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Spatial transcriptomics inferred 
from pathology whole‑slide 
images links tumor heterogeneity 
to survival in breast and lung 
cancer
Alona Levy‑Jurgenson1*, Xavier Tekpli2,3, Vessela N. Kristensen2,3,4 & Zohar Yakhini1,5*

Digital analysis of pathology whole-slide images is fast becoming a game changer in cancer diagnosis 
and treatment. Specifically, deep learning methods have shown great potential to support pathology 
analysis, with recent studies identifying molecular traits that were not previously recognized in 
pathology H&E whole-slide images. Simultaneous to these developments, it is becoming increasingly 
evident that tumor heterogeneity is an important determinant of cancer prognosis and susceptibility 
to treatment, and should therefore play a role in the evolving practices of matching treatment 
protocols to patients. State of the art diagnostic procedures, however, do not provide automated 
methods for characterizing and/or quantifying tumor heterogeneity, certainly not in a spatial context. 
Further, existing methods for analyzing pathology whole-slide images from bulk measurements 
require many training samples and complex pipelines. Our work addresses these two challenges. 
First, we train deep learning models to spatially resolve bulk mRNA and miRNA expression levels on 
pathology whole-slide images (WSIs). Our models reach up to 0.95 AUC on held-out test sets from 
two cancer cohorts using a simple training pipeline and a small number of training samples. Using 
the inferred gene expression levels, we further develop a method to spatially characterize tumor 
heterogeneity. Specifically, we produce tumor molecular cartographies and heterogeneity maps of 
WSIs and formulate a heterogeneity index (HTI) that quantifies the level of heterogeneity within these 
maps. Applying our methods to breast and lung cancer slides, we show a significant statistical link 
between heterogeneity and survival. Our methods potentially open a new and accessible approach 
to investigating tumor heterogeneity and other spatial molecular properties and their link to clinical 
characteristics, including treatment susceptibility and survival.

Digital pathology, including the automated computer-vision analysis of pathology whole-slide images (WSIs), 
is fast becoming a game changer in cancer diagnosis and treatment. Deep learning methods have been 
studied extensively in this context, and were recently shown to be efficient for certain tasks, such as detect-
ing metastases1–3, immune cells4–7, mitosis8,9 and tissue type4,10,11 as well as for offering clinicians additional 
insights12–16. These achievements led researchers to more recently explore whether such methods could go a step 
further, and identify molecular traits that are not known to be associated with cell/tissue morphology, such as 
mutations17,18, copy-number alterations18,19, gene expression18–20 and hormone receptor status15,19,21.

