
 

 

 

Elsevier has created a Monkeypox Information Center in response to the 

declared public health emergency of international concern, with free 

information in English on the monkeypox virus. The Monkeypox Information 

Center is hosted on Elsevier Connect, the company's public news and 

information website.  

  

Elsevier hereby grants permission to make all its monkeypox related 

research that is available on the Monkeypox Information Center - including 

this research content - immediately available in publicly funded 

repositories, with rights for unrestricted research re-use and analyses in 

any form or by any means with acknowledgement of the original source. 

These permissions are granted for free by Elsevier for as long as the 

Monkeypox Information Center remains active. 

 

https://www.elsevier.com/connect/monkeypox-information-center


Journal Pre-proof

COUNTING MONKEYPOX LESIONS IN PATIENT PHOTOGRAPHS: LIMITS OF
AGREEMENT OF MANUAL COUNTS AND ARTIFICIAL INTELLIGENCE

Andrew J. McNeil, PhD, David W. House, BS, Placide Mbala-Kingebeni, MD, Olivier
Tshiani Mbaya, MD, Lori E. Dodd, PhD, Edward W. Cowen, MD, M.H.Sc., Véronique
Nussenblatt, MD, Tyler Bonnett, MS, Ziche Chen, BS, Inga Saknite, PhD, Benoit M.
Dawant, PhD, Eric R. Tkaczyk, MD, PhD

PII: S0022-202X(22)01897-8

DOI: https://doi.org/10.1016/j.jid.2022.08.044

Reference: JID 3550

To appear in: The Journal of Investigative Dermatology

Received Date: 5 August 2022

Revised Date: 19 August 2022

Accepted Date: 23 August 2022

Please cite this article as: McNeil AJ, House DW, Mbala-Kingebeni P, Mbaya OT, Dodd LE, Cowen
EW, Nussenblatt V, Bonnett T, Chen Z, Saknite I, Dawant BM, Tkaczyk ER, COUNTING MONKEYPOX
LESIONS IN PATIENT PHOTOGRAPHS: LIMITS OF AGREEMENT OF MANUAL COUNTS
AND ARTIFICIAL INTELLIGENCE, The Journal of Investigative Dermatology (2022), doi: https://
doi.org/10.1016/j.jid.2022.08.044.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 The Authors. Published by Elsevier, Inc. on behalf of the Society for Investigative Dermatology.

https://doi.org/10.1016/j.jid.2022.08.044
https://doi.org/10.1016/j.jid.2022.08.044
https://doi.org/10.1016/j.jid.2022.08.044


 

1 

 

COUNTING MONKEYPOX LESIONS IN PATIENT PHOTOGRAPHS: LIMITS OF 

AGREEMENT OF MANUAL COUNTS AND ARTIFICIAL INTELLIGENCE 

Andrew J. McNeil, PhD1,2,3, David W. House, BS1,2, Placide Mbala-Kingebeni, MD4, Olivier 

Tshiani Mbaya, MD4,5, Lori E. Dodd, PhD6, Edward W. Cowen, MD, M.H.Sc.7, Véronique 

Nussenblatt, MD8, Tyler Bonnett, MS5, Ziche Chen, BS1,2, Inga Saknite, PhD2,9, Benoit M. 

Dawant, PhD3,10, Eric R. Tkaczyk, MD, PhD1,2,10 

1Dermatology Service and Research Service, Department of Veterans Affairs, Tennessee Valley 

Healthcare System, Nashville, TN, USA 

2Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA 

3Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 

USA 

4Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of the Congo 

5Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer 

Research, Frederick, MD, USA 

6Clinical Trials Research Section, Division of Clinical Research, National Institute of Allergy 

and Infectious Disease, Bethesda, MD, USA 

7Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases 

(NIAMS), Bethesda, MD, USA 

8Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and 

Infectious Diseases, Bethesda, MD, USA 

9Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, 

Riga, Latvia 

10Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA 

Jo
urn

al 
Pre-

pro
of



 

2 

 

 

Corresponding author: 

