computational speed, though this is becoming less of an issue with advances in computing power.
More dynamically complex models may be needed for some applications, e.g., when considering
complex muscle fiber architecture (Blemker and Delp, 2005; Heidlauf and Röhrle, 2014), stress and
stress and strain distributions within bone (Huiskes and Chao, 1983), or the heterogeneity of fiber
architecture within a muscle (Röhrle et al., 2017). As several comprehensive reviews are available
on the possibilities for modeling the musculotendon system, the reader is pointed to the literature
for more information (Zajac, 1988; Zajac andWinters, 1990; Neptune, 2000; Pandy, 2001; Viceconti
et al., 2006).
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Controlling the Model
For a musculoskeletal model to produce functional movement
the muscle models must be activated in a coordinated fashion;
this is typically achieved in one of two ways. The first is by using
a central nervous system (CNS) model that codifies the principles
governing human movement control. In such models, muscle
activation patterns are generated by minimizing a quantity of
interest such as energy (Hatze and Buys, 1977), muscle stress
(Crowninshield and Brand, 1981a), or movement smoothness
(Hogan, 1984). These models and derivatives thereof have been
useful in gaining insight into the high-level operations of the
CNS for movement control and production (Todorov, 2004).
The second way to control a musculoskeletal model is by using
measured muscle activity (i.e., EMG). This can occur off-line,
for example when MMMs are used to estimate muscle force
distributions. Alternatively, a musculoskeletal model can be
controlled on-line, such that a user interacts with the MMM in
real-time (see section Using Myoelectric Musculoskeletal Models
to Elucidate Motor Control Principles for examples of off- and
on-line approaches). The on-line approach is best suited for use
in motor control and learning experiments, and is therefore the
focus of this mini-review.

Personalizing the Model
How a human controls a MMM depends on its programmed
dynamics, such as muscle mechanical properties and moment
arm-joint angle relations. Early modeling approaches used
musculoskeletal models with cadaver- and animal-based
biomechanical properties (e.g., Anderson and Pandy, 2001);
however, the behavior of a musculoskeletal model is sensitive
to many biomechanical properties (Scovil and Ronsky, 2006;
Redl et al., 2007; De Groote et al., 2010; Ackland et al., 2012;
Pau et al., 2012). Therefore, techniques have been developed to
personalize model components, e.g., by using a dynamometer
to quantify maximum muscular torque capability (Garner and
Pandy, 2003), MRI to measure muscle volumes to estimate
maximal isometric force (e.g., Maganaris et al., 2001; Hasson
and Caldwell, 2012), or ultrasound to measure musculotendon
series-elastic stiffness (e.g., Kubo et al., 1999; Hasson et al.,
2011). While the importance of model personalization ultimately
depends on the application, it may be particularly important for
increasing the realism of MMMs (further discussed in section
Current Challenges and Future Directions).

USING MYOELECTRIC
MUSCULOSKELETAL MODELS TO
ELUCIDATE MOTOR CONTROL
PRINCIPLES

One of the first uses of MMMs was to solve the problem of
resolving a measured net joint torque into individual muscular
force components (Crowninshield and Brand, 1981b). This
can be accomplished by driving a musculoskeletal model with
measured EMG, i.e., performing an off-line forward simulation
with a MMM, and using optimization techniques to determine
the set of individual muscle forces that sum to match the net joint

torques (Manal et al., 2002; Lloyd and Besier, 2003; Chadwick
et al., 2009; Pau et al., 2012; Sartori et al., 2012). More recently,
researchers have started to exploit a unique property of MMMs:
they allow a virtual decoupling between the human CNS and
the controlled biomechanics. Through an MMM an individual
can be presented with novel neuromusculoskeletal dynamics, and
adaptations to these dynamics can inform hypotheses regarding
motor learning and control. Typically in the MMM paradigm,
surface-mounted EMG electrodes record control signals to drive
a musculoskeletal model while the actions of the model are
displayed on a monitor (Figure 1). It is also possible to physically
impose the actions of the model back onto the user with a
robotic device (Hasson, 2017). The following sections review
recent studies using MMMs to investigate human adaptations
to manipulations of muscle coordination strategies, neural
dynamics, and sensory feedback.