Alongside these technological advances, the importance of tumor heterogeneity is being increasingly rec-
ognized as a major feature associated with resistance to treatments and as a determinant of prognosis21–25. 
Polyclonality and tumor subclones—sub-populations of tumor cells that differ in molecular characteristics such 
as mutations, copy number aberrations and gene expression profiles—are a hallmark of cancer and may affect 
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treatment outcome and disease progression7,26–30. Bulk measurements, which offer high cell-coverage, have the 
potential to characterize tumor heterogeneity. A key downside, however, is that bulk measurements lack spa-
tial context. Recent work showed that clonal estimation from single-region sampling is less accurate than that 
obtained by multi-region sampling and that single-region clonal composition estimates vary greatly between 
techniques31. To better capture the variation between tumor regions, a method for characterizing intra-tumor 
heterogeneity in the spatial context of immunohistochemically (IHC) stained slides was developed32,33. Using 
this method, the spatial heterogeneity of MKI67 was identified as an independent predictor of overall survival in 
breast cancer patients32. Realizing the importance of spatial context, new technologies for spatial transcriptomics 
have begun to emerge and are being increasingly used by the scientific community alongside other methods to 
spatially resolve molecular measurements34–38. Recently, spatial transcriptomics data collected from 23 breast 
cancer patients was used to train a deep neural network to predict spatial variation in gene expression34. In a 
cohort of 41 gastric cancer patients, an association between heterogeneity and survival was discovered using a 
genome-wide single-nucleotide variation array to estimate the number of clones21. This was followed by fluo-
rescence in situ hybridization (FISH) to derive clonal locations for 3 samples across 4 target regions. Others 
combined single cell RNA sequencing (scRNA-seq) with spatial transcriptomics to map and characterize the 
different cell populations in heterogeneous pancreatic tumors39. In multiple myeloma, spatial organization was 
inferred from scRNA-seq data, using a clustering-based approach, to characterize immunological alterations 
occurring in the tumor microenvironment during disease progression40. Similarly, a computational approach 
was used to infer spatial position probabilities for individual cells from scRNA-seq data, enabling the spatial 
reconstruction of single-cell gene expression41. Recently, single-cell pathology subgroups were spatially resolved 
using mass cytometry imaging, covering an average of 2, 246 cells per image across 381 images, to characterize 
clonal populations in breast cancer24. One of their findings associated a specific single-cell pathology subtype that 
comprised multiple epithelial cell communities with poor survival. In a similar setting, spatially-derived statistics 
from single-cell data were shown to improve prognostic predictions23. These findings emphasize the importance 
of characterizing tumor heterogeneity in a spatial context. However, single-cell and spatial transcriptomics 
techniques are expensive and are limited in cell coverage compared to WSIs. While WSIs hold the potential to 
spatially resolve bulk molecular measurements using complete cell coverage16,18–20,42, existing pipelines often 
require multiple modelling steps, large training sets and expert intervention. Furthermore, existing methods 
for characterizing spatial tumor heterogeneity from WSIs are focused on IHC slides32,33. In contrast, inferring 
tumor heterogeneity directly from H&E WSIs would alleviate the dependency on IHC availability, and would 
enable the consideration of many molecular traits at once.

In this paper, we present an automated method to both visualize and quantify tumor heterogeneity in the 
spatial context of WSIs using a simple pipeline, a small number of bulk-labeled training slides and no expert 
intervention. Applying our approach, we discover a significant link between tumor heterogeneity and survival 
outcome in breast and lung cancer. Briefly, we train deep neural networks to provide molecular cartographies of 
mRNA and miRNA expression from WSIs. We use a simple training-inclusion criteria to potentially reduce noise 
and facilitate model convergence speed and performance. We then use the inferred cartographies to produce 
heterogeneity maps and to quantify the level of heterogeneity within each WSI using our heterogeneity index 
(HTI). Applying our methods to breast and lung cancer slides, we show a significant link between heterogeneity 
and survival. An overview of our method is shown in Fig. 1.

Our main contributions are: (1) A simple pipeline that maps from WSIs to gene expression levels, reaching 
up to 0.95 AUC on held-out random test sets. Our pipeline uses a single model architecture and requires only 
a small number of bulk-labeled training slides (with no expert annotations); (2) A method for constructing 
heterogeneity maps from the inferred gene-expression maps; (3) A heterogeneity index (HTI) that quantifies 
the level of heterogeneity within the WSI based on the spatial co-location of molecular traits; (4) A statistically 
significant link between tumor heterogeneity and survival outcome in two cancer cohorts. Our code is available 
online (see Methods).

Results
Training models to identify gene expression on pathology whole‑slide images.  An overview of 
our methods is shown in Fig. 1. We begin by obtaining formalin-fixed, paraffin-embedded (FFPE) hematoxylin 
and eosin (H&E) slides for TCGA BRCA and LUAD samples and matching mRNA and miRNA expression data. 
We discard any damaged, heavily stained or annotated slides as they can cause the model to focus on artifacts, 
including clues from pathologists’ markings. This results in 761 slides for breast and 469 for lung. We obtain 
matching normalized mRNA and miRNA expression data for a total of 10 molecular traits for breast and 5 for 
lung, as listed in Table 1. Breast mRNAs were chosen from the PAM50 genes43 and lung mRNAs and all miRNAs 
(breast and lung) were based on the literature (see Methods for further details).

