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Abstract: Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder
(BD) are common mood disorders associated with increased disability and poor health outcomes.
Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines
and neuroinflammation are common findings in patients with AD and in corresponding animal
models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate
innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endoge-
nous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen
presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neu-
rodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis
of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses
and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroin-
flammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives
targeting DCs and their effector molecules in mood disorders.

Keywords: mood disorder; bipolar disorder; major depressive disorder; neuroinflammation; inflam-
mation; dendritic cell; innate immune response

1. Introduction

Affective disorders (AD) including major depressive disorder (MDD) and bipolar dis-
orders (BD) are common mental disorders accompanied by enhanced morbidity, mortality,
and suicidal risk. MDD is the most common AD, with an estimated lifetime prevalence of
around 15% [1]. Core symptoms of a major depressive episode include depressed mood, de-
creased interest or pleasure (anhedonia) in almost all activities, and fatigue or loss of energy
over the same two-week period. MDD often follows a chronic course with at least one-third
of patients experiencing recurrent episodes within a year of stopping treatment [2]. BD is
a severe and chronic recurrent mental disorder and is clinically characterized by extreme
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changes in mood, energy, and activity levels. It can be further divided into several subtypes,
including Bipolar I (BD-I) and Bipolar II disorder (BD-II) [3]. BD-I is mainly characterized
by mood swings between severe mania, which strongly interferes with daily function-
ing, and depression. The course of BD-II, on the other hand, is typically characterized
by depressive and hypomanic states. Patients with BD suffer from poorer quality of life
and suicide rates are 10–30 times higher than in the general population. The estimated
lifetime prevalence of >1% in the global population is lower than that for MDD [4]. The
etiologies of MDD and BD are multifactorial and not yet fully understood. An imbalance
of neurotransmitters in the brain, dysfunction of the hypothalamic-pituitary-adrenal (HPA)
axis, and neurodegenerative processes have been linked to the pathogenesis of AD. It is
now known that a complex interplay of genetic and environmental factors contributes
to the manifestation of AD including common and rare genetic variants, stress-induced
epigenetic changes, and long-lasting effects of early life-trauma [4–7].

A plethora of findings suggests that the immune system plays a role in the pathophys-
iology of AD. For example, co-morbidities of MDD with autoimmunity and inflammatory
disorders have been reported [8]. In addition, elevated levels of inflammatory markers
have been found in depressed individuals and in rodents with depression-like behavior,
as well as in response to stressful events [9–11]. In accordance, individuals with AD often
have elevated serum levels of pro-inflammatory cytokines, e.g., tumor necrosis factor
(TNF), interleukin (IL)-1β, and IL-6 [12]. Findings in this area led to the formulation of
the “inflammation hypothesis of depression” almost 30 years ago. Maes and colleagues
observed that depression is associated with a mild “inflammation” characterized by mono-
cyte and T cell activation and increased levels of circulating inflammatory factors [13]. The
link between the immune system and depression was supported by reports showing that
depressive symptoms occurred in patients after immunotherapy with type I interferons
(IFN) [14,15]. Since then, these authors and others have updated the hypothesis to include
pathophysiological mechanisms such as oxidative stress, neurodegenerative processes, and
altered neurogenesis in MDD [16–18]. The immune hypothesis is further strengthened by
meta-analyses showing increased levels of C-reactive protein, the cytokines IL-6, IL-12, IL-
18, and TNF, and the chemokine CCL2 in depressed individuals [8,19–21]. Mechanistically,
cytokines in the blood can enter the CNS and decrease monoamine levels, increase mi-
croglia activation and oxidative stress, processes that have been linked to cognitive deficits
and mood changes [22,23]. Furthermore, polymorphisms in genes encoding inflammatory
cytokines, including IFN-γ and IL-18, have been associated with dysregulated amygdala
reactivity to emotional stimuli and MDD following a history of stressful life events [24,25].
Early-life stress such as childhood maltreatment is the strongest environmental risk factor
for AD and has been associated with long-term immune changes and increased susceptibil-
ity to MDD [26–28]. Moreover, clinical trials involving chronic inflammatory conditions
showed that anti-inflammatory treatments mediated antidepressant effects [29–32]. Fi-
nally, depression-like “sickness behavior” in rodents after treatment with inflammatory
mediators underscored the bidirectional relationship between depression and immune
processes [33].

Dysregulation of the immune system has also been implicated in the pathophysiology
of BD. Here, an immune hypothesis was first formulated by Horrobin & Lieb in 1981 [34].
The authors postulated that the mood-stabilizing effect of lithium is mediated by suppres-
sion of T cell function during manic episodes and enhancement of T cell activities during
depressive episodes. Epidemiological studies also indicated enhanced comorbidity of
inflammatory diseases such as autoimmunity, chronic infections, and metabolic disorders
with BD [22]. Other studies linked alterations in cytokine/chemokine serum levels to mood
states, although specific patterns of inflammatory markers that distinguish MDD from BD
remain controversial [22,35–37].

