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INTRODUCTION 
 
In 1992, the pathologists at the Fredrick-Institute of 

the Cancer Research Center, experiencing the effect of 
chemicals on long cancer in mouse model found that 
the mice A/JCr serving as negative controls, exhibited 
an unexpected rate of cancer. Histopathological 
evaluation of this control group suggested presence 
of liver tumor in a large number of them. Their food, 
water and litter were negative for presence of any 
agent as potential cause of chronic hepatocellular 
tumors and liver inflammations. Furthermore, the 
mice that were kept and fed separately also developed 
liver Pathology. Liver inflammation was more severe 
in male mice than in females and could be observed in 
numerous cases of mouse strains except C57BL/6NCr. 
Moreover, infection could be transmitted to 
uninfected mice by homogenized liver suspensions. 
Silver staining of the specimens obtained from the 
mice livers demonstrated presence of the spiral 
bacteria in bile and its canaliculi which could grow in 
microaerophilic conditions (1-2). Later studies have 
revealed that naturally infected mice can develop 
a local unpurulent necrosing liver inflammation 
which progress to active chronic liver inflammation. 
Development of active chronic inflammation in 
liver, the mediator of hepatocellular neoplasm in  
H. hepaticus infected mice, has led to the conclusion 
that this organism is a mice pathogen (3-4). Further 

ABSTRACT 

Helicobacter hepaticus was discovered in 1992 as a cause of liver cancer in the A/JCr mouse model. In susceptible mice, 
infection by H. hepaticus causes chronic gastrointestinal inflammation leading to neoplasia. It can also cause morphological 
changes in breast-glands leading to neoplasm and adenocarcinoma in mouse models. Studies performed on humans have 
revealed that H. hepaticus may also be a human pathogen since infection by H. hepaticus can be associated with cholecystitis, 
cholelithiasis and gallbladder cancer. H. hepaticus is a close relative of H. pylori, but it lacks the major virulence factors of  
H. pylori including vacoulating cytotoxin A (VacA) and cytotoxin associated gene (cagA). Moreover, SabA, AlpA, and  
BabA, three important adhesin proteins of H. pylori, are absent in its genome. In contrast, the genome of H. hepaticus 
contains genes encoding some orthologus virulence factors of Campylobacter jejuni such as cytolethal distending toxin 
(CDT), and PebI adhesin factor. Other genes including 16S rRNA, 18 KDa immunogenic protein, and urease structural 
subunits are related to H. pylori. Its genome contains a small island consisting of 71 Kbp named HHGI1, which probably 
encodes a secretion system type IV (T4SS), and some other virulence factors. As far as the immunogenic antigens are 
concerned, the lipopolysaccharide (LPS) and flagellin of H. hepaticus are weak stimulants of the immune system, while 
pro-inflammatory responses are mainly induced by its lipoproteins and most likely by the peptidoglycan. Concerning the 
multidrug efflux pumps, a homologue of H. pylori TolC, HefA, has been observed in H. hepaticus which contributes to 
resistance to amoxicillin and bile acids.
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analysis has shown that infection by H. hepaticus 
increase nitrogen and oxygen active substances, 
which lead to an oxidative stress in liver, a process 
that plays an important role in the liver cancer (2). 
The investigators have also noted that Tumor Necrosis 
Factor-α (TNF-α), induced through infection by  
H. hepaticus, have been involved in the development 
of cancer in abdominal cavity, liver and other organs 
(5). In addition, several studies performed in mouse 
models have suggested that H. hepaticus can trigger 
mammary carcinoma. Mechanism, which have been 
proposed for development of the mammary carcinoma, 
would be related to the fact that dysregulation of the 
host immune responses due to infection by enteric 
bacteria, may induce development of extraintestinal 
cancers (5).

H. hepaticus has received the most attention since it 
was the first Helicobacter sp. that was recognized as a 
cofactor for the hepatic carcinogenesis. Induction of 
malignancies in mice after exposure to H. hepaticus 
provides a useful model to study the pathogenesis 
of infection and generation of the liver cancer in 
humans. The pivotal roles of the innate immunity 
cells in colorectal cancer have also been revealed after 
infection of immunodeficient mice by H. hepaticus 
(6-9).