Each cohort is processed, trained and evaluated separately (Fig. 1a, b). We begin by randomly assigning sub-
jects into a held-out test set (10%). We then randomly split the remaining subjects into train (80%) and validation 
(10%) sets 5 times (bootstrap sampling) to obtain 5 different and randomly selected train-validation sets. Note 
that these are further reduced in size by a simple inclusion criteria described below. We split on subjects rather 
than slides so that slides from the same subject are assigned to the same set to avoid similarities between test 
and train/validation. Importantly, the split is performed before any molecular trait is processed to ensure that 
all traits see the same split. We then assign each slide into one of the sets according to its subject’s association 
and proceed to label the slides and prepare our training set.

Per trait, we label each slide based on its sample’s expression percentile for that trait. We then split each 
slide into non-overlapping tiles of 512× 512 at ×20 zoom, resulting in hundreds to thousands of tiles per slide 
(depending on the slide’s size). Following previous methods17, each tile inherits its labels from its parent slide. 
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We label each slide (and tiles) based on its percentile expression level: high (1) for those above median low (0) 
for those below. This raises the concern that not all tiles are representative of its slide label (e.g. a tile representing 
a healthy portion of a tumor sample), leading to noisy labeling. To potentially reduce noise and facilitate faster 
model convergence, we set aside complete slides (all corresponding tiles) with expression levels between the 
20th and 80th percentiles and use them for out-of-distribution (OOD) evaluation (Fig. 1b). These samples do 
not participate in the model’s train/validation/test sets. This inclusion criteria enables us to efficiently train on 
a small number of slides: at most 243 slides for BRCA and at most 150 slides for LUAD, depending on the trait 
(see Methods). We proceed to use the labeled tiles to train our models.

We train each trait separately and repeat this process 5 times (once for each of the random train/validation 
splits of the non-test samples). We use the Inception v3 classifier44 as a single end-to-end model that predicts 
tile scores. This is the only model architecture used to obtain predictions. Additionally, no expert intervention 
is included at any step.

Once trained, we obtain the trait’s validation performances for all 5 runs by measuring the slide-level AUC 
for each of the five models (we evaluate using slide-level AUC following previous research17,46). To do so, we first 
transition from predictions on tiles to predictions on slides by computing the slide’s percent positively classified 

Figure 1.   Overview of our methods: (a) prepossessing, (b) model training per trait and (c) producing tensor 
molecular cartographies (multi-layer heatmaps) per slide from which heterogeneity maps and indices are 
derived. This figure was generated using GIMP45.
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tiles17. We then compute the slide-level AUC for each model using these scores as the slide-level prediction. The 
final model for each of the 5 rounds uses the weights that had the best slide-level AUC on that round’s valida-
tion set.

Besides providing a better evaluation of our models’ performance, a key advantage of training multiple models 
on different train/validation splits is the option to combine them into an ensemble model47. We develop such an 
ensemble model for each trait by combining its top three models, as measured on their respective validation set, 
and taking their majority vote. For example, if the last three models from the 5 train/validation repeats yielded 
the best performances (each on their respective validation set) and their predictions for a given tile are: 0, 0, 1 
then the ensemble will predict 0 for that tile by majority vote.

For each trait, we evaluate both its 5 models and its ensemble model on the trait’s held-out test set (test slides 
with expression levels within the 0–20% and 80–100% percentiles for that trait) as well as on its OOD sets (slides 
within the 20–80% percentiles). Neither of these test sets participated in the trait’s model development (train/
validation) in any of the 5 rounds.