Regarding the cellular components involved in the interplay between AD and the
immune system, many previous studies have focused on monocytes, macrophages and/or
microglia [38–46]. Only recently, few studies have shown a possible influence of dendritic
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cells (DCs) and their effector molecules in AD and disease-associated behaviors. DCs are
professional antigen presenting cells that provide the link between the innate and adaptive
immune system. Together with monocytes/macrophages, granulocytes, and natural killer
(NK) cells, they constitute the first line of defense against invading microbial pathogens.
DCs also play a central role as mediators of tolerance in peripheral immune responses and
neuroinflammation [47,48]. The aim of this review is to shed light on the current knowledge
of DCs in the pathophysiology of AD. To this end, clinical studies reporting phenotypic
changes of DCs and their effector functions in individuals with depressive symptoms
or diagnosed MDD and BD are reviewed. In addition, recent findings demonstrating a
functional role of DCs in rodent behavior and, conversely, the effects of chronic stress
exposure as a risk factor of AD on basic DC functions will be highlighted. Finally, the
potential of targeting DCs as a future treatment option of AD will be discussed.

2. Selected Functions of DCs with Relevance for Mood Disorders

DCs were originally discovered in 1973 by Steinman and Cohn and named after their
stellate or “dendritic” morphology exhibiting tree-like veils [49,50]. DCs represent a hetero-
geneous group of bone marrow-derived cells that are widely distributed throughout the
body. Their diverse morphology, phenotype, and function depends on their origin, the tran-
scriptional control of their development, and the respective microenvironment [47,51–54].
DCs are found in lymphoid tissues such as bone-marrow, thymus, spleen, lymph nodes,
and Peyer’s patches, as well as in non-lymphoid tissues and in peripheral blood [47,51,52].
In an immature or semimature state, DCs screen peripheral tissues for “danger signals”
using pattern-recognition receptors (PRRs). PRRs represent germline-encoded receptors in
the cytosol or membrane compartments of immune cells. They sense evolutionarily con-
served structures from pathogens termed pathogen-associated molecular patterns (PAMPs).
PAMP binding to PRRs on DCs and other innate immune cells induces a cascade of effector
mechanisms involving phagocytosis and production of inflammatory factors, reactive
oxygen species, and nitric oxide to eliminate the danger [55,56]. One of these PAMPs
is lipopolysaccharide (LPS), the major membrane glycolipid of Gram-negative bacteria,
that binds toll-like receptor (TLR) 4. Experimental administration of LPS is commonly
used in humans and rodents to induce “sickness behavior” associated with emotional
and inflammatory changes, such as depressed mood and altered serum levels of proin-
flammatory cytokines [57–59]. LPS also affects the phenotype and function of DCs. It
induces maturation of DCs, which in this process upregulate major histocompatibility
complex (MHC) and costimulatory molecules and secrete cytokines and chemokines to
induce naïve T cell activation. DCs express a variety of PRRs, including TLRs, NOD-like
receptors (NLRs), retinoic acid-inducible gene I (RIG- I)-like receptors (RLRs), purinergic
receptors, C- type lectin receptors (CLRs), and the receptor for advanced glycation end
products (RAGE) [60–62]. They can thus sense a broad range of danger signals and quickly
respond to pathological conditions and stressors in their surroundings.

Damage-associated molecular-patterns (DAMPs), on the other hand, are released from
stressed or dying cells upon stress or tissue injury and are also sensed by PRRs. DAMPs
trigger “sterile inflammation” even in the absence of infection [61]. Specific DAMPs such as
S100 proteins, high-mobility group box 1 (HMGB1), heat shock proteins (HSPs), and ATP
have been associated with the pathogenesis of mood disorders and are involved in stress-
induced depression-like behaviors in mice [63,64]. PAMP and DAMP binding to PRRs of
the NLR family, activates the pyrin domain-containing 3 (NLRP3) inflammasome complex
leading to caspase-1 activation and maturation of IL-1β. The NLRP3 inflammasome has
been shown to bridge stress-induced sterile inflammation and depression [65,66].

Innate immune responses mediated by activation of germline-encoded PRRs by
PAMPs or DAMPs are not antigen-specific in contrast to the activation of T and B lympho-
cytes in adaptive immune responses. Moreover, the development of long-term immunolog-
ical memory was considered to be an exclusive capacity of the lymphocytes of the adaptive
immune system. This dogma has recently been challenged by studies showing that innate
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immune cells, including DCs and macrophages, can provide an adjusted immune response
after the first encounter with a pathogen. This so called “trained immunity” is mediated
by long-term functional reprogramming of innate immune cells through metabolic and
epigenetic adaptations [67,68]. Similarly, innate immune cells may also exhibit long-term
adaptations following early-life stress and/or chronic stress, both risk factors for AD that
lead to glucocorticoid resistance and chronic production of inflammatory cytokines [16,69].
After encountering the pathogen, DCs undergo phenotypic maturation and upregulation
of chemokine receptors required for migration to regional lymph nodes. To initiate the
adaptive immune response, DCs present exogenously derived antigenic peptides mostly to
naïve CD4+ T cells via MHC II, whereas endogenous peptides bound to MHC I stimulate
naive CD8+ T cells [47]. In a process termed cross-presentation, DCs also present exogenous
antigen on MHC I to CD8+ T cells for elimination of virus infected or tumor cells [70,71].
Compared to other APCs such as B cells and macrophages, mature DCs express by far the
largest amount of MHC II on their cell surface [72].