Eric R. Tkaczyk, MD, PhD 

719 Thompson Lane, One Hundred Oaks 

Suite 26300, Department of Dermatology 

Nashville, TN 37204 

Email: eric.tkaczyk@vumc.org 

Twitter handle: @vdtrc 

Tweet: Can AI recognise #Monkeypox? New study by McNeil et al in the #JIDJournal shows AI 

can count lesions on par with humans in patient photographs #dermtwitter #DermDataScience 

#vumc @vdtrc 

 

ORCIDs 

Andrew McNeil: 0000-0003-1496-9691 

David W. House: 0000-0003-1650-0088 

Placide Mbala-Kingebeni: 0000-0003-1556-3570 

Olivier Tshiani Mbaya: 0000-0003-1908-5190 

Lori E. Dodd: 0000-0002-3433-5429 

Edward W. Cowen: 0000-0003-1918-4324 

Véronique Nussenblatt: 0000-0002-9530-0131 

Tyler Bonnett: 0000-0001-5545-6433 

Ziche Chen: 0000-0003-4005-9261 

Inga Saknite: 0000-0002-4000-5485 

Jo
urn

al 
Pre-

pro
of



 

3 

 

Benoit M. Dawant: 0000-0002-3804-8400 

Eric R. Tkaczyk: 0000-0002-2850-4740 

 

TO THE EDITOR 

The extent of cutaneous involvement is a key aspect for diagnosis and monitoring monkeypox 

disease, which is considered the most important orthopox virus in humans (Sklenovska et al. 

2018). The spread of monkeypox cases in Europe and North America in May 2022 raised global 

public health concern (Muyembe-Tamfum 2022), leading to the World Health Organization 

declaring a public health emergency on 23 July 2022 (Ghebreyesus 2022). 

Monkeypox affects the skin in >99% of cases (Pittman et al. 2022) with substantial 

morbidity. Current WHO guidelines assign severity according to the number of skin lesions: 

mild (<25 skin lesions), moderate (25—99 skin lesions), severe (100—250 skin lesions), or 

grave (>250 skin lesions) (Muyembe-Tamfum 2022) (Figure S1). Lesion counts are also a key 

parameter in monkeypox therapeutic trials. For example, the PALM007 randomized controlled 

trial of tecovirimat versus placebo requires counts lesions daily until resolution or day 28 

(Nussenblatt 2022). Counting skin lesions manually is labor intensive and presents logistical 

challenges, especially in remote regions prone to monkeypox outbreaks. We sought to develop 

an artificial intelligence (AI) algorithm to count monkeypox lesions in patient photographs. We 

hypothesized that the AI would count lesions with close agreement to manual counts. 

We developed and tested the AI with a convenience series of photographs from an 

observational study, collected at the remote General Reference Hospital of Kole (Kole hospital) 

and the surrounding rainforest of the Congo River basin of the DRC. The observational study 

was a joint venture of the Institut National de Recherche Biomédicale and US Army Medical 
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Research Institute of Infectious Diseases (USAMRIID), approved by the Human Use Committee 

at the USAMRIID (FY05-13), the Headquarters, United States Army Medical Research and 

Development Command Institutional Review Board (IRB), and the Ethics Committee at the 

University of Kinshasa School of Public Health. Initial clinical results and study population 

characteristics have been reported elsewhere (Mbala et al. 2017; Pittman et al. 2022). All patients 

provided written, informed consent and were confirmed to have monkeypox virus infection by 

PCR. 

Non-identifiable photographs were transferred to Vanderbilt University for use under 

local IRB approval (191042). From this set, all images amenable to unambiguous human 

counting were used for the AI training and testing. Photographs where counting in the field 

would not be performed (e.g., due to large confluent lesions or secondary infections), or where 

image quality prevented reasonable manual assessment (e.g., due to motion artifacts) were not 

used. The photograph set for analysis consisted of 66 photographs (median 3.5, interquartile 

range 2 to 4 photographs per patient) from eighteen patients (Figure S2). All patients were 

estimated as Fitzpatrick skin type VI by a board-certified dermatologist (ERT). 

Two types of manual annotations were collected for each photograph. First, rater 1 

provided segmentation masks for AI training, where every pixel in the photograph was manually 

labelled as lesion or non-lesion. Second, manual lesion counts were collected for each 

photograph by three human raters (raters 1 – 3) separately. Manual lesion counts were collected 

prospectively on unannotated photographs (details in Supplement), without the raters knowing 

AI outputs. We consider the lesion counts by rater 1 as the ground truth given the greater 

familiarity and annotating experience with this dataset. This reference standard was selected 

since clinical adjudication in prospective clinical trials will likely be based on manual counts 
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from photographs of enrolled patients. 

