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Abstract: In late 2019, a new coronavirus (CoV) caused the outbreak of a deadly respiratory disease,
resulting in the COVID-19 pandemic. In view of the ongoing pandemic, there is an immediate need
to find drugs to treat patients. SARS-CoV-2 papain-like cysteine protease (PLpro) not only plays
an important role in the pathogenesis of the virus but is also a target protein for the development
of inhibitor drugs. Therefore, to develop targeted inhibitors, it is necessary to analyse and verify
PLpro sites and explore whether there are other cryptic binding pockets with better activity. In this
study, first, we detected the site of the whole PLpro protein by sitemap of Schrödinger (version
2018), the cavity of LigBuilder V3, and DeepSite, and roughly judged the possible activated binding
site area. Then, we used the mixed solvent dynamics simulation (MixMD) of probe molecules to
induce conformational changes in the protein to find the possible cryptic active sites. Finally, the
TRAPP method was used to predict the druggability of cryptic pockets and analyse the changes in the
physicochemical properties of residues around these sites. This work will help promote the research
of SARS-CoV-2 PLpro inhibitors.
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1. Introduction

In late 2019, a new coronavirus (CoV) caused the outbreak of deadly respiratory
disease, and the COVID-19 pandemic brought major harm and challenges to more than
200 countries and regions around the world [1–3]. Due to the profound impact of these
viral outbreaks on public health and the economy, there is an immediate need to find drugs
to treat patients. SARS-CoV-2 critically relies on the activity of viral proteases [4–6]. It has a
spike protein responsible for binding to its host cell-surface receptor, angiotensin-converting
enzyme 2 (ACE2) [7,8]. After entering the cell, the viral RNA attaches to the host ribosome
to produce two kinds of multiple proteins, the main protease (Mpro, also known as 3CLpro,
the protease domain of nsp5) and the papain-like protease (PLpro, the protease domain of
nsp3), which are necessary for the production of new mature virions [9–11]. These proteases
generate a functional replicase complex and enable viral spread, therefore they are attractive
targets for antiviral therapies such as small-molecule inhibitors [12–14]. Viral proteases
have been identified as promising targets for inhibiting the replication of viruses of diverse
families, such as Coronaviridae, Flaviviridae, Retroviridae, and Picornaviridae [15]. PLpro
is a relatively unusual cysteine protease that is resistant to blockade by such inhibitors [16].

Inhibitors targeting SARS-CoV-2 PLpro are excellent candidates for antiviral drug
development, as they not only block virus replication but also inhibit the dysregulation
of signaling cascades in infected cells [17]. Understanding SARS-CoV-2 PLpro substrate
specificity, structure, and mechanism would greatly facilitate the development of effective
PLpro inhibitors by enabling rational design and research on drug retargeting. Because it is
a beta coronavirus, the function and structure of SARS-CoV-2 papain-like protease (PLpro)
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are similar to those of SARS-CoV and MERS-CoV. The structure of the PLpro monomer
comprises four distinct domains, including an N-terminal ubiquitin-like (UBL) domain and
an extended right-hand architecture with “thumb–palm–fingers” [16,18]. This arrangement
is similar to that of ubiquitin-specific proteases (Figure 1).
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of SARS-CoV-2 PLpro. The blue is the UBL domain (residues 1–60), the cyan is the thumb domain
(residues 61–180), the yellow is the finger domain (residues 181–238), and the red is the palm domain
(residues 239–315). (c,d) show the locations of the main sites mentioned in the article, including the
catalytic triad site, thumb site 1, thumb site 2, palm site, back site 1, back site 2 and finger site.

According to previous literature reports and information from the Protein Databank
(PDB), there are several known SARS-CoV-2 PLpro targets, a canonical cysteine protease
catalytic triad site (PDB ID: 6WUU, 7CJM) [19–21], a thumb region binding site (PDB ID:
7OFS), and a lower palm region binding site (PDB ID: 7M1Y). We named them the catalytic
triad site, thumb site 1, and palm site (Figure 1c). However, at present, only naphthalene
molecules and GRL0617 show high inhibitory activity; however, it still needs to be further
optimized [19,22]. There are also no SARS-CoV-2 PLpro inhibitor drugs with good activity
in clinical trials. An important reason is that the biological activity and targeting selectivity
of existing inhibitors are not strong enough. The crystal structure and molecular docking
results of SARS-CoV-2 PLpro showed that the shear active pocket is in the palm domain,
and the pocket is shallow, which leads to poor druggability [4,23]. However, the protein has
multiple zinc ions with unknown functions, which are stably bound to the region outside
of the known pocket [4]. Moreover, the cryptic pocket in PLpro was also mentioned in
Balkrishna A’s article [24]. These indications suggest that there may be unknown cryptic
activating binding sites on the surface of PLpro. Cryptic sites are defined as sites that form
pockets in ligand-binding structures but not in unbound protein structures [25]. In addition,
because PLpro is only part of the shear activity of NSP3 encoding nonstructural protein
NSP3, PLpro may play a role more in protein interaction with other parts of NSP3 [26,27].
Cryptic pockets often appear in the dynamic process of these interactions [28]. The cryptic
pockets that have no direct relationship may also have an allosteric relationship with the
active pocket, which can be used as the target of allosteric inhibitors [29]. The molecular
binding mechanism of SARS-CoV-2 PLpro activation sites is unclear, which delays the
development of related drug molecules. More detailed molecular simulation data will
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be helpful for drug design. Therefore, it is necessary to carry out molecular simulation
research on PLpro and analyse its active sites to determine whether there is the possibility
of other cryptic activating binding pockets.