DCs are able to secrete a variety of pro-inflammatory cytokines such as IL-1β, IL-
6, IL-12, IL-23, and TNF that are involved in the pathophysiology of mood disorders.
For example, IL-12 production by DCs induces T helper (Th)1 responses and natural
killer (NK) cell activation, processes involved in both the defense against intracellular
pathogens and the pathophysiology of depression. On the other hand, production of
IL-6 and IL-23 by DCs promotes pathogenic Th17 responses that trigger autoimmunity
and depression-associated behaviors. Conversely, DCs also promote immune tolerance
through secretion of anti-inflammatory factors (e.g., IL-10 and transforming growth factor
(TGF)β), expansion of regulatory T cells (Tregs), and upregulation of the immunosuppres-
sive enzyme indoleamine 2,3-dioxygenase (IDO), a rate-limiting enzyme in tryptophan
metabolism [47,73]. All of these immune processes are frequently altered in MDD pa-
tients and depression-like behavior. For example, IL-10 knockout mice show increased
depression-like behavior and administration of IL-10 rescued depression-associated learn-
ing and memory deficits in mice [74,75]. In addition, Treg insufficiency has been found in
patients with MDD. Grosse et al. (2016) showed that in MDD the percentage of circulating
Tregs was inversely associated with the activation state of monocytes, which are precursors
to DCs and macrophages [76]. Finally, increased IDO activity was found in LPS induced
depression-like behavior [77]. Thus, overall, a large number of findings point toward the
involvement of DCs in mood disorders.

3. Human and Mouse DC Subsets

DCs in human and mouse are commonly classified on the basis of their phenotype
and function into three major subsets, namely conventional DCs (cDCs), plasmacytoid DCs
(pDCs), and monocyte-derived DCs (moDCs) (Table 1) [78,79]. As shown in Table 1, major
DC subsets are characterized by different sets of surface and intracellular markers (Table 1).
On a functional level, cDCs are mainly specialized in presenting exogenous or endogenous
antigens to naïve T cells [79]. In contrast, pDCs harbor the capacity to rapidly produce
large amounts of type I IFN during antiviral immune responses [80,81]. moDCs arise from
monocyte precursors, especially during inflammatory processes when their number can
increase rapidly [79]. Like cDCs, they are mainly involved in inducing T cell responses [82].
While all three DC subsets can be differentiated and cultured from mouse bone-marrow
derived DCs, moDCs can also be generated in vitro from human blood monocytes [83].
These are therefore one of the best studied DC subsets in the context of mood disorders.

3.1. Plasmacytoid DCs

pDCs represent a small subset of DCs that comprise approximately 0.1% to 0.5% of
nucleated cells in lymphoid organs. Unlike other DCs subsets, pDCs have a plasma cell-like
morphology [80]. In humans, they can be found in lymphoid tissues, lung, and peripheral
blood [79]. Exogenously administered granulocyte-macrophage colony-stimulating fac-
tor (GM-CSF), which has been shown to ameliorate LPS-induced depressive symptoms
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in mice [84], inhibits pDC development (via STAT5) by regulating the expression of its
transcription factor basic helix-loop-helix protein E2-2 (E2-2 also known as TCF4) [79,85].
In addition, the transcription factors interferon regulatory factor 8 (IRF8), B-cell lym-
phoma/leukemia 11A (BCL11A), and PU.1 are required for their development [86,87].
pDCs sense viral RNA by TLR7 and CpG containing DNA by TLR9 ligation [81,88]. pDCs
were first described as the main producer of type I IFN in human blood [89,90]. The
rapid type I IFN production capacity of pDCs is based on unique molecular adaptations
to nucleic acid sensing [81]. Meanwhile, findings from type I IFN reporter mouse lines
have shown that only a small subset of pDCs activates type I IFN expression in in vivo
infection models [81]. These type I IFN-producing pDCs have been shown to exhibit a
distinct dynamic gene expression profile that is tightly controlled in time and localization
of the pDC within the microarchitecture of lymphoid organs. This leads to a highly coordi-
nated expression of cytokines, chemokines, and costimulatory molecules by these pDCs
facilitating T cell recruitment and activation [91,92]. In addition to type I IFN, pDCs can
also produce type III IFN, and other cytokines such as IL-6, IL-8, IL-12p40, and TNF, as
well as various chemokines [93].

3.2. Conventional DCs

cDC stem from a common DC progenitor (CDP) and are located in virtually all lym-
phoid and non-lymphoid tissues [94,95]. Human cDCs have been subdivided into two
subsets (cDC1 and cDC2). The development of each subset is based on differential expres-
sion of key transcription factors. While cDC1 development depends on IRF8, inhibitor of
DNA binding 2 (ID2), and basic leucine zipper transcriptional factor ATF-like 3 (BATF3),
cDC2 development is driven by IRF4, Neurogenic locus notch homolog protein 2 (Notch2),
and Kruppel-like factor 4 (KLF4). cDC1 are involved in the induction of type 1 immune
responses and the differentiation and activation of group 1 innate lymphoid cells (ILC1),
NK, and Th1 cells [96]. Secretion of IL-12 is a major mechanism by which cDC1 cells
mediate their functions [97]. cDC1s are also capable to cross-present extracellular antigens
to CD8+ T cells and deletion of BATF3 abolished the development of cDC1s in mice along
with cross-presentation [98,99]. cDC1 are also able to upregulate expression of the immuno-
suppressive enzyme IDO, which has been shown to be involved in the pathogenesis of
depression, especially in a context of high IFNα levels [16,100]. Accordingly, treatment
of hepatitis C patients with IFNα induced depressive symptoms. Psychopathological
symptoms were associated with increased IDO activity measured indirectly by quantifying
kynurenine, a neurotoxic metabolite produced by IDO [100]. cDC1 may further induce
Treg cell-mediated immune tolerance, a process that seems to be dependent on antigen
presentation and is organ-specific [101].