In human, presence of H. hepaticus in the bile 
samples of patients with cholelithiasis, cholecystitis 
and gallbladder polyps, has been traced by nested 
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width that is smaller than H. pylori. This species can grow 
in both anaerobic and microaerophilic conditions. Its 
bipolar flagella are sheathed but contrary to H. pylori, 
lack the periplasmic fibers (Fig. 1).

H. hepaticus 51449 ATCC strain contains a circle 
chromosome with 1799146 bp and its G+C content 
is 35.9% that is between G+ C% of H. pylori and C. 
jejuni. The size of its genome is a little larger than 
those of H. pylori and C. jejuni, containing 1875 
open reading frame (ORF) that expresses 1875 
proteins. Most of H. pylori virulence factors, including 
almost of cag pathogenicity islands, are absent in 
H. hepaticus. Interestingly, the homologues of C. 
jejuni cdt (cytotoxin) and pebI (adhesin) genes have 
been found in its genome (17). There are 9, and 4 
chemosensory proteins in H. hepaticus, and H. pylori, 
respectively suggesting that H. hepaticus interacts 
with more chemical agents than H. pylori for its spatial 
orientation. H. hepaticus lacks the secretion system 
(comB locus) which is used for natural competition 
in H. pylori (17-18). Evaluation of 16S rRNA gene 
sequences has shown that H. hepaticus is the closest 
relative of Helicobacter muridarum (19). 

Similar to H. pylori, hepaticus is catalase and oxidase 
positive and rapidly hydrolyses urea. However, it can 
hydrolyse nitrate to nitrite and can also produces H2S. 
It is resistant to cephalotin and nalidixic acid  but 
susceptible to metronidazole (2). Metabolic capabilities 
of H. hepaticus, and H. pylori are likely to be similar 
however, there are sufficiently differences between 
their metabolic potentials to provide interesting 
view of their basic physiology. There is a possibility 
for the expression of a NADH-1 and NADH-2 
dehydrogenase, cytochrome bd and cytochrome 
cbb3 terminal oxidase in H. hepaticus. So, with high 
diversity in respiratory system, H. hepaticus can 
adapts with harsh conditions of intestinal tract, liver 
and gallbladder. Respiratory chain of H. pylori with 
only one NADH-1 dehydrogenase and cytochrome 
cbb3 terminal oxidase has the lower diversity than 
H. hepaticus (17). Furthermore, there are important 
differences between these two species concerning 
the genes encoding for tricarboxylic acid cycle 
components. For example, three and four out of the 
genes that encode five oxidizing metabolite enzymes 
from α-keto glutarate to oxaloacetate are absent in  
H. hepaticus and H. pylori, respectively. Among these 
enzymes, succinyl-CoA-acetoacetyl-CoA transferase 
is absent in both H. pylori and H. hepaticus but the 
gene encoding malate dehydrogenase is present 

Fig. 1. Helicobacter hepaticus with bipolar flagella (2). 

PCR and in situ analysis of the bile samples. Further 
studies on pathogenesis of H. hepaticus have 
supported the hypothesis that H. hepaticus could 
be a human pathogen and associated with diseases 
of liver and biliary tract (10-12). Investigaters have 
also reported that H. hepaticus may be a risk factor 
for the progression of liver disease to cirrhosis and 
hepatocellular carcinoma, especially among the 
patients chronically infected with hepatitis C virus 
(13-14). In addition, higher titers of specific anti-H. 
hepaticus antibodies in patients with gallbladder 
cancer, compared to the control group, has suggested 
that H. hepaticus infection may be associated with 
gallbladder cancers in human (15-16). The researchers 
have also observed that patients with cholelithiasis 
and cholecystitis associated with gastric cancer 
had significantly higher prevalence of H. hepaticus 
infection than patients with other diseases (12, 
15). Although H. hepaticus infection have been 
observed in 82% of gallbladders and 87.5% of related 
malignancies, it is not clear whether this organism is 
causative of gallstone, conducting to malignancy, or 
contributes  as a risk factor (16).