The set of amino acid residues around a binding pocket determines its physicochemical
characteristics and, together with its shape and location in a protein, defines its functionality.
The mobility of proteins allows the opening, closing, and adaptation of binding pockets to
regulate binding processes and specific protein functionalities [30]. Many proteins have
small-molecule binding pockets that are not easily detectable in the ligand-free structures.
These cryptic sites require a conformational change to become apparent [25]. Cryptic
pockets appear with the appearance of protein conformation and specific dynamic changes.
These changes include the rearrangement of residue side chains, the movement of the
loop, the relative displacement of the domain, and so on [28]. The cryptic pocket is
difficult to capture by experimental means such as X-ray crystal diffraction. However,
the computational biology method can simulate the conformational changes of proteins
on different time scales at the atomic level to identify and characterize cryptic binding
sites [28]. Therefore, this study uses computational biology to find the cryptic pockets on
the surface of SARS-CoV-2 PLpro, analyse the properties of the changes in residues around
these active sites, and provide important target information for the design of subsequent
small molecule inhibitor drugs.

The research workflow is shown in Figure 2. First, we detected the possible active
sites of PLpro series proteins (Table 1) by three static site analysis methods: the sitemap of
Schrödinger (version 2018, LLC, New York, NY, USA), the cavity of LigBuilderV3 module,
and the online tool DeepSite. In Schrödinger, the sitemap module can treat entire proteins
to locate binding sites whose size, functionality, and extent of solvent exposure meet
user specifications [31,32]. In LigBuilder V3, the cavity module can detect and analyse
the ligand-binding site of the target protein and estimate the drugabbility of the binding
site [33]. In addition, we also used an online web tool, DeepSite, which is a protein binding
pocket predictor based on deep neural networks [34]. One reason for choosing these
conformations is that they are bound conformations. These conformations have ligands
at known sites, such as 6WUU with the VIR250 in the catalytic triad site [6], 7CJM with
ligands at catalytic triad sites, 7M1Y with ligands in the palm region, and 7OFS with
ligands in the thumb region. The other reason was to compare whether there were some
differences by detecting mutant PLpro, C111S mutant 7D47, and C112S mutant 7D6H.
Through these three static site analysis methods, we verified the known binding sites
and detected the possible cryptic sites to provide a reference for subsequent experiments.
Second, we established the PLpro pure water system using normal molecular dynamics
(MD) and five kinds of mixed solvents systems using mixed solvents molecular simulation
(MixMD). In order to fully research the induction of small molecule probes and detect all
cryptic pockets as much as possible. In MixMD, 5% aqueous solutions of five hydrophobic
molecular probes, namely, isopropanol (IPA), acetonitrile (ACN), pyrimidine (PYR), phenol
(PHN), and N-methylacetamide (NMA), were used to detect the cryptic pockets on the
surface of PLpro [35,36]. We selected these probe solvents because they allowed us to
capture hydrophilic, hydrophobic, hydrogen-bonding, and aromatic interactions [29,37].
In addition, NMA is the smallest molecule with peptide bonds, which can simulate the
role of peptide substrates in cryptic pockets [36]. The molecular weight and volume of
these probe molecules are small enough to be easily placed into the pocket as a whole,
therefore they have high single atom interaction efficiency. Following simulation, for the
mixed solvent system trajectory given by MD simulations, the CPPTRAJ grid command
from Ambertool 21 [38] and Pymol-MixMD Probeview [39] were used to calculate and rank
the occupation density of probe molecules on the surface of SARS-CoV-2 PLpro. MixMD
Probeview incorporates two analysis procedures: (1) identifying and ranking whole binding
sites and (2) identifying and ranking local maxima for each probe type. According to the
ranking information and comparing the results of previous site detection, we can try to
determine the location of possible cryptic binding sites. Reliable cryptic site prediction
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requires not only molecular dynamics and the pocket shape, but also the combined use of
residue physicochemical properties as features of machine learning algorithms. TRAnsient
Pockets in Proteins (TRAPP) is a tool that allows for the exploration of different protein
conformations, the analysis of binding pocket flexibility and dynamics, and the extraction
of spatial and physicochemical information on the binding pocket conformations [40].
TRAPP provides two machine learning models, a logistic regression model (TRAPP-LR),
and a convolutional neural network model (TRAPP-CNN). TRAPP-LR provides a linear
model for pocket druggability trained with logistic regression using global descriptors
of the binding pockets (such as the pocket volume and pocket hydrophobicity). TRAPP-
CNN uses a convolutional neural network to process a spatial grid representation of the
properties of the binding pockets [40]. Finally, we used the TRAPP method to analyse the
known sites and further judge the possible cryptic binding sites, as well as the various
druggability-related attributes of the residues around the site.
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Table 1. The related residues of the pocket boundary.

Site Related Residues
The Most Related Residue (More than Six

Heavy Atoms Associated with the
Pocket Boundary)

Catalytic triad site 106–119, 162–174, 205–212, 243–251,
260–277, 297–304

110–112, 161–167, 244–248, 422 261, 263,
267–272, 301, 302

Thumb site1 10–13, 32–35, 56–84, 127–132, 149–156 56–84
Thumb site 2 10–17, 33–40, 53–59, 62–95, 125–153 12, 13, 14, 17, 56, 71, 72, 82, 83, 86, 91, 95, 130,