To identify and count lesions, we adopted a segmentation approach whereby every pixel 

in each photograph is classified as belonging to a monkeypox lesion or not. Our AI is based on 

the ubiquitous U-Net deep learning architecture (Ronneberger et al. 2015) with an Inception-v4 

encoder (Szegedy et al. 2017). Prediction models were developed for each of the 18 patients in a 

leave-one-out experiment. For each model, lesion prediction maps were created for all 

photographs of the patient not seen during training. Lesion counts were estimated by the number 

of non-touching lesional areas in the prediction maps (details in Supplement). 

The primary clinical metric of interest was the lesion count performance, evaluated 

prospectively by comparing the predicted number of lesions for a given photograph to the ground 

truth number from rater 1. Simple linear regression and limits of agreement (LoA) (Bland-

Altman) analysis were used to compare counts for each photograph. The width of 95% 

confidence LoA in this analysis is approximately four times the standard deviation of the 

difference between predicted lesions and ground truth. 

Figure 1a shows a representative image from Kole with manually identified lesions and 

AI output. Segmentation performance by the traditional computer vision metric of Dice index is 

shown in Figure S3. Performance in counting lesions by correlation and LoA analysis is shown 

in Figure 2. Relative to the ground truth counts (by rater 1), the AI had a mean bias of -5.86 

(LoA width 68.85) lesions. For the remaining two human raters, the bias from ground truth was -

3.24 (38.44) for rater 2, 9.68 (76.74) for rater 3, and 12.92 (81.91) between raters 3 and 2 (Figure 

2 and Table S1). To demonstrate potential generalizability, we also applied the AI to publicly 

available images of monkeypox (Figure 1b). 

Despite the small training dataset, our AI performed at a comparable level to human 
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raters counting monkeypox lesions. As monkeypox skin lesion counts are an important measure 

to stage and monitor disease severity, this approach could be used as a practical support tool in 

monkeypox trials that are imminently launching. 

A limitation of our study is the presence of a single skin type (Fitzpatrick type VI), which 

may hamper direct application in other skin types. Our set also lacked images of anogenital or 

perineal skin, which is an important emerging disease site in the European and North American 

outbreaks (Patel et al. 2022; Thornhill et al. 2022). Practical protocols to capture standardized, 

high-quality photographs of large body regions in resource-limited regions will be a critical next 

step for AI image analysis to support monkeypox research. Classifying lesion types may also 

enable more advanced differential diagnosis and monitoring, and objective confirmation of 

endpoints in monkeypox trails. 

Our cross-validation study of 18 monkeypox patients provides proof of principle for AI 

algorithms to provide reliable lesion identification and counting from photographs of patients 

with monkeypox. Ultimately, this could become a globally scalable solution to diagnose, stage, 

and monitor disease. 
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FIGURE LEGENDS 

Figure 1. Representative monkeypox AI lesion predictions on photos of previously unseen 

patients. (a) Two patients from our photograph set. Green contours show true positive lesions, 

blue shows false positive lesions (outlined by the AI but not the human), and magenta shows 

false negative lesions (outlined by human but not the AI). Unmarked photos are on the left. 

Upper photo AI lesion counts: 220 lesions, manual counts from three human raters: 239 (rater 1), 

233 (rater 2), and 259 (rater 3). Lower photo AI lesion count: 131. Manual counts: 137 (rater 1), 

134 (rater 2), and 143 (rater 3). (b) Two patients from publicly available photographs. Predicted 

lesion contours by our AI model are shown in yellow. The AI model is the same used to test 

Patient ID 15 (N=17, n=61). Upper photo from the CDC Public Health Image Library (Mahy 

1997). AI lesion counts: 58, manual counts by rater 1: 52. Lower photo from the Nigeria Centre 

for Disease Control, recently made available on WHO website (NCDC 2022), used with 

permission. AI lesion counts: 26, manual counts by rater 1: 29. Written informed consent was 

obtained for research and publication of photos from all patients. 