H. hepaticus may enter the human body through the 
contaminated food and water. It can invade the tissues 
and produce chemical carcinogens that potentially 
damage DNA. Production of multiple gene mutations 
may then transform the normal cells into the cancer 
cells. H. hepaticus has also been detected on the 
intestinal epithelium surface and depth of crypts 
particularly in cecum. In fact, H. hepaticas may be 
present more frequently in intestine than in liver. 
Therefore, it is suggested that intestine is the primary 
site of H. hepaticus colonization in human (5, 12, 16). 

In this paper we reviewed the literature for the 
potential pathogenicity of this microaerophilic 
bacterium and its differences with the human specific 
pathogen, H. pyori. 

General Features of H. hepaticus. H. hepaticus is  
a spiral bacterium with 1.5-5 µm length and 0.2-0.3 µm 
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 H. hepaticus 51449 ATCC strain contains a circle chromosome with 1799146 bp and its G+C 
content is 35.9% that is between G+ C% of H. pylori and C. jejuni. The size of its genome is a 
little larger than those of H. pylori and C. jejuni, containing 1875 open reading frame (ORF) that 
expresses 1875 proteins. Most of H. pylori virulence factors, including almost of cag
pathogenicity islands, are absent in H. hepaticus. Interestingly, the homologues of C. jejuni cdt
(cytotoxin) and pebI (adhesin) genes have been found in its genome (17). There are 9, and 4 
chemosensory proteins in H. hepaticus, and H. pylori, respectively suggesting that H. hepaticus
interacts with more chemical agents than H. pylori for its spatial orientation. H. hepaticus lacks 
the secretion system (comB locus) which is used for natural competition in H. pylori (17-18). 
Evaluation of 16S rRNA gene sequences has shown that H. hepaticus is the closest relative of 
Helicobacter muridarum (19). 

Table 1: General features of H. hepaticus genome (17) 

Total size 1, 799,146 
GC content,% 35.9 
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in H. hepaticus, only. This suggests the role of a 
tricarboxylic acid branch in H. hepaticus metabolism, 
which acts in reductive pathway, a characteristic 
observed in many anaerobic bacteria (17).

Identification of H. hepaticus. 
Culture and Isolation. The samples (feces, biopsy 

and tissue) can be stored in Brain Heart Infusion 
broth or Brucella broth containing 30% glycerol at 
-70ºC. To isolate  H. hepaticus, homogenization of 
fresh samples in phosphate buffered saline (PBS) 
and filtration by 0.45 µm filter before cultivation on 
blood agar containing trimetoprim, vancomycin and 
polymixin B (11, 20) is recommended. Incubation 
under microaerophilic condition for a minimum 
period of 3-7 is also required. Furthermore, it was 
noted that inoculation of bacteria in Brucella broth 
with 5% bovine fetal serum and incubation with 
shaking for 24-48 h would increase its growth 
speed (11). On culture plates, H. hepaticus has been 
observed as mucoid film or under spreading form 
without development of the isolated colonies. The 
experiments have shown that the dilution methods 
cannot be used for quantitative identification of  
H. hepaticus since it cannot produce isolated colonies 
on solid medium (11). H. pylori produce the isolated 
small colonies on culture plates however, some 
strains of H. pylori could also generate the mucoid or 
spreading colonies, as demonstrated in Fig. 2. Unlike 
other enterohepatic species of Helicobacter such as 

H. bilis, H. fennelliae and H. pullorum, H. hepaticus 
have not yet been cultured from human although its 
role in inflammatory diseases of human has been 
demonstrated (11, 20).

Histopathology and antibody based tests. It is 
possible to localize H. hepaticus in samples, using 
Warthin-Starry or Steiner silver staining. Moreover, 
the application of immunoflourcent rabbit antisera 
containing polyclonal anti-H. hepaticus in liver 
parenchyma and gallbladder is possible (1, 4).