133, 134, 138, 142–147, 149
Finger site 206–223, 228–233, 243–253, 256–264,

297–304 208–211, 214, 218–221, 245–250

Back site 1
101, 117, 118, 121–124, 172, 177, 180,

181, 204, 209–220, 233, 236–244,
250–261, 274–283, 285, 293–296,

300–314

100, 121–124, 211–214, 217, 218, 240–242,
250–259, 277–281, 303–310

2. Results and Discussion
2.1. Target Analysis Based on the Original SARS-CoV-2 PLpro Conformation

Through the three static site detection methods, namely, Schrödinger, LigBuilderV3,
and DeepSite, we obtained the following results. The site detection and scoring of different
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conformations by the three methods are shown in Figure 3a, Figure 3b, and Figure 3c,
respectively. The specific scores, and other physical and chemical properties, are shown
in Table S1, Table S2, and Table S3, respectively. In addition, for the convenience of
observation, we present statistics on the frequency of the detected occurrence of these major
sites (catalytic triad site, thumb site 1, thumb site 2, palm site, back site 1, back site 2, and
finger site), as shown in the bar chart of Figure 3d. Through these results, firstly, we verified
the known SARS-CoV-2 PLpro targets, catalytic triad site, thumb site 1, and palm site, as
shown in Figure 1c. With these three detection methods, the known catalytic triad sites can
be detected in most conformations. The known thumb site 1 was mainly detected in all
conformations except 6WUU by the Schrödinger method and in the 7ofs conformation by
the DeepSite method. In other cases, the thumb site 2 did not appear in the top ranking.
According to the mechanism of cryptic pocket [25], we speculate that the druggable cavities
of this position may be easily detected only under the induction of small drug molecules.
However, the another known palm site locus appeared less frequently and scored lower.
Secondly, we also found several areas where cryptic sites may exist, such as the thumb,
finger, and back of the PLpro region. We named two of them, thumb site 2 and back site
1, as shown in Figure 1d. Notably, the scores of these cryptic sites are not low, and the
ranking of these known binding sites is not the highest. The back site 1 and thumb site 2
were detected in many cases, and the scores ranked high, as shown in Figure 3, indicating
that these two positions are likely to have cryptic active sites. Then, the detection results of
different conformations are also different, and some conformations have sites that other
conformations do not have. The conformational changes will cause site changes, even
subtle changes. To summarise, all these methods have found the known sites, indicating
that the software is reliable. In addition, some potential sites were also found. The early
stage analysis of PLpro sites provides an important reference for subsequent research.
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2.2. Search for Cryptic Sites of SARS-CoV-2 PLpro Based on Probe Molecular Density Sequencing

We used MixMD Probeview to analyse the occupancy grids and obtained the hotspot
ranking (Figure 4). The first five positions were selected as candidate sites. According to
previous studies, for each system, the top-ranked site was either the active or allosteric
site [29,39]. In the ACN MixMD system, ACN probe molecules can effectively capture
hydrophilic interactions, in which the nitrogen atom is the main hydrogen bond donor. In
the probe arrangement (Figure 4a), back site 1 has the most ACN distribution, followed by
the known palm site. The third place is known thumb site 2. This site has appeared many
times in the previous site detection and has a high score, which is likely to be a cryptic
binding site. Then, the fourth and fifth positions are in the finger region and the known
catalytic triad site region, respectively. Through the arrangement of probe molecules, we
know that the pockets of these sites have a certain hydrophilic interaction.
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In the NMA MixMD system, NMA probe molecules have the smallest peptide bond
and can simulate the role of peptide substrates in cryptic pockets. In the probe distribution
density ranking (Figure 4a), the first point is also distributed in back site 1. This position
is consistent with the position with the highest molecular density of the ACN probe. The
second point is the known catalytic triad site region, and NMA also ranks the highest in
the density of the catalytic triad site among all probe molecules. The third point is another
known palm site. The fourth point is thumb site 2, which has a high distribution similar to
ACN probe molecules. Finally, the fifth highest density position is located above the finger
of PLpro. In the previous site detection, the score of this position is not high, and there is
not much distribution of probe molecules except NMA.

In the IPA MixMD system, IPA probe molecules can easily capture small hydrophobic
interactions and provide hydrogen bond receptors and donors. In the molecular density
ranking of the probe (Figure 4a), the first point is in the region of known thumb site
1. According to this result, we speculate that thumb site 1 has a role in the sensitive
hydrophobic interaction, which is an important factor affecting the druggability of the
active pocket. The second point is in the finger region; however, this region was not scored
prominently in the previous site detection. Then, there is a third point, located in the region
of the known palm site, followed by the fourth point, located in the thumb site 2 region
mentioned above. The last point is located outside the thumb region.

For the PHN MixMD system (Figure 4a), PHN probe molecules are six-membered
aromatic (less soluble) and can capture aromatic interactions very well. In this system, the
first point of the PHN probe molecular arrangement is located at the back of the finger
region of PLpro. This region also has the distribution of NMA probes, which is named back
site 2 for the convenience of subsequent naming. However, it should be noted that numbers
two, four, and five in the density ranking are in the finger region (Figure 4a), and there are
a large number of PHN probe molecules in this region. Due to the problem of clustering,
the ranking is not the highest. The finger region strongly attracts PHN probe molecules,
indicating that this region is likely to have cryptic active sites with a strong aromatic effect,
which needs further investigation. In the follow-up, we conducted TRAPP analysis on this
region to verify whether this region has good druggability. The third position is in the palm
area, which is a hot spot area, and the other four probes are also distributed.

For the PYR MixMD system (Figure 4a), PYR probe molecules are six-membered
aromatic (more soluble) and can also capture aromatic interactions. In this system, the site
with the highest molecular density of the probe is located at the back of PLpro, which is
back site 1, as mentioned above. This position is also the site with the highest molecular
density of NMA and ACN probes. In view of the high attractiveness of this region to all
three probe molecules, it is plausible that this region has cryptic sites. Subsequently, we also
analysed the back site 1 region using the TRAPP method. The second place was located in
the lateral region of the thumb of PLpro, and the third place was the region of the known
palm site. The fourth position is located in the finger region, which is speculated to be due
to the aromatic interaction in this region, therefore it also attracts PHN probe molecules.
The last site is located in the back site 2 region mentioned above, which is also the region
with a high distribution of PHN probe molecules. It can be concluded that the back site
2 region also has a certain aromatic interaction, thus it can attract PHN and PYR probe
molecules here. However, in the previous site detection, the score of back site 2 was not
high, and the druggability was poor.