cDC2 in humans are approximately 10 times more frequent than cDC1 under steady-
state conditions. cDC2s are highly proficient in MHC II-mediated antigen-presentation
to CD4+ T cells and promote polarization of Th2 cells against multicellular parasites
as well as in allergic diseases [102]. When activated, cDC2s secrete IL-1β, IL-6, IL-10,
IL-12, IL-23, and TNF [79,103]. By secreting IL-6 and IL-23, both cytokines relevant for
Th17 cell differentiation and maintenance, they regulate the balance of Tregs and Th17
cells [104]. Imbalance between Tregs and Th17 cells is related to autoimmune diseases and
MDD [105,106].

Table 1. Human and mouse DCs subsets.

DC Subset Transcription
Factors

Major
Cytokines

Major Surface Makers Major PRRs
Reference

Human Mouse Human Mouse

pDCs IRF8, BCL11A,
E2-2/TCF4 type I IFN

CD123/IL-3RA,
CD303/CLEC4C/BDCA-
2, CD304/NRP1/BDCA-4

and HLADR low

CD11c low, B220, CD317,
Siglec-H, CD172a,

CD209, CCR2 low, CCR9,
CXCR3 and MHC II low

TLR7 and
TLR9

TLR7 and
TLR9 [79,83,96]
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Table 1. Cont.

DC Subset Transcription
Factors

Major
Cytokines

Major Surface Makers Major PRRs
Reference

Human Mouse Human Mouse

cDC1s
BATF3, IRF8,
ID2, Zbtb46

(BTBD4)
IL-12

CD11c low, HLA-DR,
CD141/BDCA1, XCR1,

CLEC9A/DNGR1,
DEC205, IDO

CD11c, MHC II, CD8α
(resident), CD103

(migratory), CD24,
XCR1, CLEC9A and

DEC205

TLR3 or
CLEC12A

TLR4 or
CLEC12A [79,96,107,108]

cDC2s

ID2, Zeb2,
NOTCH2, IRF4,
KLF4, Zbtb46

(BTBD4)

IL-1β, IL-6,
IL-10, IL-12,

IL-23, and TNF

CD1c/BDCA-1, CD2,
CD172a/SIRPA, CD11c,
HLA-DR, CD11b, CD1a

(migratory), FcεR1, ILT1,
CD14 and CD5 (subset)

CD11c, MHC II, CD11b
high, CD172a/SIRPA TLRs 1-9 TLRs 1-9 [79,96]

moDCs
CSF1R, MAFB,
KLF4, Zbtb46

(BTBD4)

IL-1β, IL-6, IL12,
IL-23, and TNF

CD11c, HLA-DR, CD1c,
CD11b, CD14, CD64,

CD206, CD209, CD172a,
CD1a, CCR2

CD11c, MHC II, CD11b,
Ly6C, CD64, CD206,
CD209, CD14, CCR2

- - [109,110]

Adapted from Wculek and co-authors [96].

3.3. Monocyte-Derived DCs

moDCs or so called inflammatory DCs (infDCs) are a subset of DCs that differentiate
from monocytes during inflammatory conditions in vivo [79]. moDCs can also be generated
in vitro from human blood monocytes or from murine bone marrow (e.g., by cultivation in
the presence of GM-CSF and IL-4) [83]. moDC development depends on the transcription
factors known from cDC1s, such as BATF3, and from cDC2s, like IRF4. In the absence of
IRF4, GM-CSF and IL-4-stimulated monocytes differentiate into macrophages instead of
moDCs, showing that moDC, like cDC2, are dependent on IRF4 [111]. moDCs may exhibit
regulatory functions in steady state human tissue, like the lungs, intestine, and skin. In
addition, they are involved in the generation of Tregs [96]. Finally, human moDCs can
secrete various cytokines, such as IL-1β, IL-6, IL12, IL-23, and TNF. Like cDC2, they are
potent inducers of Th17 polarization by secretion of IL-6 and IL-23. In addition, they are
involved in Th1, Th2, and CD8+ T cell expansion [109]. moDCs, therefore, can be regarded
as a very complex cDC subset being able to take over many functions from cDC1 and cDC2.

4. DCs in Mood Disorders and Depression-Like Behavior
4.1. Genetic Studies with a Relation to DCs in Mood Disorders

Mood disorders are multifactorial disorders with genetic and environmental factors
contributing to their development. Based on twin and family studies, the heritability of
MDD and BD is estimated to be around 40% and 60–85%, respectively [112]. GWAS and
GWAS meta-analyses have provided the most comprehensive insights into the genetic
basis of MDD and BD to date.

Recently, Howard and colleagues performed a GWAS meta-analysis of depression
and investigated data from around 246 K cases and 561 K controls [113]. In this study,
102 independent genome-wide significant variants in 101 genomic loci were identified.
The associated loci included the extended MHC region on chromosome 6, which harbors
numerous immune-related, but also non-immunological genes [114,115]. A study by
Glanville and colleagues (2020), however, did not provide evidence that the association
with depression is driven by variation in the classical HLA alleles [116]. Pathway analysis
of the major depression GWAS data by Wray et al. (2018) revealed significant enrichment
for genes involved in the regulation of cytokine production involved in the immune
response [117].