Commercial serologic tests for diagnosis of  
H. hepaticus infections are not available. However, 
using cellular particles, membrane digested products 
or recombinant antigens, the anti H. hepaticus 
specific IgGs have been evaluated by ELISA test 
(22).  Because of cross-reaction between H. hepaticus 
and H. pylori, antiserums against H. pylori can be 
used for detection of H. hepaticus in mice liver tissue 
by immunohistochemistry with biotin avidin (1). 
Commercial kits using polyclonal antibodies against 
H. pylori have been evaluated for specific detection 
of H. pylori in human biological samples such as 
stool (23). However, for the reason of cross-reaction 
between H. pylori and hepaticus, these commercial 
antibodies cannot be used for the detection of H. 
hepaticus infection in humans. However, a new 
monoclonal antibody obtained from hybridoma 
clone (HRII-51) has shown a high specificity for 
H. hepaticus without any cross-reaction with other 
gastrointestinal bacteria. Using ELISA, the sensitivity 
and specificity of this antibody directed against a 15 
KDa molecular weight immune reactive antigen have 
been reported 87% and 97.6%, respectively (22).

polymerase chain reaction. Using the commercial 
kits conceived for DNA extraction from tissue,  
H. hepaticus have been identified by PCR in scratch-
ed samples from cecum (24). Nucleotide sequences of 
ureAB genes have been employed in RFLP and PCR 
test for identification of H. hepaticus. Real time PCR 
has also been developed for identifying H. hepaticus 
in cecum and fecal samples by detection of cdtB  
gene (25).

Virulence Factors. 
Cytolethal distending toxin (CDT). CDT is a 

heterodimeric A-B2 toxin protein encoded by three 
neighboring genes namely cdtA, cdtB and cdtC, 
which are essential for cellular cytotoxicity (20). 

Fig. 2.  A  H. pylori strain isolated from biopsy specimen 
producing the spreading colonies on Bleu-horizont agar 
plate (21).
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CdtA and CdtB subunits create non-globular amino 
acid extensions and these extensions interact with 
CdtC subunit (26). CdtB is a conserved component 
of holotoxin in CDT producing bacteria and CdtA is 
responsible for attaching to the cell membrane, while 
CdtC helps to transmit CdtB into the nucleus (27). The 
nature of surface receptor for this toxin is not fully 
understood but contact of CDT with healthy lipid rafts is 
needed for its entry via dynamin dependent endocytosis. 
Fig. 3, schematize the retrograde transmission of 
toxin via Golgi complex to endoplasmic reticulum 
and then to the nucleus where its toxic effects may be 
manifested (27). CdtB is an Mg+2 and Ca+2 dependent 
neutral nuclease, containing DNA hydrolyzing 
and cation binding domains (28). It hydrolyzes the 
double strands DNA via phosphodiester bounds and 
creates the mono and oligo deoxyribonucleotides. 
After entry to target cells, CDT can progressively 
cause cytoplasm and nuclear extension, and stop cell 
growth in G2/M phase of eukaryotic cell cycle (28). 
Thus, by preventing the growth of the infected host 
cells, CDT helps in the persistence of infection. By 
its direct and /or indirect effects on T cell and antigen 
presenting cells, CDT is also able to interrupt the 
immune response. Therefore, CTD play a principal 
role in colonization of intestinal tract and increases the 
severity of mucosal inflammation in the liver diseases 
of sensitive mice strains (29). 

It was also revealed that CDT of H. hepaticus 
plays a principal role in the activation of pre- 
inflammatory NF-kB pathway during the progress of 
infectious hepatitis to dysplasia injuries and increases 
hepatocytes development. Pre-inflammatory NF-kB 
pathway is activated during the progress of infectious 
hepatitis to dysplasia injuries; therefore, CDT may 
have the carcinogenic potential in vivo conditions 
(30). Induction of apoptosis throughout H. hepaticus 
infection was also observed and apoptotic bodies 
are formed in the last apoptotic stage, which can 
induce anti-inflammatory cytokines and reduce the 
pre-inflammatory cytokines for facilitating immune 
inhibitory effects. Apoptosis could be induced via two 
major pathways: Extrinsic pathway that starts with 
activation of death receptors while intrinsic pathway 
is activated with a change in mitochondrial membrane 
potential. Experiments have revealed that contact of 
the INT407 cells with CDT activates caspase 3, 7, 9, 
suggesting involvement of mitochondrial apoptosis 
in the case of H. hepaticus infection (31).

Other in vitro cytotoxic activity of CDT is 
granulating activity that is different from the activity 
of VacA in H. pylori (29). There is no cdt gene in 
H. pylori but, regarding its mechanism of action, 
CDT may be an equivalent gene of VacA as immune 
regulatory toxin in H. hepaticus. 