We found that there were many overlapping points in the simulated trajectories of
different mixed probe molecules. We counted and ranked these highly overlapping points
(Figure 4), include the known sites, namely, the catalytic triad site, thumb site 1 and the
palm site, as shown in Figure 4b. In the region of the catalytic triad site, there are three
types of probe molecular distributions, ACN, IPA, and NMA, of which NMA has the
highest molecular density. In the region of thumb site 1, there are also three kinds of probe
molecules; however, they are mainly IPA probes, followed by some ACN and very little
NMA. In the region of the known palm site, there are five probe molecules distributed in
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this site region, but they are not the highest in their respective rankings. However, due
to its shallow pocket, the score in the previous site detection is not high, and, through
molecular docking, the score of docking in this region is low (it was scored by Schrödinger
SP docking). Although it is a known site with known complex crystals, 7M1Y, due to the
poor analysis and scoring results, it is speculated that the binding activity of this site is poor,
and we have excluded the follow-up study of this site. In addition, there are some possible
unknown binding sites, such as thumb site 2, finger site, back site 1, and back site 2, as
shown in Figure 4b. In the region of thumb site 2, there are four kinds of probe molecular
distributions: ACN, IPA, NMA, and PYR. Except for a lower PYR distribution, the other
three have a high-density arrangement. As mentioned earlier, this position is likely to be a
cryptic site with high activity. For the finger site, five probe molecules are distributed here,
mainly PHN and PYR aromatic probe molecules, followed by some NMA molecules and a
small amount of IPA and ACN. According to the previous results, this site is likely to be
an aromatic cryptic binding site. At back site 1, the probe molecules of the three systems
ranked first in their density, ACN, NMA, and PYR, followed by some IPA distribution. This
region site is also a possible cryptic site. In the region of back site 2, there are also five kinds
of probe molecular distributions, mainly PHN and PYR, as well as a certain number of
NMA, a small number of IPA, and very little ACN. Although this site can attract aromatic
probe molecules PHN and PYR, and it is among the top five in the probe molecular density
ranking of both systems, it is likely to be a binding site with high activity according to the
above site analysis with three software programs. In summary, in these high overlapping
point sites, for palm and back site 2, due to the low scores of the sites in the corresponding
region in various site detection methods and the poor results of molecular docking found
in previous studies, we speculate that it is due to the shallow pocket in the corresponding
region, which leads to poor druggability. Therefore, we excluded the possibility of cryptic
sites with high binding activity in the palm and back site 2 regions and did not conduct
subsequent residue analysis. Compared with the previous site analysis of the original
structure, we finally identified the three most likely cryptic sites: back site 1 and finger site
and thumb site 2. Then, we used the TRAPP method to analyse the residues around the
three cryptic sites and the previous two known sites, catalytic triad site and thumb site 1.

2.3. Analysis of Six Model Systems MD Results

We simulated the mixed solvent molecular dynamics, established the solvent sys-
tem of five mixed probe molecules, attempted to use five probe molecules to induce the
conformational change of PLpro, and then attempted to locate the cryptic active pocket.
In this study, the stability of six model systems was verified according to the molecular
dynamics trajectory of the simulated system. The root-mean-square fluctuation (RMSF) of
each amino acid residue and the root-mean-square deviation (RMSD) between the amino
acid heavy atom near the protein main chain and the initial conformation were calculated
mainly based on the analysis program of the GROMACS 2018.7 software (Figure 5). We
analysed the relationship between RMSD and the simulation time to evaluate the stability
of the simulation system and compare the differences in the RMSD of multiple systems.
According to the initial conformation, using unbiased molecular dynamics simulation, the
protein was sampled under the explicit solvent model. The RMSD results show that the
protein system approached the state of convergence after 50 ns of simulation. Compared
with the initial conformation, the fluctuation range of the RMSD of the whole protein
skeleton atom in the simulation process was approximately 6 Å. In all systems, there was
no significant difference in RMSD when each system was compared in pairs.
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The RMSF results (Figure 5) showed that the regions of residues 220–240 are the
most flexible, with a deviation of up to 5 Å from the reference structure. The second is
the 260–270 region, in which the PYR MixMD and ACN MixMD systems can be close to
6 Å, and the other four groups can reach approximately 4.5 Å. In every system, the RMSF
values of residues in most regions of the protein do not exceed 2 Å when compared with
each other, therefore the conformational change of protein residues is not evident from the
result of the RMSF value alone. Proteins are dynamic and possess an inherent flexibility,
which alters the shape and properties of their binding pockets. The appearance of cryptic
pockets often requires corresponding conformational changes in the protein. However,
if the change in conformational residues is very small, conventional methods are often
not sensitive enough to detect the corresponding changes, therefore it is impossible to
judge the druggability of the activated binding sites. Some methods that combine pocket
druggability prediction and the molecular dynamics simulation have been developed, such
as MDpocket [41] and JEDI [42]. However, these methods use only a few descriptors, such
as volume and hydrophobicity, and therefore might not be sensitive enough to capture
the variations in druggability due to subtle conformational changes [43]. In this case, we
apply the TRAPP method. The TRAPP method is designed to trace changes in the spatial
and physicochemical properties of a specified pocket in a protein that may arise due to the
protein’s flexibility. Therefore, to further analyse and compare the small conformational
changes of residues around the active pocket of PLpro, we used the TRAPP method to
analyse the druggability and physicochemical properties of multiple sites in detail.

2.4. Analysis and Calculation of the Pocket Druggability of Activated Binding Sites

By using the TRAPP method, we dynamically analysed these main sites: catalytic
triad site, thumb site 1, thumb site 2, finger site, and back site 1. First, we used the TRAPP-
LR/CNN score curve to evaluate the druggability of each site. Second, we analysed the
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obvious properties changes of each site. Third, we analysed the associated residues at each
site. Finally, we analysed the conformation after clustering and compared it to explore the
main factors affecting the druggability of this site.