The currently largest GWAS of BD investigated ~42 K BD cases and ~371 K con-
trols and identified 64 genome-wide associated loci [118]. As in depression, these loci
included the extended MHC region. Pathway analysis of the GWAS data, however, did
not reveal significantly enriched immune-related gene sets [118]. Using GWAS and expres-
sion data as well as innovative biostatistical methods a significant enrichment for specific
blood/immune cell types was found for BD, i.e., neutrophils, hematopoietic stem cells, and
leukocytes [119,120]. However, significant enrichment for DCs was not found for either BD
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or depressive symptoms after correction for multiple testing [120,121]. While these findings
do not provide strong evidence for DCs as disease-relevant cell type in mood disorders,
individual associated genomic loci may nevertheless mediate their contribution to disease
development via altered DC function. The detailed mechanisms and causal genes are still
unknown for most genome-wide significant loci and have yet to be elucidated in future
functional studies. However, closer inspection of genes located at genome-wide significant
loci may provide initial clues to a potential involvement of DCs.

Interestingly, GWAS of MDD and BD identified risk loci harboring genes that regulate
DC function and development. It should be noted, however, that these genes are typi-
cally not exclusively expressed by DCs and that the identified disease associations could
thus be mediated through other cell types or mechanisms. The genome-wide significant
risk variants reported by Wray et al. (2018) include the single-nucleotide polymorphism
(SNP) rs12958048, which is located in the TCF4 gene encoding the transcription factor
E2-2/TCF4 [117]. TCF4 has previously been reported as a genome-wide significant risk
locus for schizophrenia [122]. As mentioned above, TCF4 is the master regulator of pDC
development in humans and mice, and their capacity to produce type I IFN [123]. Type I
IFN is known to induce depressive symptoms in humans, suggesting an influence of pDCs
as specialized type I IFN producers in inflammatory responses [14,15].

The currently largest GWAS of BD identified a genome-wide significant variant in
the CACNA1C gene on chromosome 12 [118]. Besides BD, variants at the CACNA1C locus
have also been associated with other psychiatric disorders including schizophrenia [122].
CACNA1C encodes the pore forming subunit of the voltage-dependent L-type gate calcium
ion (Ca2+) channel (LTCC) Cav1.2 that regulates depolarization-dependent Ca2+ influx into
cells. CACNA1C plays important roles in neuronal functions and survival and synaptic
plasticity, and therefore modulates learning and memory behavior [124]. Interestingly,
the CACNA1C gene is not only widely expressed in the nervous system, but also found
in immune cells such as DCs. Multiple functions of DCs such as maturation, migration,
and immunological synapse formation with T cells depend on Ca2+ signaling. Cav1.2 is
directly involved in antigen presentation of DCs as it has been shown to activate Ryan-
odine Receptor-1 (RyR1) signaling causing rapid MHC II expression in the membrane of
DCs [125].

Overall, there is currently no strong evidence for the direct involvement of AD-
associated genetic variants in regulating DC function, as most implicated risk genes are
expressed in various cell types. Future genetic and functional studies are needed to
assess the contribution of DCs to the development of MDD and BD, which, if present,
may only refer to specific etiological patient subgroups. In addition, only specific DC
subsets or individual differences in immune responses might be relevant for disease
pathogenesis. Therefore, more refined integrative analyses of genetic data with data from
state-of-the-art sequencing methods (e.g., single-cell RNA sequencing) and/or immune
response expression and expression quantitative trait loci (eQTL) studies in DCs should be
conducted in the future [126,127].

4.2. DC-Expressed Chemokines and Chemokine Receptors Involved in Mood Disorders and
Depression-Like Behavior

Migration of DCs in homeostasis and inflammation is orchestrated by chemokine/
chemokine receptor interactions. Chemokines form a large family of small chemotactic
proteins that control leukocyte trafficking and cellular processes such as cell adhesion, acti-
vation and proliferation, and cytokine secretion through signaling via G protein-coupled
receptors [128,129]. Chemokines also control proliferation and migration of neural pre-
cursor cells or mature neurons, as well as glial cells and are therefore involved in CNS
development and homeostasis [130,131]. Several chemokines and their receptors modulate
stress responses, and increased levels of chemokines have been found in depressed individ-
uals and depression-like behavior [132]. In the following chapter, we will focus on selected
chemokine/receptors involved in DC biology and at the same time in mood disorders.
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The chemokine receptor CCR7 is the cognate receptor for the ligands CCL19 and
CCL21 and plays a crucial role in the organization and homeostasis of the microarchitecture
of lymphoid organs (Table 2). Upon maturation, CCR7 is upregulated on DCs and controls
their migration from peripheral tissues to regional lymph nodes and thus provides a
link between peripheral inflammatory processes and neuroinflammation [133]. CCR7
binding to any of its ligands increases the endocytosis capacity, differentiation, and cytokine
production ability of DCs [134]. Deficiency of CCR7 in mice confers resistance to CNS
autoimmunity due to a defect of DCs to produce IL-23 and IL-12 and to induce pathogenic
Th17 cells [135]. CCR7 was also shown to affect cognition and emotional behavior. CCR7-/-

mice exhibited learning and memory deficits and higher levels of anxiety than WT animals.
In addition, CCR7-/- mice showed decreased preference for saccharin in weekly testing
indicating that CCR7 modulates depression-like behavior [136].