Urease. Like as H. pylori, hepaticus expresses 
a multimeric urease enzyme that uses nickel as 
a cofactor. In H. pylori, active urease hydrolyses 
the urea into ammonium and bicarbonate, which 
protects this bacterium from the gastric acidic 
microenvironment and acts as a nitrogen source.  
H. hepaticus is sensitive to acid and addition of 
urea into the cultured medium, cannot protect the 
bacteria from acidic pH 3. Therefore, H. hepaticus 
urease is not involved in resistance to acid. Urease 
gene cluster of H. pylori and H. hepaticus contains 
structural genes (ureAB) and accessory genes (ure 
IEFGH) however, the distance between ureI and ureB 
in H. hepaticus is 9 bp smaller than that of H. pylori, 
suggesting that there is no promoter in upstream of 
ureI in H. hepaticus. This fact limits the probability 
of regulation at transcription level or afterwards 
(32-33). 

In H. pylori, urease system is induced via nickel 
at transcription level; it is dependent on nickel and 
regulatory protein NikR that regulates the nickel 
adsorption via another gene, namely nixA (32). 

Fig. 3. Pathway of CDT entry to the host cell (27).
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Presence of nikR in H. hepaticus genome has been 
demonstrated, but its role in the regulation of urease 
was not quite determined. It was proposed that NikR 
affects independently urease activity, via regulation 
of nickel adsorption. In addition, the urease system of 
H. hepaticus lacks a homologue of nixA although; 
an ABC transporter gene was detected near its 
urease operon that may be involved in nickel uptake. 
Therefore, unlike H. pylori, regulation of urease via 
nickel in H. hepaticus may not be at transcriptional 
level. It is proposed that this regulation may at 
translational level, presumably via activation of urease 
apoenzyme, like the case of Streptococcus salivarius 
(33). It should be noted that enteropathogenic 
Helicobacter species of rodent’s intestinal tract does 
not require the high level of urease activity but there is 
a high level of urease activity in gastric Helicobacter 
sp. Therefore, Enteropathogenic Helicobacter sp. 
use urease system for nitrogen metabolism and 
ammonium store, only.

DNA binding protein from starved cells (DPS). 
DPS is a member of ferritin like proteins, identified 
in H. hepaticus. The mutant of H. hepaticus lacking 
DPS cannot grow in conditions with 3% oxygen. It 
is more sensitive to oxidative reagent such as H2O2, 
cumene, hydroperoxide and t-butyl hydroperoxide and 
has more damaged DNA, which can lead to lysis or 
change to coccoid form (34). Pure DPS protein from 
H. hepaticus is able to bind to both iron and DNA, 
and compared to the natural DPS or DPS without 
iron, the DPS-iron form has higher ability to attach to 
DNA. Phylogenetically, H. hepaticus DPS protein is 
relative to H. pylori NapA protein. DPS and NapA act 
by scavenging of irons and protect the bacterial DNA 
under oxidative conditions. Therefore, in absence of 
iron, DPS proteins are oligomerized (34). N-terminal 

of DPS, at its first N-terminal α-helix, is rich in lysine 
and plays an important role in attachment of DPS to 
DNA (35). 

Catalase. Chronic infection of mice with  
H. hepaticus has been distinguished by infiltration of 
neutrophil and macrophages, which lead to produc- 
tion of reactive oxygen intermediates in cecum 
or liver. The free radicals of oxygen, secreted 
during infection may increase the damage of DNA 
in intestinal hepatocytes or epithelial cells that 
leads to colitis or hepatitis. To circumvent these 
substances, H. hepaticus produces a catalase that 
may be cytoplasmic or periplasmic. Its periplasmic 
location is similar to that of other Gram-negative 
bacteria such as Pseudomonas syringae, Brucella 
abortus and Vibrio fischeri (36). Periplasmic 
location of catalase in H. hepaticus and other Gram-
negative bacteria facilitate the antigenic presentation 
to mammalian immune system and mediate the 
immune responses. Therefore, the catalase of  
H. hepaticus acts as immunogenic target since host can 
differentiate this catalase from the endogen one (36).