Achieving high prediction performance for identifying gene expression on pathology 
whole‑slide images.  We obtain high test performance rates across multiple traits. The number of slides in 
the test set varies across traits, depending on cohort (TCGA-LUAD is roughly half the size of TCGA-BRCA) and 
on label (expression) availability, and is therefore described per trait in brackets below. In Table 1, we observe 
that the average test performance measured across all 5 train/validation rounds (first column) obtains high 
AUCs for over half the traits. Most prominent are miR-17-5p (N = 33), MKI67 (N = 36) and FOXA1 (N = 31) 
in breast as well as miR-17-5p (N = 13) and KRAS (N = 17) in lung. Especially noteworthy is miR-17-5p as it 
performed exceptionally well in both cohorts (for which model development and testing is completely separate), 
further suggesting that mRNA and miRNA expression can be detected from tissue morphology and that this 
may be applicable for other cancer types.

The use of ensemble models further improves the performance in nearly all traits. miR-17-5p improves 
from 0.83 to 0.87 AUC in breast and from 0.85 to 0.95 AUC in lung. We observe similar effects for MKI67 and 
FOXA1 in breast as well as for KRAS in lung. In Fig. 2a (breast) and d (lung) we can see the test-set distribution 
of the ensembles’ slide scores for the ground-truth labels across the different traits. We clearly observe that the 
images with bulk labels above median have higher slide-level predictions. This is especially true for miR-17-5p 
(in both cohorts), MKI67, FOXA1, MYC, miR-29a-3p and ESR1 in breast as well as KRAS and CD274 (PDL-1) 
in lung. We also computed the correlation of our predicted levels to the actual percentiles (Supplementary S1). 
For example, in breast miR-17 we observe Spearman correlations of 0.63 (FDR p value 8e−04).

To the best of our knowledge, these are the first models to automatically detect miRNA expression levels on 
H&E whole-slide images. Importantly, our method achieves these results using only a small number of training 
samples, a single model architecture and no expert knowledge. Model convergence took less than 12 h (worst-
case) on a single server with 8 low-cost GPUs (Tesla K80).

Performance for out‑of‑distribution (OOD) samples.  On top of the potential noise reduction, an 
added advantage in setting aside the OOD slides is the ability to further challenge our models on a large number 

Table 1.   Results for breast and lung cohorts for test and OOD sets. Slides are scored using the percent 
positively classified tiles. Each of the 5 trained models is evaluated on the held-out test set and the two OOD 
sets separately. Average AUC results and range (brackets) are shown on the left, followed by ensemble AUC 
results for test, OOD-near and OOD-all. In bold are AUCs of at least 0.6.