Table 2. Chemokines and chemokine receptors involved in AD and depression like behavior.

Chemokine Receptor Ligand Function in DCs Impact on Behavior Reference

CCR4 CCL17, CCL22
Multiple functions including

migration and secretion of
GM-CSF and IL-23

CCR4 knockout mice show reduced
locomotor activity, less

anxiety-related behavior, and
diminished social exploration

[137]

CCR6 CCL20 Chemotaxis of DCs to
inflammatory sites and the brain

CCR6 knockout mice show higher
locomotor activity, lower anxiety,

and reduced preference for saccharin
(in weekly testing)

[136]

CCR7 CCL19, CCL21 Migration, differentiation,
endocytosis, release of cytokines

CCR7 knockout mice show impaired
learning (Barnes maze), higher

anxiety, and reduced preference for
saccharin (in weekly testing)

[136]

CX3CR1 CX3CL1

Induces e.g., actin polymerization
and migration of DCs,

independent of their maturation
status

CX3CR1 knockout mice show
increased resilience to stress-induced

depression-like behavior
[138,139]

Ligand Chemokine
Receptor Function in DCs Clinical Studies Reference

CCL2 CCR2 Migration, maturation, and
production of IL-12

Increased CCL2 serum levels in
patients with affective disorders [140]

CXCL8 CXCR1, CXCR2 Chemotaxis of immature DCs to
inflammatory sites

Increased CXCL8 blood levels in
depressed individuals [141]

CXCL12 CXCR4 Migration of DCs from the skin
into the regional lymph nodes

Reduced CXCL12 plasma levels in
patients with non-affective psychosis [142]

Many chemokine receptors, including CCR1, CCR2, CCR5, CCR6, CXCR1, and CXCR2
have been shown to direct chemotaxis of immature DCs to sites of inflammation [143]. For
example, CCR2 expressed by DCs drives their maturation, migration, and IL-12 production
via activation of the transcription factor NF-κB. Clinical studies reported higher serum con-
centrations of its ligand, CCL2, in depressed individuals as compared to healthy controls,
and vice versa, antidepressants have been shown to reduce CCL2 levels [30,132]. Elevated
CCL2 serum levels have also been found in patients with BD [140] suggesting an impact of
the CCR2/CCL2 axis in mood disorders. So far, the biological function of CCR2-expressing
monocytes has been in the focus of studies regarding mood disorders. The influence of this
chemokine/receptor pair in DCs in the pathophysiology of mood disorders needs to be
addressed in future studies.

CXCL8 (IL-8), as well as other chemokine ligands (CXCL1, CXCL2, CXCL3, CXCL5,
CXCL6, CXCL7) act on CXCR1 and CXCR2 receptors. CXCL8 is known to primarily
induce chemotaxis of CXCR1- and CXCR2-expressing neutrophils to inflammatory sites.
CXCL8 also mediates its biological effects on immature DCs that express the cognate
receptors [144]. A comprehensive meta-analysis showed increased CXCL8 levels in the
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blood of depressed individuals compared to controls [141]. However, it is unclear whether
the observed chemokine changes are primary or secondary to MDD and whether enhanced
levels of CXCR1 and CXCR2 ligands affect actions of DCs in mood disorders.

In marked contrast to most other chemokine receptors, CCR6 has only one known
ligand, namely CCL20. The CCL20/CCR6 axis controls chemotaxis of DCs to inflam-
matory sites and the brain and has been implicated in chronic inflammatory conditions
(e.g., inflammatory bowel disease, chronic liver disease), neuroinflammation and neurode-
generation [145,146]. Direct evidence of CCR6 involvement in depression-like behavior
came from CCR6−/− mice showing an anhedonic phenotype as indicated by reduced
preference for saccharin compared to WT animals [136].

CXCR4/CXCL12 engagement is essential for migration of cutaneous DCs into the
regional lymph nodes [147] and mediates retention of DC precursors in the bone marrow
of mice [148]. In addition to these immune functions, CXCL12 has also been shown to play
important roles in the CNS. CXCL12 is expressed in the brain by glial cells and neurons
and controls axonal guidance and neurite outgrowth [149,150]. Plasma levels of CXCL12
have been found reduced in patients with non-affective psychosis compared to healthy
controls [142]. Moreover, CXCL12 increases the synaptic activity of gamma-aminobutyric
acid (GABA) and glutamate at serotonergic neurons in the rat dorsal raphe nucleus and
the proliferation of human neural progenitor cells in vitro. Both neurotransmitters, GABA
and glutamate, are involved in the pathophysiology of mood disorders [151–153].

CX3CR1 represents another chemokine receptor that is expressed by DCs during all
stages of their differentiation. CX3CR1 modulates DC trafficking mainly through inflamed
lymphatics. CX3CR1 is also found on other immune cells, such as monocytes and microglia
in the CNS. CX3CR1 is the receptor for the only known member of the CX3C chemokine
family, CX3CL1 (Fractalkine). Fractalkine is expressed in neurons, intestinal epithelium,
and activated lymphatic endothelial cells [154]. Absence of CX3CR1 exacerbates LPS-
induced neuroinflammation in mice but increases resilience to stress-induced depression-
like behaviors [138,155]. Resilience of CX3CR1 deficient mice in a chronic despair model
was mainly attributed to altered neuron-microglia signaling via CX3CR1/CX3CL1 due to
hyperbranched microglia. A positive correlation between CX3CL1 levels and depression
severity was observed in patients with colorectal cancers and comorbid depression. The
CX3CR1/CX3CL1 axis is also discussed as a target for the treatment of many chronic
inflammatory diseases, including Alzheimer’s disease, atherosclerosis, and asthma [154].
CX3CL1 effects involving DCs in mood disorders have not been studied so far.