For the catalytic triad site, according to the molecular density ranking of the probe,
we selected the NMA mixed solvent system trajectory for comparison with the pure water
system trajectory. It can be seen from Figure 6 that, in the scoring curves and average
values of LR and CNN models, the pocket druggability of the NMA MixMD system is
better than that of the pure water system. This confirmed that the induction of NMA probe
molecules accelerated the druggability of catalytic triad website to a positive extent. From
Figure S1A, it can been seen that the residues in Table 1 are related to the catalytic triad sites.
Compared with the NMA MixMD system and pure water system, the residues associated
with pockets are basically the same, and there is no obvious difference, which indicates
that the insertion of the NMA probe molecules has little effect on the residues related to
the catalytic triad site. In the clustering results of the NMA MixMD trajectories, we loaded
cluster results in the druggability heatmap (see Figures S3A, S4A and S5A). In the LR
model, the highest druggability score (0.959) occurs in Frame 9, where the hydrophobicity
of the pocket (1.759), positively charged residues (−1.367), and the low number of H-bond
donors (−3.516) seem to be strong contributors to the high scores. However, the CNN
model score is only 0.04. The small volume of pocket (−2.527) and H-bond acceptors
(1.717) were the major contributors to the low druggability score. The point with the lowest
druggability score (0.018/0.057) in the NMA MixMD trajectory occurs in Frame 1, where
the volume of the pocket (−2.237), high number of positively charged residues (2.002), and
number of H-bond donors (2.479) seem to be a strong contributor to the lower druggability
score when compared to the reference structure. In the same way, we derived the results
of the pure water system for comparison (Figures S3A and S4). The highest druggability
score (0.408/0.884) occurs in Frame 7, and the small number of positively charged residues
(−1.238) were the major contributors. The lowest druggability score (0.038/0.051) occurs in
Frame 2. The absence of H-donors (1.741) and acceptors (2.60) and the low volume of the
pocket (−1.530) were the major contributors to a lower druggability score. From the above
results, we know that the main factors restricting the druggability of the catalytic triad site
include pocket volume, the hydrophobicity of the pocket, positively charged residues, and
a number of H-bond donors. However, after the insertion of the NMA probe, the volume
induction effect on the catalytic triad pocket is almost indiscernible; moreover, it only has
some changes in other properties. However, from the point of view of the LR and CNN
druggability curve, there is nonetheless evidence of improvement.

For thumb site 1, we selected the IPA mixed solvent system trajectory to compare with
the pure water system trajectory. In Figure 6, first, the pocket LR and CNN druggability
score curve of the mixed solvent system is slightly better than that of the pure water system.
Second, the pocket volume score curve of the IPA MixMD system is generally higher
than that of the pure water system. Third, in the hydrophobic interaction curve, after
inserting IPA, it is slightly improved. This shows that IPA has some influence on thumb
site 1. In the cluster results (Figure S2B), compared with the pure water system, there
are more conformational types in the IPA mixed solvent system. It is also preliminarily
judged that IPA has a certain impact on the residues near thumb site 1. From the results of
pocket contact residues shown in Figure S1B, we found that the residues in Table 1 were
mainly related to thumb site 1. Among them, the correlation of residues 56–84 is the most
obvious, while the correlation of residues 127–132 and 149–156 is weak. Compared with
the pure water system, the colour of residues 11, 58, 68, 69, 72, 74, 77, 79 and 80 in the
IPA MixMD system is deeper, and the degree of correlation is greater, indicating that the
insertion of IPA has a certain inducing effect on the formation of the thumb site 1 pocket
and increases the contribution of heavy atoms in these residues. In the snapshot section
(Figures S3B, S4B and S5B), Frame 4 has the highest druggability score (0.997/0.902) in the
NMA MixMD trajectory of the LR and CNN models. The high hydrophobicity (4.261) was
the major contributor to the high druggability. Frame 3 has the lowest druggability score
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(0.062/0.097), which is caused by the small volume (−2.423) of the pocket and the presence
of the H-donor (3.052). In the results of the pure water system, the highest druggability
score (0.994/0.470) occurs at snapshot 3. The high hydrophobicity of the pocket (4.220), the
low enclosure of the pocket (−2.432), the absence of positively charged residues (−1.367),
and H-bond donors (−2.265) were the major contributors. In the CNN model, the highest
score is 0.902 for the IPA system, while it is only 0.470 for the pure water system. Compared
with the snapshot, this result may be due to the fewer hydrogen bond receptors, the
increase in hydrophobicity, and the slight increase in the pocket volume in the IPA system.
These results showed that hydrophobic interactions are the main factor restricting the
druggability of the thumb site 1 pocket, and the insertion of the IPA probe molecule can
induce an increase in hydrophobicity and a slight increase in the volume of the thumb site
1 pocket, making the pocket druggability of the IPA system better than that of the pure
water system to a certain extent.
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In addition to the above two known sites, we also analysed the other three possible
cryptic sites. For thumb site 2, we selected the ACN mixed solvent system trajectory for
comparison with the pure water system trajectory. In both the CNN and LR model curves
(Figure 6), the druggability score of thumb site 2 of the ACN MixMD system is obviously
better than that of the pure water system. First, from the average value of LR and CNN, the
ACN MixMD system is approximately 4, and the pure water system is only approximately
2. In addition, the trajectory score of the ACN MixMD system can reach 1.0 many times;
however, in a pure water system, the maximum score can only reach approximately 0.8.
In the score curve of the hydrogen bond donor (Figure 6), the influence of inserting ACN
can be clearly seen. The score of hydrogen bond donors in the ACN MixMD system can
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reach up to 5, while the highest score of this item in the pure water system is only 2.
Although the average hydrogen bond donor value is slightly lower than that of the pure
water system, the appearance of high score conformations in the overall trajectory cannot
be ignored. In addition, in the hydrophobic interaction and aromaticity curves, the ACN
MixMD system is improved to varying degrees compared with the pure water system.
Finally, the pocket volume of the ACN MixMD system also increases slightly. In the results
of the pocket contact residues (Figure S1C), we found that the residues in Table 1 were
mainly related to thumb site 2. Compared with the pure water system, the ACN MixMD
system showed a more obvious correlation among residues in the range of 72–80, especially
residues 74, 75, 76, and 77. This shows that the insertion of the ACN probe induces changes
in these residues around the thumb site 2 pocket and increases the contribution of these
residues to the thumb site 2 pocket to a certain extent. Then, we loaded cluster results in
druggability information for the selected snapshot sections (Figures S3C, S4C and S5C).
The highest druggability score (0.982/1.000) occurs in Frame 2, where the pocket volume
(0.873) and hydrophobicity (0.991) of the pocket seem to be the strongest contributors to
druggability. Second, the small number of positively charged residues (−0.900), H-bond
acceptors (−0.991), and donors (−0.522) also has some positive influence. The lowest
druggability score (0.000/0.065) occurs in Frame 7, where the low pocket volume (−2.382),
more positively charged residues (1.819), H-bond acceptors (6.728), and donors (4.104) seem
to be the reason for lower druggability. Compared with the water system, the reasons for
the high and low scores of druggability are similar. These results indicate that the insertion
of ACN probe molecules induces a change in the physical properties of the thumb site
2 pocket to a certain extent and improves the druggability of thumb site 2. Combined with
the results of the previous site analysis and probe distribution, thumb site 2 has a certain
development potential and needs further investigation in the future.