Trait

Per-slide AUC​

Test 5-run average (range) Test ensemble OOD-near ensemble OOD-all ensemble

TCGA-BRCA​

miR-17-5p 0.83 (0.79–0.88) 0.87 0.62 0.56

MKI67 0.74 (0.53–0.87) 0.87 0.72 0.63

FOXA1 0.7 (0.6–0.76) 0.74 0.61 0.56

MYC 0.62 (0.58–0.67) 0.63 0.59 0.58

miR-29a-3p 0.62 (0.5–0.69) 0.67 0.65 0.55

ESR1 0.58 (0.55–0.63) 0.56 0.75 0.57

CD24 0.57 (0.47–0.67) 0.56 0.57 0.47

FOXC1 0.53 (0.46–0.57) 0.52 0.68 0.61

ERBB2 0.5 (0.46–0.57) 0.53 0.52 0.5

EGFR 0.5 (0.35–0.67) 0.42 0.57 0.57

TCGA-LUAD

miR-17-5p 0.85 (0.72–0.95) 0.95 0.43 0.54

KRAS 0.64 (0.33–0.9) 0.73 0.56 0.52

CD274 (PD-L1) 0.61 (0.57–0.63) 0.6 0.64 0.51

miR-21-5p 0.55 (0.47–0.62) 0.54 0.75 0.63

EGFR 0.44 (0.22–0.78) 0.39 0.48 0.46
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of out-of-distribution samples. This is important, especially since certain traits had a relatively small held-out 
test set. We use the ensemble models for each trait. In Table 1 we report two types of AUC results on the OOD 
set: one for the next decile tier after the test set’s percentiles, i.e. 0.2–0.3 and 0.7–0.8, which we designate as near-
distribution (OOD-near) and another for the full OOD set (OOD-all). As before, the number of slides available 
in the two OOD sets depends on the cohort and the intersection between slide and label availability for the trait. 
In the OOD-near set, breast has between 140 and 158 and lung has between 79 and 103 slides (roughly 20% from 
each cohort’s slides). The OOD-all set has between 423 and 454 slides for breast, and between 256 and 283 for 
lung (roughly 60% of each cohort’s slides—the remainder after using the top and bottom 20% for model develop-
ment). We are able to test our models on such large test sets since, by design, none of these slides were included 
in the trait’s train/validation/test sets. Our results demonstrate that the models extend to out-of-distribution 
samples relatively well. This can also be observed in Fig. 2 b, c (breast) and e, f (lung) which depict the distribu-
tion of scores per label for the OOD-near and OOD-all sets. This is especially evident in the breast cancer cohort. 
For example, the score distributions for MKI67 for the “above median” (pink) class tend to be higher than those 
for the “below median” (gray) class. As before, we also computed the correlation of our OOD prediction levels to 
the actual percentiles (Supplementary S1). The overall better breast results are likely due to the larger amount of 
data available for training, emphasizing the importance of collecting larger data sets.

Tensor molecular cartographies of gene expression as a window to tumor heterogene‑
ity.  After confirming the performance of our models, we proceed towards our goal of analyzing tumor het-
erogeneity (Fig. 1c). We do so by producing, for each slide, multiple molecular cartographies, each representing 
a single molecular trait. We then combine the molecular cartographies into a tensor molecular cartography 
(multi-layer heatmaps) to obtain a richer spatial representation of the molecular traits detected within the slide. 
Creating a molecular cartography for a single trait is straight forward: we simply spatially arrange the binary 
predictions of a slide’s tiles in a matrix so that the position of a tile’s score in the matrix corresponds to its posi-
tion in the pre-tiled slide, as illustrated in (Fig. 1c left). Once we obtain several molecular cartographies for a 
single slide, we stack them into a tensor molecular cartography (Fig. 1c middle) that now represents the slide 
across several traits.

We use the tensor molecular cartography to visualize heterogeneity—this will later serve us to confirm our 
method for quantifying heterogeneity. As shown in Fig. 1c (right), we do so by identifying which tiles are positive 
for each possible combination of traits and assign different colors to each combination. For example, using two 
traits, A and B, we obtain a tensor of depth 2 (one molecular cartography per trait) and each tile is colored as 

Figure 2.   WSI score distribution for test, OOD-near and OOD-all sets compared to the actual bulk-measured 
values (lower values in gray). Scores are computed using the ensemble model for each trait (percent positive 
tiles by majority vote of the best three). Middle white lines reflect the median slide score. Whiskers extend to 
1.5× IQR . (a)–(c) breast test, OOD-near and OOD-all respectively; (d)–(f) lung test, OOD-near and OOD-all 
(respectively). In the test set, especially worth noting are miR-17-5p in both cohorts, MKI67, FOXA1, MYC, 
mir-29a-3p and ESR1 in breast as well as KRAS and CD274 (PD-L1) in lung. In the OOD sets most notable are 
MKI67, FOXA1, MYC, ESR1 and FOXC1 in breast as well as miR-17-5p and miR-21-5p in lung.
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one of three options: A (only), B (only) and Both. Figure 3 shows examples for such heterogeneity maps, along 
with their level of heterogeneity, as obtained using HTI described below. Such molecular maps of pathological 
images could be used by pathologists, in addition to routinely stained diagnostic markers, to further classify and 
identify cancer subtypes, potentially leading to better informed clinical decisions.