Adaptation to Altered Muscular Activation
vs. Force Mappings
A major use of MMMs has been to examine how the CNS
solves the problem of motor redundancy, i.e., how to activate
muscles to perform an action, given that there is usually an
infinite number of muscular force time history combinations
that produce the action (Bernstein, 1967). Note that this can
be viewed as a “feature” instead of a “bug,” providing the CNS
with the flexibility to deal with constraints imposed by a task,
fatigue, or environmental disturbances (Latash, 2012). Knowing
how the CNS controls its redundant musculature is of interest
for rehabilitation, as a similar problem exists in the control of
advanced prostheses and exoskeletons (Farina et al., 2014, 2017;
Ison and Artemiadis, 2014). Many posit that the brain solves
this problem by optimizing behavior relative to a performance
criterion (Todorov and Jordan, 2002; Todorov, 2004; Haruno and
Wolpert, 2005). Others hypothesize that muscular coordination
is framed by neural constraints in the form of motor primitives or
muscular synergies (Lee, 1984; Macpherson, 1991; Todorov and
Jordan, 2002; d’Avella et al., 2003; Hogan and Sternad, 2012; Bizzi

Neural 
Commands

Musculoskeletal
Model

EMG
System

Sensory
Feedback

FIGURE 1 | An exemplary implementation of a myoelectric musculoskeletal

model (MMM) for investigating sensorimotor control principles. © [2017] IEEE.

Adapted/reprinted, with permission, from Hasson (2017).
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and Cheung, 2013; Giszter, 2015) and by habitual coordination
patterns (de Rugy et al., 2012a,b).

MMMs are uniquely positioned to tackle questions related
to the principles underlying human movement control because
they can expose an individual to novel, yet fully specified
(i.e., programmed), biomechanics. Capitalizing on this strength,
de Rugy et al. (2012a) used an MMM to examine how the
CNS coordinates force-sharing among synergistic muscles. They
asked subjects to control a forearm MMM and produce a
net MMM force in a specific direction, which depended on
the biomechanical arrangement of simulated forearm muscles.
Interestingly, after disabling one of the simulated muscles,
subjects did not re-optimize their muscular activation patterns,
leading the authors to conclude that there is a strong habitual
component to neuromotor control that may override CNS
optimization processes. A related study by Berger et al. (2013)
used an MMM to test the hypothesis that muscular synergies
reflect a set of basic control modules, instead of a simple
manifestation of task or biomechanical constraints. The results
showed that humans could learn a novel task faster if it required
a recombination of existing synergies compared to new/non-
native synergies, supporting an inherent modularity to muscular
activation. Although this work focuses on motor synergies, it
is worth pointing out that there may be synergies in sensory
information processing as well (Latash, 2008; Alnajjar et al., 2014;
Damiano, 2015); future work with MMMs could help shed light
in this domain. Understanding the organization and modulation
of muscle synergies may better inform neurorehabilitation,
robotics, and technologies that rely on accurate and timely
decoding of the kinetics and kinematics of movement plans (Ison
and Artemiadis, 2014).

The studies above have provided valuable insights into how
the CNS controls movement; however, the simulated muscles
functioned primarily as pure force generators. In reality, muscles
have various mechanical properties that influence the translation
between EMG and muscular force. In contrast to limb dynamics
(Sainburg et al., 1999), less is known about how the CNS
represents muscular dynamics in movement control. An MMM
is well-suited to perturbing muscular dynamics, as done by
one study that used an MMM to test whether humans learn a
novel task faster using individualized muscle models or more
artificial force generators (Hasson, 2014). The expectation was
if participants had a neural representation of muscle dynamics,
it would offset any learning challenges associated with the
more dynamically complex muscle model. This was indeed
the case, as the muscle model group improved performance
(movement speed and accuracy) as fast as the force generator
group with improved generalization. Further research in this
area is warranted because it is relevant to prosthetics, some of
which include artificial muscular dynamics (e.g., Eilenberg et al.,
2010).

Adaptation to Altered Neural Dynamics
MMMs are also useful for testing theories of how humans adapt
to the properties of the nervous system itself. An important
property of motor commands is that they include signal-
dependent noise (SDN), i.e., the variance is proportional to the

command magnitude (Clamann, 1969; Matthews, 1996). It has
been theorized that the CNS is aware of this feature and optimizes
its movement control to minimize the effects of SDN (Harris
and Wolpert, 1998; Jones et al., 2002). This hypothesis has been
supported by simulations of computational models with output
closely resembling human movement data (Harris and Wolpert,
1998; Jones et al., 2002; Todorov and Jordan, 2002; van Beers
et al., 2004). An alternative and arguably more direct, approach
for testing this theory is to modify SDN in humans and observe if
they respond in a way that is consistent with the optimal control
hypothesis. While this is challenging to do experimentally, it can
be done expeditiously with an MMM.