Pathogenicity Islands (HHGI1). The genome of  
H. hepaticus contains a large and some small regions 
with a different G+C content suggesting the horizontal 
transfer of latter region. The largest region encodes 
the proteins including three proteins with homology 
to structural components of type IV secretion system. 
Unlike many other pathogenicity islands, HHGI1 of 
H. hepaticus, is not interspersed by the direct repeats 
and does not have any gene for tRNA. Furthermore, 
there is an integrase gene like the integrates gene of 
P4 (HH269) that is present in pathogenicity islands.  
Existence of secretion systems and other secretary 
proteins suggest that HHGI1 would be the true 

Total size 1, 799,146

GC content,% 35.9

Coding sequences 1,875

Average gene length, bp 1,082

Coding density,% 93,04

Predicted secreted proteins 347

Predicted membrane proteins 358

Predicted proteins with assigned function 1,022

Ribosomal RNA 1×16s-23s-5s

tRNA 37 (7clusters, 15 single genes)

Table 1. General features of H. hepaticus genome (17).
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pathogenicity islands however, these genomic or 
pathogenicity islands are not present in all strains of 
this species. Different studies have suggested that the 
strains containing HHGI1 are more virulent than the 
strains lacking these regions (17, 37).

Flagella. H. hepaticus is a spiral bacterium with a 
bipolar-sheathed flagellum. This filamentous structure 
is composed of two flagellin subunits, FlaA and 
FlaB. In relative bacteria, flagellin genes are mainly 
regulated by sigma factor FliA (σ28). H. hepaticus 
has two similar copies of the flaA (flaA1 and flaA2) 
genes that encode major subunits of flagellin FlaA. 
Inactivation of each copy of these flaA genes has 
small effect on flagellum morphology and expression 
of flaA, however; inactivation of flaA-1 has a more 
prominent effect on the motility of bacterium (18). 
Mutations in two genes of flaA or in fliA cease FlaA 
synthesis or produce small flagella; these mutants 
cannot colonize the mice (38). Genetic documents 
suggest that the components and regulatory genes 
of H. hepaticus flagellum are completely relative to  
H. pylori. In addition, like those of H. pylori, the 
flagellar genes of H. hepaticus, are distributed 
throughout the bacterial chromosome. In H. hepaticus, 
flagella are the important antigenic targets for innate 
and adaptive immune systems. Moreover, its hook 
protein, FlgE is a T-cell dependent dominant antigen 
(38-39).

Adhesins and outer membrane proteins. The 
factors involved in colonization and virulence of  
H. hepaticus are not similar to those of H. pylori. Most 
of H. pylori adhesin proteins including sabA, alpA, 
and babA are absent in H. hepaticus. H. hepaticus 
carries 11 genes that encode the proteins homologue 
to a large family of outer membrane proteins (17). 
This family consists of 33 analogous genes classified 
into two subfamilies; Hop and Hor. The adhesins of 
H. pylori, BabA, SabA, AlpA, AlpB and HopA-E may 
be considered as prototypes for Hop family. This 
subfamily has a sectile amino terminal motif while Hor 
proteins with unknown function lack this motif. Slight 
comparison of H. hepaticus outer membrane proteins 
with other outer membrane proteins, provides no clear 
result about their functions (17). None of Hop proteins 
in H. hepaticus contains the typical Hop protein amino 
terminal motif. Phylogenetically comparison of outer 
membrane, either Hor, or Hop proteins of H. hepaticus 
with porins of E. coli (HH0525, HH1713, HH0661, 

HH1453, HH0812), suggests that these proteins 
may be the porins. A few OMPs of H. hepaticus are 
related to Hor proteins such as Hor G of H. pylori. 
In general, there is no significant similarity between 
outer membrane proteins of H. hepaticus and those of 
H. pylori.  H. hepaticus does not colonize the human 
gastric epithelium and among its proteins involved 
in the attachment to epithelial cells, one protein 
(HH1481) demonstrates 72% homology with PebI of 
C. jejuni, a protein not found in H. pylori (17, 20).