 

Figure 2. Comparison of lesion count performance by AI and human raters. Limits of 

agreement (LoA, shown with dashed lines) are the boundaries within which 95% of future 

measurement differences are expected to fall. LoA width = upper LoA – lower LoA. We also 

show the slope and coefficient of determination (R2) for the linear regression fit (red dashed 

line) between estimated counts for each pair. The solid black line is the line of agreement. (a) 

Bland-Altman and correlation plots for the AI against the ground truth (human rater 1). (b) Rater 

2 against ground truth. (c) Rater 3 against ground truth. 
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SUPPLEMENTARY MATERIALS AND METHODS 

Photograph acquisition 

Photographs were collected with consumer-grade cameras prior to 2011 and, more recently, 

smartphone cameras. No standardized imaging protocol was followed, leading to a variety of 

lighting conditions, backgrounds, fields of view, imaging distances, body sites, and time points 

since first symptoms. Occasional images had pen markings used to subdivide larger skin areas or 

track individual lesions during manual counts. 

 

Photograph set characteristics 

A total of 406 photographs from 35 patients were transmitted to Vanderbilt. 340 photographs 

from seventeen patients were excluded from analysis because the lesions would not have been 

counted in the field for WHO severity scoring. The specific issues precluding clinical scoring 

were: image of scalp/eye/intraoral cavity (194 photographs); extensive confluent lesions not 

amenable to unambiguous human counting (24 photographs); poor image quality (e.g., motion 

artifact) (52 photographs), and duplicate images (70 photographs). The final set comprised of 66 

photographs (median 3.5, interquartile range 2 to 4 photographs per patient, Figure S2) from 

eighteen patients (10 male; 3 female; 5 of unknown gender; 3 infants; 8 children; 6 adolescents; 

1 adult). Fifteen of these patients had photographs between 2007 – 2011, and three in January 

2022. Fourteen photographs (from 6 patients) contained pen markings adjacent to lesions. 

 

Photograph Annotations 

Manual segmentation masks were created for all photos using the free, open-source Gnu Image 

Manipulation Program (GIMP 2021). Rater 1 followed a predefined protocol (eProtocol 1). All 

visible lesions were manually traced on a transparent annotation layer using the pencil tool. 

Lesions from all stages were demarcated in the same manner, marking the full extent of each 

lesion with the boundaries drawn to the edge of affected and normal appearing skin. This 

required approximately 20 – 60 minutes per photograph, depending on the severity and number 

of lesions. Once completed, the annotation layer of each image was exported to create a binary 

segmentation mask of lesion pixels. These segmentation masks were used to train the AI 

algorithm. 

Manual lesion counts were also collected manually for all photos, following a similar 

protocol using the GIMP software (eProtocol 2). The pencil tool used to mark a single spot at the 

center of each visible lesion on a transparent annotation layer. Touching and coalesced lesions 

were marked separately if defined structures could still be discerned. A pencil diameter of 2-5 

pixels was used to ensure that each marking didn’t overlap even for small adjacent lesions. Each 

photo was assessed by the same annotator who had provided segmentation ground truth (rater 1), 

in addition to two other human raters (2 and 3). This lesion counting process required less than 

10 minutes per photograph. 

No clinical outcomes or patient lesion counts were transferred to Vanderbilt for this 

study. All annotators were undergraduate or post-doctoral trainees of the Vanderbilt 

Dermatology Translational Research Clinic, with more than a year of research experience 

focused on dermatologic photograph analysis. 

 

Algorithm Training 

We report the AI development following the CLEAR Derm consensus guidelines (Daneshjou et 

al. 2022). We used a patient-level leave-one-out experiment to evaluate the AI performance, 
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whereby a model was trained using all photos of 17 patients then tested on the unseen held-out 

patient. Model training was performed on consumer-grade hardware (Nvidia RTX 2080 and 

RTX A4000 graphics processing units), with training times of approximately 8 hours per model. 