CCR4 is the cognate receptor for CCL17 and CCL22, which play important roles
in DC-mediated peripheral inflammatory responses and neuroinflammation. CCR4 is
expressed by DCs and other immune cells, including T cells, NK cells, and macrophages/
monocytes [48,156,157]. We have shown before that DCs are the primary cellular source of
CCL17 using an Enhanced Green Fluorescent Protein (EGFP) expressing reporter mouse
model [158]. We also demonstrated that CCR4 and CCL17 are functionally involved in
CNS autoimmunity by regulating DC functions [159,160]. CCL17-deficient mice show
reduced clinical severity of experimental autoimmune encephalomyelitis (EAE) due to a
defect of peripheral DCs to migrate into the CNS [160]. In the brain, CCL17 is expressed
in hippocampal neurons upon inflammatory stimulus and CCL17 deficiency confers phe-
notypic alterations in microglia such as reduced cellular volume and a more polarized
process tree compared to WT controls [161]. In the absence of CCR4, mice are resistant
to the development of EAE. Mechanistically, CCR4-deficient DCs are less able to secrete
GM-CSF and IL-23 in the CNS and to promote the survival of pathogenic Th17 cells [159].
CCR4-deficient mice also exhibit behavioral changes such as reduced locomotor activity,
less anxiety-related behavior, and diminished social exploration compared to WT ani-
mals [137]. In contrast, CCL17 deficient mice showed no altered behavior suggesting a
mechanistic or developmental role of CCR4 in the regulation of these behaviors. These
findings in sum demonstrate that the CCL17/CCL22/CCR4 axis is an essential modulator
of neuroinflammation and behavior suggesting a potential role in inflammation-induced
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depression. In accordance, findings in humans showed higher CCL22 blood levels in
patients with MDD who responded to anti-depressive therapy [162].

4.3. DC-Derived Cytokines and Chemokines and Their Potential Influence on Microglia Function

DC-dependent peripheral immune responses are closely associated with neuroinflam-
mation and microglia activation [159,160,163]. Microglia are immune effector cells of the
brain and fulfill numerous functions in neurodevelopment, neuroprotection, and immuno-
surveillance. Microglial dysfunction has been found in many inflammatory, autoimmune,
and neurodegenerative CNS disorders, including mental disorders. Postmortem and imag-
ing studies in humans, as well as neuroimmunological analyses in rodent models reported
microglial activation in MDD and depression-associated behavior [40,44]. Microglia ex-
press PRRs and a plethora of additional immune receptors, including those for cytokines
and chemokines. Upon encounter of an inflammatory stimulus or pathogen, they develop
an amoeboid phenotype, express higher levels of MHC and co-stimulatory molecules,
acquire migratory competence, and release inflammatory cytokines/chemokines that am-
plify the inflammatory response [164–166]. Moreover, peripheral innate immune challenge
resulting in enhancement of inflammatory cytokines has been shown to induce microglia
activation. As described above, peripheral DCs and monocytes/macrophages are a promi-
nent cellular source of Type I IFNs, IL-1β, IL-6, and TNF that reach the CNS via the humoral
pathway [167]. It is therefore likely that DCs orchestrate microglial activation and increase
their migratory and phagocytic capabilities during neuroinflammation in AD.

Microglia acquire multiple phenotypes associated with distinct molecular signatures.
However, the microglial phenotype associated with MDD and depressive-like behavior is
still a matter of debate. Many studies point to the predominance of classically activated,
pro-inflammatory M1 microglia in stress responses and major depression. For example,
positron emission tomography (PET) using PET ligands such as the microglia marker
translocator protein 18 kDa (TSPO) showed microglia activation in major depression
and correlated TSPO expression levels with severity and duration of illness [168]. Social
defeat in rodents used as stress/depression model induced microglial activation and
increased expression of pro-inflammatory cytokines in brain regions associated with fear
and anxiety [169]. M1 microglia are induced by PRR ligands, IFNγ, and GM-CSF. We have
shown before, that CCR4+ DCs capable to invade the brain during neuroinflammation
in a model of CNS autoimmunity are specialized to produce GM-CSF [159]. On the
other side, lack of microglial activation or an immune-suppressed microglial state has
been found in depressed individuals (for review see Yirmiya, Rimmerman and Reshef,
2015) [170,171]. Recent findings using single cell mass cytometry of microglia isolated
from postmortem tissues of individuals with MDD support the view of a homeostatic,
but not inflammatory marker profile of these cells [172]. Among other cells, DCs are also
capable to release anti-inflammatory IL-10 and TGFβ and may thereby support alternative
activation of M2 microglia specialized to mediate tissue repair, immune regulation, and/or
phagocytosis [165,173,174]. Thus, although many immune factors produced by DCs directly
affect microglial functions, we do not have yet a coherent picture of how DCs are involved
in these processes in AD. Further studies are therefore needed to better understand the
impact of DCs in microglial polarization in the pathophysiology of AD.