Lipopolysaccharide (LPS). LPS and its lipid 
A, is not well studied in H. hepaticus however, 
the lipid content (small chains of fatty acids) of 
H. hepaticus is different from that of H. pylori. 
Among Helicobacter sp., LPS of H. hepaticus and 
enterohepatic Helicobacter sp. display lower activity 
in limulus amebocyte assay (39). In susceptible mice, 
H. hepaticus can escapes or inhibit innate immune 
response of gastric epithelium (18). It is revealed that 
bacterial lysate and especially soluble components 
of LPS disturb innate immune responses via TLR4, 
and TLR5. Inhibition of innate immune responses 
by H. hepaticus LPS, can affect the responses to 
resident microbial flora, epithelial homeostasis and 
inflammatory conditions of intestine (39).

Antibiotic-resistance and efflux pumps. Resis-
tance to commonly used antibiotics is frequent in the 
case of H. pylori infection (40-41). H. hepaticus is 
able to resist to antimicrobial agents but contrary to 
H. pylori, it is also resistant to bile acids. Multiple 
studies on the mechanisms of resistance to antibiotics 
have shown that multidrug efflux pumps are involved 
in the resistance of H. pylori to structurally unrelated 
antibiotics (42-44). A homologue of H. pylori TolC, 
named HefA, have been observed in H. hepaticus, 
which is involved in the resistance to amoxicillin 
and bile acids (45). An outer membrane protein that 
is a component of resistance-nodulation-cell division 
(RND) family is involved in multidrug efflux of 
antibiotics in H. pylori. A difference between  
H. pylori TolC and its homologue in H. hepaticus is 
that, in H. pylori, TolC is not involved in resistance 
to amoxicillin (45). Two other genes, HH0174, and 
HH0175, are identified in the genomic sequence 
of H. hepaticus that are homologous to inner and 
periplasmic proteins of CmeABC in H. pylori, which 
may be involved in resistance to bile, macrolide and 
tetracycline. So, resistance to bile in H. hepaticus  
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may be regulated by both hefA and CmeAB orthologus 
(45-46). 

Treatment. Different treatment regimens for 
eradication of H. hepaticus infection in mice are 
described but in many cases, treatment  has not been 
successful although H. hepaticus may be sensitive 
to many antibiotics. Two weeks treatment with 
amoxicillin via drinking water has not been effective 
in elimination of infections (41). Prescription from 
drinking water is less effective than that of gavages 
since H. hepaticus was isolated from the mice that 
were treated via drinking water. Treatment regiments 
composed of three drug including combination of 
amoxicillin, metronidazole and bismuth administrated 
three times by day for two weeks was more effective 
via gavages in non-immune mice (6-8 weeks-old). 
However, this difficult method may limit the success 
of therapy. In general, contradictory results were 
obtained concerning the effectiveness of the different 
regimens. For example, in one study, treatment 
with four drug regimens including amoxicillin, 
metronidazole, clarithromycin and omperazole was 
not able to eradicate H. hepaticus and the role of 
amoxicillin was not definite in this treatment 
regiment (47-49). Also, treatment of naturally 
infected mice (8-10 weeks-old) suggested that single 
dose of amoxicillin, metronidazole and tetracycline 
was not able to eradicate infection of intestinal 
tract but amoxicillin or tetracycline in combination 
with metronidazole and bismuth for two weeks was 
effective in eradication of liver, cecum and colon 
infection (47). Today, three drug regimens (inhibitor 
of proton pumps, amoxicillin and clarithromycin or 
metronidazole) that are frequently recommended for 
eradication of human Helicobacter infection are also 
used for treatment of H. hepaticus infection in mice. 
This regiment includes three drug administration 
including metronidazole, amoxicillin/tetracycline and 
bismuth for two weeks in mice A/JCr (47-49).

CONClUSION
 
H. hepaticus is a Gram-negative bacterium with 

pathogenicity in mice and humans. Although it has 
some similarities with H. pylori, but shares some 
characteristics with C. jejuni, suggesting that some 
of its genes may have been acquired from C. jejuni. 
This would be consistent with the suggestion that 
the intestine is the primary site of H. hepaticus 

colonization in humans. Since this bacterium is 
implicated in human associated diseases such as 
gallbladder cancer, cholecystitis, cholelithiasis and 
other yet unidentified  diseases, research pertaining to 
this field will be of utmost importance in this region 
as well as in other parts of the world. 
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