For the finger site, we selected the PHN mixed solvent system trajectory to compare
with the pure water system trajectory. Through observing the score results curve (Figure 6),
in the LR and CNN model, after inserting PHN, the druggability and aromatic curve did
not improve much, or, in some instances, even decreased. Combined with the previous
probe distribution, it is speculated that the finger position can adsorb a large number of
PHN probe molecules, but that it has little effect on the changes in the pocket properties of
the finger site. From the results of pocket contact residues shown in Figure S1D, we can
see that the residues in Table 1 were related to the finger site. Compared with the pure
water system, the red lines of residues 208 and 218–221 in the PHN MixMD system are
more obvious, especially the colour of the residue 208, indicating that the insertion of PHN
induces these residues and increases the association between these residues and finger site
pockets. It is worth noting that the colour of the residues 245–250 and 298–301 is lighter
than that of the water system, indicating that the contribution of these residues is even
reduced due to the addition of PHN. Overall, PHN probe molecules could not obviously
induce the formation of the finger pocket. In the snapshot part (Figures S3D, S4D and S5D),
the highest druggability score (0.530/0.351) is at snapshot 2 in the PHN MixMD system.
The high hydrophobicity (0.649) and the absence of H-acceptors (−0.885) are the major
contributors to druggability. The lowest druggability score (0.027/0.071) is at snapshot
4, where the presence of H-donor (1.153), the enclosure of the pocket (2.323), and the
small volume of the pocket (−1.969) seem to be the reason for lower druggability score.
In the pure water system, the highest druggability score (0.455/0.212) is at snapshot 4,
and the absence of positively charged residues (−1.367) seems to be the reason for the
high druggability. The lowest druggability score (0.037/0.153) is snapshot 5, where a
high number of H-donors (1.563), H-acceptors (2.423), and the small volume of the pocket
(−1.988) seem to be strong contributors to a lower druggability score. According to the
above drug availability score, even if the probe molecule is inserted, the druggability of the
finger site cannot be improved, and the overall trajectory curve score of both the LR model
and CNN model is low. Thus, the possibility of this site becoming a cryptic binding site is
very small.
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For back site 1, because the ranking of NMA, ACN, and PYR is the highest in the
probe distribution, we selected these three groups of mixed solvent system trajectories to
compare with the pure water system trajectory. According to the scoring of the four systems
(Figure 6), from the druggability and other physicochemical properties of the pocket curves,
the changes of the four systems are significantly small, and the druggability score was not
improved compared with the pure water system, indicating that the insertion of probe
molecules has little effect on the properties of their pockets. In the results of pocket contact
residues (Figure S1E), we found that the residues in Table 1 were related to the back site 1
pocket. It is worth noting that, compared with the pure water system, residues 124, 238,
239, 279, and 280 in the other three MixMD systems showed a more obvious correlation,
especially in the can MixMD system. This shows that the insertion of probe molecules does
induce some residues to change; however, the change is small, and the overall impact on
the back site 1 pocket is not obvious. In addition, the induction effect of the ACN probe
molecules is slightly better than that of NMA and PYR probes. In the snapshot section
(Figures S3E, S4E and S5E), the highest druggability score (0.678) of the LR model is Frame
1 in the NMA MixMD system, and the absence of H-bond donors (−0.678) is the major
contributor to druggability. The highest druggability score (0.443) of the CNN model is
at snapshot 5 in the ACN MixMD trajectory, which seems to be mainly caused by the
pocket volume (0.411) and the absence of the H-donor (−0.539) inside the binding pocket.
Based on all the low score snapshots, the main reasons affecting the low scoring include the
enclosure of the pocket, absence of hydrophobility, and the presence of positively charged
residues inside the binding pocket. The biggest impact is caused by the enclosure of the
pocket, and, even if the probe molecule is inserted, this item has not been improved much.
In summary, although back site 1 has strong attraction for various probe molecules, it has a
low probability of being a cryptic active binding site for the above reasons.