Quantifying tumor heterogeneity from tensor molecular cartographies.  As intra-tumor hetero-
geneity has been proposed as an obstacle to effective treatment and cancer eradication, we propose an approach 
to compute and quantify the level of heterogeneity in a given image from its tensor molecular cartography. 
We used a variation of Shannon’s entropy, commonly used to measure diversity and heterogeneity in various 
settings24,48. Formally, we compute:

where C is the maximum number of non-empty trait combinations that may be observed on a slide and equals 
2|traits| − 1 (the number of subsets excluding the empty set), and pi is the proportion of tiles for which exactly all 
models in combination i provided a positive prediction.

For example, given a tensor molecular cartography for two traits A and B (e.g. FOXA1 and MKI67), C = 3 (3 
possible non-empty trait combinations: A (only), B (only) and Both). If the slide is homogeneous with nearly all 
of its tiles falling into one of these 3 options (say Both), then pBoth ≈ 1, pA ≈ 0, pB ≈ 0 (each of the single-trait 
molecular cartographies is nearly all 1s), resulting in an HTI of 0. If, however the slide is heterogeneous with 
1/3rd of the tiles falling into each option then: pBoth = 1/3, pA = 1/3, pB = 1/3 and we obtain an HTI of 1. The 
logarithm base C guarantees that HTI ∈ [0, 1] . If A and B are two molecular traits (e.g. FOXA1 and MKI67), a 
high HTI would reflect there may be two subclones whereas a low HTI would reflect single clonal dominance.

We note that HTI can be applied to any set of binary matrices (or vectors) of identical shape, each of which 
describes the presence of a single trait. As such, it can be used in other settings involving the localization of 
clinically relevant traits.

Figure 3 depicts several heterogeneity maps and their associated HTIs.

A statistically significant link between tumor heterogeneity and survival.  We sought to under-
stand whether tumor heterogeneity is linked to survival outcome and whether the link can be inferred through 
the spatial analysis of pathology whole-slide images. To do so, we combine the test and OOD slides and split 
them into high and low heterogeneity groups based on their HTIs. Specifically, for a given cohort, we first gener-
ate tensor molecular cartographies per slide using the ensemble models of the top two performing molecular 

HTI = −

C∑

i=1

pi logC(pi)

Figure 3.   Heterogeneity maps and corresponding HTIs. (a) Breast cancer cohort with traits MKI67 (pink) and 
miR-17 (green). Brown indicates that both traits manifest (both models predicted positive). (b) Lung cancer 
cohort with traits KRAS (blue) and miR-17 (brown). Gray indicates both traits manifest. Corresponding HTIs 
appear directly above. Rows appear in increasing HTI order from top to bottom (top 0–0.1, middle 0.4–0.6, 
bottom 0.9–1).
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traits for that cohort (from Table 1). We then compute HTI for each slide and split the slides into two groups: 
> 0.5 and ≤ 0.5 (high and low heterogeneity respectively). We perform survival analysis on these groups using 
Mantel’s log-rank test and Kaplan-Meier curves. We use only slides in the combined set of OOD and test slides. 
Since OOD slides are trait-dependent, we keep only those slides that were designated as OOD for both traits.

Figure 4 describes the survival analysis results for each cohort using the top two traits by test performance 
from Table 1 in each (MKI67 and miR-17 for breast and miR-17 and KRAS for lung). In breast, survival is 
significantly worse for subjects exhibiting high heterogeneity (blue) compared to those with low heterogeneity 
(orange), with a log-rank p value of 0.04 (Fig. 4a). In lung, we observe significant differences in survival between 
higher and lower HTIs when heterogeneity differences are more distinct (> 0.7 vs. ≤ 0.3 ), with a log-rank p 
value of 0.07 (Fig. 4c).