For each model, the training set was constructed using 256x256 resolution patches extracted 

from all photos of 17 patients. To ensure equal contribution to the training set for each patient, 

regardless of the number of photos, 1000 patches were extracted from each patient distributed 

equally across all available photos. Photos were not taken in a clinical setting, leading to a wide 

variety of environments and backgrounds. The patch locations were therefore distributed using 

80% centered on a lesion pixel (determined from the ground truth mask), and 20% randomly 

sampled from non-lesional areas including background. 

Each model was trained for 40 epochs with binary cross entropy loss using the Adam 

optimizer (Kingma and Ba 2014), with an initial learning rate of 0.0001, reduced to 0.00001 after 

30 epochs. The best weights for each model were selected from the highest Dice value on the 

validation set. The validation set for each model was split from the training set as a random 10% 

subset of patches. During training, data augmentation was applied at each iteration via a random 

combination of elastic transformations, left/right flipping, gaussian blur, affine scaling and 

translation, perspective transforms, color temperature adjustments, and gamma adjustments. 

Model testing was carried out using a sliding window of size of 256x256 and stride of 32. The 

segmentation map was reconstructed by summing the predictions of all patches for a given pixel, 

with the final segmentation mask calculated by thresholding the segmentation map at the optimal 

level determined from all photos in the training set. 

Lesion counts were estimated by a connected-component analysis of the segmentation 

mask, where each discrete (non-touching) lesional area in the mask is counted as a single lesion. 

 

Data Pre-Processing 

All photos were collected with consumer-grade cameras (Samsung Digimax L70 and Canon 

Powershot A630) and resized to a resolution of 1024x768 pixels for archival, prior to transfer. 

Any photos of faces were deidentified by placing black boxes across the eyes, central forehead, 

and periorbital region before any processing, training, or analysis was performed.  

 

AI Algorithm 

We selected the ubiquitous U-Net deep learning architecture (Ronneberger et al. 2015). This 

network uses a symmetric encoder-decoder structure with a contracting path which captures 

context and expanding path which enables precise localization. Long skip connections are used 

to concatenate the upsampled feature map in the expansive path with the corresponding feature 

map from the contracting path. Our algorithm uses an InceptionV4 network as the encoder 

(Szegedy et al. 2017), initialized with ImageNet weights, following the implementation in 

“Segmentation Models Pytorch” (Yakubovskiy 2021). 

 

Algorithm Performance Assessment 

To ensure prospective evaluation, the collection of the AI algorithm output data was planned 

prior to the application of the performance metrics (reference standards). The performance of 

each model was evaluated on all skin in each image (excluding background such as clothing and 

buildings) for the held-out patient. This was done by manually masking off background pixels in 

black before analysis, retaining only the areas of the photo containing the patient’s skin. 

 Segmentation performance of the AI algorithm by the Dice coefficient, a widely used 
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computer vision metric of spatial overlap (Zijdenbos et al. 1994). In photographs of patients not 

used in training, the AI algorithm achieved a median Dice index of 0.72 (interquartile range: 0.62 

to 0.74), where 0 represents no agreement and 1 represents perfect agreement. 

No significant difference in performance was found between photographs with or without 

pen marks by Wilcoxon rank sum test (p > 0.5).  
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TABLES 

Table S1. Summary of pairwise comparisons between different human raters and AI algorithm. 

Rater Pair Bias Upper LoA 

Lower 

LoA 

LoA 

Width Slope R2 

AI vs 1 -5.86 28.56 -40.29 68.85 0.78 0.94 

2 vs 1 -3.24 15.98 -22.46 38.44 1.02 0.97 

3 vs 1 9.68 48.05 -28.69 76.74 1.07 0.92 

3 vs 2 12.92 53.88 -28.03 81.91 1.03 0.90 

 

FIGURE LEGENDS 

Figure S1. WHO Monkeypox infection severity guidelines, from “Clinical Aspects of 

Monkeypox In DRC” by Professor Jean-Jacques Muyembe-Tamfum (Muyembe-Tamfum 2022). 

 

Figure S2. Dataset characteristics. Number of photographs per patient (n=66, N=18) and 

histogram of lesion counts per photo by rater 1 (ground truth). 

 

Figure S3. AI algorithm segmentation performance by Dice index. Each point represents a 

single photo (n=66). Boxplot shows median (0.72) and interquartile range (0.62 to 0.74) and 

mean (0.67, dashed red line). 
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