Using the TRAPP method, we analysed the change in the physicochemical properties
of the residues around each active binding site in different systems. From the overall
druggability scoring curves of the TRAPP-LR/CNN models (Figure 6), the result of thumb
site 1 is the best, followed by thumb site 2, the catalytic triad site, finger site, and back
site 1. Among them, after inserting the probe molecule, the clearest enhancement in the
druggability score was seen for thumb site 2, followed by thumb site 1, and then the
catalytic triad site. Moreover, the druggability of the finger site and back site 1 is poor;
therefore, we estimate that they are less likely to become cryptic sites. In terms of other
physicochemical properties, for two models, the pocket volume and hydrophobicity are
the main properties that are positively correlated with the druggability score, while the
other global properties mostly have a negative correlation [40,43]. Through a horizontal
comparison of the different sites of the scoring curves of several physicochemical properties
that mainly affect the druggability of the pocket, we obtained the following analysis results.
According to the average score of pocket volume and the overall volume curve, the order
from high to low is thumb site2, back site 1, catalytic triad site, finger site and thumb
site 1. Among them, the pocket volume score of thumb site 2 is the highest, and the peak
can reach 1.5. After the induction of ACN probe molecules, there is a certain degree of
improvement. This is an important reason for why we speculate that thumb site 2 may
become a cryptic binding site. Although thumb site 1 is a known site, this property limits
the development of its druggability, although it is slightly improved after induction by the
IPA probe. According to the results of the hydrophobicity analysis, in order from high to
low, is thumb site 1, finger site, thumb site 2, catalytic triad site, and back site 1. Among
them, the hydrophobicity of thumb site 1 is the best, which also explains the reason why
the pocket showed high hydrophobicity in the previous site detection and attracted IPA
probe molecules. Moreover, after the insertion of IPA probe molecules, the hydrophobicity
of thumb site 1 was slightly improved, and the average value increased from 3.646 to 3.944.
According to the average score of the exposure and the overall exposure curve, the pocket
enclosure score order, from high to low, is back site 1, finger site, thumb site 2, catalytic triad
site, and thumb site 1. The higher pocket enclosure, the more unfavorable the druggability
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of the pocket. Among them, thumb site 1 is the most exposed pocket, which also explains
part of the reason why it becomes a known site. In addition, it is worth noting that, after
the induction of probe molecule ACN, this property of thumb site 2 has been improved to
a certain extent, and the average score has decreased from 0.7019 to 0.1950. This is another
important reason why we speculate that thumb site 2 may become a cryptic binding site.

In summary, for the catalytic triad site, we found a pocket volume that restricts its
pocket druggability, which was not improved by the insertion of NMA probe molecules.
For thumb site 1, we know that the insertion of IPA probe molecules has a positive impact
on the druggability and related physical and chemical properties, and, among the five sites
analysed, the result is the best from the druggability scoring curve of the overall trajectory.
For the two known binding sites, through the above results, we know that the physical and
chemical properties of thumb site 1 are more likely to be changed after being induced by
the probe molecules to increase the druggability. However, at present, most studies mainly
focus on the catalytic triad site. In the future, it may be necessary to strengthen the research
on thumb site 1, hoping to find better small molecule inhibitor drugs for SARS-CoV-2
PLpro. Thumb site 2 may be the next SARS-CoV-2 PLpro potential cryptic binding site. At
the same time, we also found that the insertion of the ACN probe molecules has a positive
inducing effect on the improvement of the druggability of thumb site 2.

3. Materials and Methods
3.1. Static Site Analysis

The initial X-ray crystal structures of SARS-CoV-2 PLpro were downloaded from the
Protein Databank (PDB), PDB ID (Table 2): 6WUU [6], 7CJM [19], 7D47 (to be published),
7D6H [44], 7M1Y (to be published), 7OFS (to be published). First, we use sitemap of
Schrödinger (version 2018, LLC, New York, NY) and counted the top 5 test results. Second,
we used the cavity module of LigBuilderV3 [45] to find and predict binding sites and
counted the top 5 test results. Finally, we used the online tool DeepSite [34] to detect the
site of SARS-CoV-2 PLpro and reserved all test results.

Table 2. SARS-CoV-2 PLpro structures.

PDB Resol. Released Ligand IDs Protein PubMed ID Metals

7D6H 1.60 Å 2020-11-04 PO4 NSP3:
PLpro 33979649 Zn2+

7OFS 1.90 Å 2021-05-12 YRL NSP3:
PLpro - Zn2+

7D47 1.97 Å 2020-10-07 CA NSP3:
PLpro - Ca2+; Zn2+

7M1Y 2.02 Å 2021-03-24 NA, FMT, IOD,
9JT

NSP3:
PLpro - Na+; Zn2+

6WUU 2.79 Å 2020-05-20 VIR250 NSP3:
PLpro 33067239 Mg2+;

Zn2+

7CJM 3.20 Å 2020-09-02 TTT NSP3:
PLpro 33473130 Zn2+

3.2. MixMD Simulations

We download the initial X-ray crystal structures of SARS-CoV-2 PLpro from the Protein
Databank (PDB), PDB ID: 6WUU. The probe molecules of IPA, ACN, PYR, PHN, and
PYR were obtained from Ligand Expo web (http://ligand-expo.rcsb.org/ld-search.html,
accessed on 20 July 2022). First, the downloaded protein file (6WUU.pdb) was prepared
by Schrödinger’s protein preparation wizard (version 2018), which removed excess water
molecules and heteroatoms from the protein, built the missing side chain atoms, corrected
the structure of the protein, and added hydrogen atoms. Then, we run the MD for the six
systems, single water of 6WUU, and mixed solvent (5% aqueous solutions of IPA, ACN,
PYR, PHN and NMA, respectively) of 6WUU with GROMACS (version 2018.7) [46]. The
system molecules were described by the CHARMM27 Force Field and TIP3P water model.

http://ligand-expo.rcsb.org/ld-search.html
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The temperature and pressure of the systems were maintained at 310 K and 1 atmosphere,
respectively. The coordinates, energy, temperature, and other parameters of the trajectory
were output once every 1 ns. The simulated step size was 2 fs. Periodic boundary conditions
were used in the system. This was followed by a simulation of 100 ns. For six systems,
10 independent simulations were carried out, resulting in 1 µs of cumulative production
simulation time.