Such an approach was taken by de Rugy et al. (2012a), who
increased the variability of the force output of a single simulated
muscle within an MMM during an isometric forearm force-
production task. According to the theory that humans behave
optimally to reduce SDN effects, if one muscle’s force output is
made more variable the CNS should reduce activation of that
muscle to minimize SDN (Harris and Wolpert, 1998; Jones et al.,
2002). As for the disabling of a simulated muscle discussed
earlier, the results showed that subjects did not change their
behavior in response to the increased variability, which may
further support the hypothesis that human sensorimotor control
is strongly habitual, or it could be that subjects failed to respond
to the virtual manipulation in a realistic way (see section Current
Challenges and Future Directions for further discussion). A study
by Hasson et al. (2016) employed an MMM to investigate human
adaptation to SDN manipulations using a dynamic point-to-
point arm movement; however, in this case, subjects modified
their behavior by increasing antagonistic co-activation. This
could be because, in contrast to de Rugy and colleagues, the
simulated arm task was dynamic rather than isometric, and
antagonistic co-activation can reduce kinematic variability (Selen
et al., 2005; van Dieen et al., 2008; Ueyama and Miyashita, 2013).
Although the discussed results are mixed, this research highlights
the possibilities for using MMMs to test sensorimotor control
hypotheses, and shows that subject responses are sensitive to the
constraints imposed on both the real and virtual arms.

Adaptation to Sensory Feedback
Manipulations
We will lastly touch upon the utility of MMMs is to gain insight
into the effects of sensory feedback manipulations on movement
control. Most studies using MMMs in this capacity focus on
proprioceptive information because an MMM serves as a natural
virtual prosthesis, and proprioception is typically impoverished
with prosthetic devices (Antfolk et al., 2013). In this section, the
definition of MMM is relaxed because few of the reviewed studies
use prostheses that are both myoelectrically-driven and include
explicit models of musculotendon dynamics (a fruitful avenue
for future exploration). While it is possible to provide direct
proprioceptive feedback to existing sensory afferents of amputees
(Dhillon and Horch, 2005), this mini-review will focus on non-
invasive approaches utilizing electrotactile, vibrotactile, and skin-
stretch stimulation, as these have been used in conjunction with
MMMs (Antfolk et al., 2013).
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Many studies using MMMs or prosthetic arms have
concentrated on kinetic feedback because interaction forces are
critical for object manipulation yet cannot be directly perceived
with vision (Chiel and Beer, 1997). Early studies provided
grasping force feedback with electrotactile stimulation (Prior
et al., 1976; Scott et al., 1980). While still under investigation
(Dosen et al., 2017), the discomfort associated with electrical
stimulation led to exploration of vibrotactile stimulation
applications. Several studies have shown that vibrotactile force
feedback improves performance with both simulated (MMMs)
and real myoelectric prosthetic arms (Patterson and Katz, 1992;
Pylatiuk et al., 2006; Chatterjee et al., 2008a,b; Stepp and
Matsuoka, 2010; Rombokas et al., 2013). However, the degree
of improvement varied, and actions often became slower with
vibrotactile feedback (Stepp and Matsuoka, 2010; Witteveen
et al., 2012b). From a human sensorimotor control point of
view it is important to account for the speed-accuracy tradeoff
(i.e., Fitt’s Law), when assessing motor skill (Woodworth, 1899;
Fitts, 1954), as it is easier to maintain accuracy if movement
is slowed (Shmuelof et al., 2012). Nonetheless, this research
has demonstrated the plasticity of the CNS and its capacity to
perceive and integrate non-native sensory information through
alternative sensory channels when using an MMM.

Since motion can be visually perceived, kinematic vibrotactile
stimulation should be most beneficial for MMM control when
vision is absent. This has indeed been shown in studies using
vibrotactile stimulation to convey hand position (Witteveen
et al., 2012a; Christiansen et al., 2013), and some have reported

benefits even when vision remains available (Sergi et al., 2008).
Others have shown that conveying goal-related error information
with vibrotactile feedback is beneficial (Bark et al., 2015;
Tzorakoleftherakis et al., 2016; Krueger et al., 2017). While these
studies have used relatively slow movements, the advantages of
kinematic vibrotactile feedback during fast MMM motions are
less clear: to date no benefits have been shown (Bark et al.,
2011; Hasson and Manczurowsky, 2015). This could be because
rapidmovements are predominantly open-loop and rely more on
an internal model of musculoskeletal dynamics (Kawato, 1999).
Finally, MMM kinematics can also be signaled using skin-stretch
feedback, which has been shown to improveMMM control (Bark
et al., 2008; Wheeler et al., 2010). These investigators hypothesize
that skin stretch might be more intuitive than electro/vibrotactile
feedback due to prior evidence that skin stretch information
contributes to kinesthesia (Edin and Johansson, 1995).