Discussion
This work offers a method for analyzing tumor heterogeneity from the rich spatial data available in H&E WSIs. 
Using deep learning we created high resolution maps of multiple mRNA and miRNA expression levels within 
a whole-slide image and combined these maps into a tensor molecular cartography. We then used the tensor 
cartographies to spatially visualize and quantify tumor heterogeneity in the form of heterogeneity maps and 
HTI scores. While other methods, such as single-cell profiling and spatial transcriptomics, can also be used to 
infer heterogeneity, they are expensive, may lack sufficient spatial context and only cover a few thousand cells.

We applied our method to both breast and lung cancer pathology whole-slide images (H&E). We trained 
several models per trait and tested each of these models on both a randomly sampled held-out test set and two 
large out-of-distribution sets, containing hundreds of WSIs that the models have never before encountered. Test 
results show that several mRNA and miRNA can be identified and localized automatically within whole-slide 
images with high AUCs. Furthermore, our results demonstrate this can be achieved using only a small number 
of training slides, a single model architecture and no expert intervention. Especially notable are our results for 
miR-17, which obtained high AUCs (up to 0.95) in both lung and breast. This is interesting in light of indications 
that miR-17 is over-expressed across many cancer types49.

Using our models, we generated a tensor molecular cartography for each slide, enabling us to both visualize 
the distribution of traits, in the form of heterogeneity maps, and to compute HTI. By representing each patient 
with their HTI and performing survival analysis, we showed that high tumor heterogeneity is significantly linked 
to poor survival, especially in breast cancer. We stress that this link cannot be identified through obvious means 
by directly using expression levels (Fig. 5) or through the PAM5043 breast cancer types, which are not associated 
with HTI (Fig. 6). This analysis highlights the potential clinical value in producing tensor molecular cartographies 
and heterogeneity maps from H&E WSIs.

Our methods open a window to further analyses. For example, from a molecular biology perspective, generat-
ing heterogeneity maps of miRNAs from the same family may be interesting in light of recent findings showing 
they are context (e.g. tissue) dependent50. Similarly, miRNA/mRNA relationships51,52 may be analyzed from a 
spatial perspective. From a technical aspect, it may be interesting to explore whether transfer learning between 
molecular traits or cohorts is possible and to what extent. Also a multilabel approach may be possible, although 
it may require larger datasets and careful label-balancing to obtain satisfactory results across all traits.

As heterogeneity plays an increasingly key role in cancer treatment, providing researchers and practitioners 
with a solution to view the distribution of clinically relevant traits that are not currently visible on WSIs may be 
of great value. Since H&E slides are a standard component of routine diagnostic protocols, a natural solution 
may be offered by the fast and automated digital mapping of the molecular landscape within H&E slides. One 
such solution is offered through our simple pipeline for producing tensor molecular cartographies and hetero-
geneity maps from WSIs.

As our approach requires a single model architecture, uses a small number of training slides and does not call 
for expert annotations, it can apply to many more traits and in broader contexts. As a future direction we hope to 
combine our approach with single-cell data and spatially resolved transcriptomics data to obtain finer resolution 

Figure 4.   Survival analysis with respect to HTI derived from two traits in breast and lung cancer. For each 
trait combination in (a) and (b), slides were split into high and low HTI ( > 0.5 and ≤ 0.5 or blue and orange 
respectively). In (c) slides were split into > 0.7 and ≤ 0.3 HTI. Each survival curve is shown with a 95% 
confidence interval.
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mapping, improving the relevance of both H&E and transcriptomics. Molecular cartography from H&E poten-
tially enables a new approach to investigating tumor heterogeneity and other spatial molecular properties and 
their link to clinical characteristics. An interesting aspect of such endeavors will be to link spatial properties to 
treatment susceptibility and precision care.

Methods
Data.  All whole-slide images are available online at the GDC repository (https​://porta​l.gdc.cance​r.gov/repos​
itory​), by selecting Diagnostic Slide under Experimental Strategy for the relevant project (e.g. TCGA-BRCA). 
Matching expression levels were obtained from the GDC’s website at: https​://gdc.cance​r.gov/about​-data/publi​
catio​ns/panca​natla​s (see RNA and miRNA). Matching survival data were obtained from cBioportal at: http://

Figure 5.   Left panel (a) Survival analysis using bulk-measured expression levels for miR-17 (top) compared to 
our approach (bottom) when applied to the same patient basis available for both. Right panel (b) distribution of 
HTI for above and below median ground-truth expression levels for MKI67 (top) and miR-17 (bottom).