3.3. Probeview Procedures

Following simulation, 1 µs of each MixMD trajectory was aligned and generated in
a 0.5 Å × 0.5 Å × 0.5 Å grid using the CPPTRAJ module in AmberTools21. Load files
to be analysed into PyMOL-MixMD Probeview. MixMD Probeview was used for the
analysis of the occupancy grids and obtained the hotspot ranking and to compare the
position detection results obtained in the previous target analysis and delete the pockets
with low druggability.

3.4. TRAPP Workflow

In the six systems, single water, and five mixed solvents, a 100 ns trajectory was taken.
For different binding sites, according to the density ranking of probe molecules, we selected
the probe mixed solvent system with the highest ranking at the corresponding points to
compare with the pure water solvent system to observe the effect of the probe molecules
on sites. According to the pocket position, the residues around the binding site are selected.
We selected the residues of the catalytic triad site, thumb site 2, and finger site and back
site 1 within 10 Å and the residues of thumb site 1 within 8 Å as the comparison objects
(Figure 7). This provided a reference for the binding site position in a protein and is used
for sequential alignment and superposition of protein structures from an ensemble or a
trajectory. Then, the clustering procedure was run, backbone atoms were used for RMSD
calculations, and fast hierarchical clustering of the binding site conformations was carried
out with a threshold of 3 Å. Figure S2 illustrates the distribution of snapshots among
clusters. Finally, the shape and physicochemical properties of the binding site region were
computed for each structure. The druggability score of each frame in the MD trajectory
was predicted by both the TRAPP-LR and TRAPP-CNN. Then, the pocket druggability
is computed for each snapshot and plotted to show its variation. For TRAPP method, its
physicochemical properties of the binding site were calculated by the following formula
(Table 3). The results of the score of TRAPP-LR/CNN models and various properties
changes of pocket are shown in Figure 6. The results of the pocket contact residues are
shown in Figure S1 and Table 1. In Figure S1, colour defines the number of heavy atoms in
each residue that contribute to the pocket boundary in a particular snapshot. The darker
the colour, the closer the residue relates to the pocket. The physicochemical properties of
the pocket along the MD trajectory of the clustering result are shown in Figure S3. The
score heatmap of the reference conformation, the lowest score cluster, and the highest score
cluster are derived, respectively, as shown in Figure S4. The pocket conformation for the
reference conformation, the lowest score cluster, and the highest score cluster are derived,
respectively, as shown in Figure S5.

The grid contains N grid points in one channel. A grid point is denoted as ri, where
i = 1, . . . , N. p represents a particular protein structure. G, Gch, and Gat are the distribution
functions for cavity, charged atoms, and other atomic properties, respectively. The grid
spacing is denoted as lp; thus, a unit volume and a unit surface area in the grid are

(
lp
)3

and
(
lp
)2. ri(−1)

denotes the grid point that is examined before the current grid point ri in
the region growing algorithm. The indicator function [·] represents a function that outputs
1 if the condition is satisfied and 0 otherwise. The setQ holds all grid points that are within
the pocket.
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Table 3. Definitions of the global descriptors generated in the TRAPP–pocket procedure.

Pocket Property Definition

Pocket volume N
∑

i=1

(
lp
)3 × [G(ri, p) > 0]

Protein-exposed surface area N
∑

i=1

(
lp
)2 ×

[
G(ri, p) = 0∧ G

(
ri(−1)

, p
)
> 0

]
Solvent-exposed surface area N

∑
i=1

(
lp
)2 ×

[
G(ri, p) = −1∧ G

(
ri(−1)

, p
)
> 0

]
Pocket exposure Solvent-exposed surface area/Protein-exposed surface

area × 100(%)

Positively charged
Negatively charged ∑

i∈Q

(
lp
)3 × Gch(ri, p)× [G(ri, p) > 0]

Hydrogen-bond donor
Hydrogen-bond acceptor
Hydrophobic
Aromatic
Metal ion

N
∑

i=1

(
lp
)3 × Gat(ri, p)× [G(ri, p) > 0]

4. Conclusions

Currently, the COVID-19 pandemic has become a major global public health crisis. In
view of this situation, there is an urgent need to find drugs to treat patients. The papain-
like protease domain of SARS-CoV-2 nsp3 has emerged as a viable drug target for the
development of anti-SARS therapeutics. Primarily, through three protein site detection
methods, sitemap of Schrödinger, cavity module of LigBuilderV3, and DeepSite, we verified
the known SARS-CoV-2 PLpro targets, namely, catalytic triad site, thumb site 1, and palm
site, and tested the reliability of these methods and found several regions that may have
cryptic sites. Subsequently, through MixMD and Probeview procedures, we obtained the
molecular density ranking of the probe, made site statistics for each mixed system, found
some highly overlapping sites, compared the previous site analysis of the original structure,
and then identified the three most likely cryptic sites: finger site, thumb site 2, and back
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site 1. Next, we used the TRAPP method to analyse the known sites and possible cryptic
binding sites, as well as the various druggability related attributes of the residues around
the site. Eventually, through a series of analyses and comparisons, we found that thumb
site 2 has a certain development potential, and the in-depth study of this site will promote
the development of inhibitor drugs against SARS-CoV-2 PLpro. In summary, we hope that
this paper will promote drug design and discovery against COVID-19.
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