CURRENT CHALLENGES AND FUTURE
DIRECTIONS

An important caveat of using MMMs to test motor adaptation
hypotheses is that an MMM acts in parallel with the
actual neuromusculoskeletal system (Figure 2) and simulated
manipulations do not alter a user’s neuromuscular substrate.
This is both a strength and weakness of the approach; the
manipulations do no harm, but it can be difficult to determine
the degree to which an individual’s adaptation to a virtual
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FIGURE 2 | Flowchart (A) and schematic (B) showing how the real neuromuscular system is embedded how the real neuromuscular system is embedded in a

myoelectric musculoskeletal model (MMM). Both systems act in parallel and are driven by the same neural controller (the human central nervous system [CNS]).

Neural commands are sampled with electromyography (EMG) before being digitized and used to control a musculoskeletal model (in this example the arm is used).

The CNS receives feedback about the states of both the actual and simulated biomechanics. The physical interaction can be rigid with the human limb fixed in space,

or the actions of the simulated system can be imposed onto the actual system using a mechanical apparatus. Simulated manipulations can be performed at various

points in the control loop. A is adapted/reprinted, with permission, from Hasson (2014); ©[2014] Springer-Verlag Berlin Heidelberg.
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manipulation reflects reality. Nevertheless, there are avenues
available for validating virtual outcomes. For example, in the
study by de Rugy et al. (2012a), subjects’ responses to a
simulated muscle deletion were compared with those in response
to exercise-induced fatigue of the same muscle (the results
agreed). In reality, it may not always be possible to perform
an analog manipulation such as virtually rearranging muscle
origins and insertions. Future studies may explore alternative
ways of improving confidence in MMM experimental outcomes,
such as by increasing the realism of an MMM through steps
such as personalization of model parameters and improving
proprioceptive feedback (Hasson, 2017). This follows the logic
that if a human controls an MMM that is indistinguishable from
his/her own arm, or at least has very similar dynamics, the
response to MMM manipulations should be a close reflection of
reality.

Future research should also investigate the ramifications of
limb motion when controlling MMMs. While some studies
maintain both real and simulated limbs in an isomeric state
(e.g., de Rugy et al., 2012a,b; Berger et al., 2013), others keep
the real limb restrained but allow the simulated limb to move
(e.g., Hasson and Manczurowsky, 2015; Hasson et al., 2016;
Krueger et al., 2017). The rationale for keeping the real arm
fixed is that it limits movement artifacts from contaminating
EMG signals driving the MMM (De Luca et al., 2010). Recent
evidence suggests that some of what is learned under isometric
conditions transfers to non-isometric conditions (Melendez-
Calderon et al., 2017), but as most actions in the real world
involve limb movement, allowing the user’s arm to move
could significantly increase MMM realism. However, unless the
real and simulated limb dynamics are well-matched they will
move asynchronously and proprioceptive information will be
incongruent. One solution is to use a motor to force the real arm
to match the simulated arm motion. This was originally done for
studies on proprioception (Kuchenbecker et al., 2007; Blank et al.,

2010) and recently implemented in an MMM by Hasson (2017).
Interestingly, Hasson showed that given a properly personalized
MMM, users could reach a relatively high level of performance
in a dynamic motor task. This suggests that proprioception could
be a limiting factor in the control of EMG-driven prostheses, in
addition to uncertainties introduced with EMG-control (Johnson
et al., 2016). Nonetheless, even if the real vs. simulated limb
motion is robotically matched at the joint level, there may still
be proprioceptive mismatches at the muscle level, which should
be explored in future research.

CONCLUSIONS

This mini-review addressed the ways in which MMMs can serve
as tools to probe fundamental questions in human sensorimotor
control and learning including CNS coordination of force-
sharing among muscles, adaptation to modifications of neural
dynamics, and the limits of sensory feedback augmentation.
The power of MMMs stems from the experimental control
they offer: model dynamics are mathematically specified and
are therefore known quantities, and manipulations can be

performed selectively to control for confounds associated
with real neuromuscular interventions. The main limitation is
the challenge of validating human adaptations to simulated
manipulations given that experimental analogs are often
impossible. Nevertheless, the knowledge gained from creatively
employing MMMs in research has significant implications for
fields such as neuroscience, biomechanics, engineering, and
rehabilitation.
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