Figure 6.   Distribution of HTI per ER status (a) and PAM50 type (b) in the data used for survival analysis.

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
http://www.cbioportal.org/datasets
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www.cbiop​ortal​.org/datas​ets from the following files: “Breast Invasive Carcinoma (TCGA, Firehose Legacy)” 
and “Lung Adenocarcinoma (TCGA, Firehose Legacy)”.

Preprocessing.  Damaged or marked slides were removed, leaving 761 slides for BRCA and 469 slides for 
LUAD. Remaining slides were split into non-overlapping 512× 512 tiles at a magnification level of 20× . Tiles 
with more than 50% background were removed.

Training.  All of our models were developed in TensorFlow53 using the Inception v3 classifier44 with the last 
layer modified to one output. All models are trained from random initialization, following previous work show-
ing improved performance by fully training Inception v317. Each of the 5 train/validation rounds is trained on 
mini-batches of labeled tiles from the training set using the Adam optimizer54. Models were evaluated on the 
labeled validation tiles every 1/16th epoch (full pass on all training tiles) to avoid overfitting caused by tile simi-
larities between mini-batches (each slide contains hundreds to thousands of tiles, many of which are likely to be 
similar to one another). No data augmentations were performed, except for random horizontal and vertical flips 
of the training tiles to further reduce overfitting. Learning rate started at 0.001 and was decayed when perfor-
mance on the validation set plateaued for 10 steps, with early stopping after 30 steps of no validation improve-
ment. Each final trained model used the weights that performed best on its validation set.

To potentially reduce noise and facilitate faster model convergence, we set aside complete slides (all cor-
responding tiles) with expression levels between the 20th and 80th percentiles. These were used for out-of-
distribution evaluation and did not participate in the model’s train/validation/test sets. This enabled us to effi-
ciently train on a small number of slides. For example, if labels are available for all 761 slides, taking 80% for 
training out of which 40% are not OOD, leaves us with 761× 0.8× 0.4 = 243 training slides for BRCA and 
469× 0.8× 0.4 = 150 for LUAD.

Each model was trained on a single Tesla K80 machine with 8 GPUs and took at most 12 hours until conver-
gence on the validation set (when the aforementioned early stopping was invoked). Mini-batch size per GPU 
replica was 18, for a total of 18× 8 = 144 tiles per training step.

mRNA and miRNA selection.  mRNAs: For breast, we sorted PAM5043 genes by their expression variance 
in our dataset and selected from the top (highest variance). CD24 is not in PAM50, but is one of the highest 
expression-varying mRNAs in the cohort and is over-expressed in many cancers55. For lung, we based our selec-
tion on previous research, e.g.17,56–58.

miRNAs: Selection of miRs is based on previous work identifying miR-17 and miR-29 among the top up-
regulated and down-regulated miRNAs (respectively) in breast cancer52. Others have also associated miR-1759–61 
and miR-2962,63 with breast cancer. miR-17 was also chosen for lung since the miR-17 family was shown to 
be universally over-expressed in many cancers, including lung49, and has been directly associated with lung 
cancer64–66 as has miR-2167,68.

Survival analysis.  Each patient is represented by a single HTI to perform survival analysis. Where patients 
were associated with more than one whole-slide image (e.g. a patient with diagnostic slides DX1 and DX2), the 
DX1 slide was used to determine HTI. Analysis was performed using the Lifelines package for Python (https​://
lifel​ines.readt​hedoc​s.io/en/lates​t/).

Code availability.  The code used for this work is publicly available under: https​://githu​b.com/alona​lj/Patho​
MCH.
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