4.4. DCs as Modulators of Adaptive Immune Responses in Mood Disorders

DCs connect innate and adaptive immune responses through PAMP/DAMP recog-
nition on the one hand and their ability to induce activation of naïve T cells on the other.
After antigen recognition within a specific cytokine milieu, activated CD4+ T cells differ-
entiate into a variety of effector Th cell subsets, including Th1, Th2, Th17 and Treg cells
(Tregs) [175,176]. Th1 cells produce, among others, the lead cytokines IL-2 and IFNγ and
play an important role in the clearance of intracellular pathogens. Their development
is favored by IL-12. The presence of IL-4 promotes the development of Th2 cells that
are involved in immune responses against extracellular pathogens and antibody class
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switching. Th17 cells play a pathogenic role in the development of autoimmunity and in-
flammatory disorders [104]. TGFβ and IL-6 induce differentiation of Th17 cells, while IL-23
supports their maintenance. Tregs represent cellular counterparts of Th17 cells and due to
their immunosuppressive capacities are involved in the development and maintenance of
tolerance [177]. A plethora of studies have suggested a role for Th1, Th17 and Treg cells in
the pathophysiology of MDD and altered Th17 and Treg cell numbers and functions have
been found in stress-induced behavior in mice [76,178–187]. As there are excellent review
articles on this topic, we may refer to previous publications [106,179,188,189].

Differentiation of naïve CD4+ T cells effector Th cell subsets is mainly controlled by
DCs [97,190,191]. DC subtypes carry out distinct functions that shape Th cell differentiation
and responses. For example, cDCs are able to produce IL-6, IL-12, and IL-23, thereby
affecting the balance between Th1, Th2, Th17, and Treg cells [53]. By releasing IL-12,
cDC1 cells promote Th1 responses. However, cDC1 have also been shown to induce Th1
differentiation in the absence of IL-12, and cDC2 cells promoted Th2 differentiation in
the absence of IL-4. Thus, Th cell differentiation may be influenced by the specificity
of the DC subset rather than the cytokines released [192]. Moreover, differences in the
capacity of DC subsets to process and present antigens also affect T cell responses. Human
pDCs can also induce the development of Tregs from naive CD4+ T cells by expression
of IDO and programmed death-ligand 1 (PD-L1) [193,194]. Furthermore, DCs modulate
Th cell responses via the secretion of MHC I and II containing exosomes, also known
as extracellular vesicles (EV) [195,196]. Depending on the individual size of the EVs,
they show different potential to promote Th1 versus Th2 cell responses. Immature DCs
producing large EVs induce the secretion of Th2-associated cytokines, whereas small and
medium EVs induce the secretion of Th1-associated cytokines in T cells. Despite the fact
that DCs are master regulators of Th cell responses by using different strategies, studies
unraveling the role of DCs in CD4+ Th cell regulation in mood disorders are still lacking.
Future studies are needed to unravel their specific roles in driving different CD4+ T cell
subsets in the pathophysiology of mood disorders.

4.5. Effects of Antidepressant Treatment on Human and Murine DCs

Several treatment studies for AD in humans indicate that DC phenotype and function
may be affected by psychopharmacological treatments for AD. A pilot study compared
vilazodone, a 5-HT1A receptor agonist/serotonin transporter inhibitor, with paroxetine for
antidepressant and immunomodulatory effects in late-life depression [197]. The authors
examined leukocyte gene expression profiles for specific proinflammatory gene transcripts.
Both treatments equally improved depressed mood, but only vilazodone-treated samples
exhibited relative reductions in many cardinal genes encoding pro-inflammatory cytokines,
HLA-DR, and the costimulatory molecule CD83. Transcript origin analyses revealed that
DCs and monocytes were the primary cellular source of down-regulated mRNAs in the
vilazodone-treated group. Several of those encoded proteins are involved in antigen pre-
sentation and CD4+ T cell activation by DCs, such as HLA-DRB5, HLA-DRB1, CD83, and
TNFAIP3 [197]. HLA-DRB5 and HLA-DRB1 polymorphisms are associated with neu-
roinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer’s
and Parkinson’s disease [198–200]. Analysis of HLA-DRB5 gene expression in peripheral
blood might serve as a remission predictor for antidepressant treatment in late-life de-
pression [201]. In addition, an association between HLA-DRB1 and post-traumatic stress
disorder has been reported [202]. It can also be used as predictor of brain and cerebellar
atrophy in patients with Gulf War Illness (GWI), a disease of veterans of the 1991 Gulf
War [203]. The gene TNFAIP3 (Tumor necrosis factor alpha-induced protein 3) encodes
the zinc finger protein A20, an ubiquitin-modifying enzyme, that is also involved in DC
functions. TNFAIP3 deficiency in DCs is known to result in higher Th17 differentiation
capacity through increased expression of IL-1β, IL-6, and IL-23, and to inhibit the differen-
tiation of Th2 cells by increasing levels of IL-12 and IL-6 [204]. In sum, vilazodone-induced
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mood improvement was linked to the downregulation of immune genes in DCs, which are
related to DC maturation and T cell activation.

Two studies investigated the treatment effects of the mood stabilizer lithium on
moDCs in BD. Wu and coauthors demonstrated that moDCs generated from lithium-treated
patients with BD-I expressed higher levels of CD14, a co-receptor for LPS, but induced less
T cell proliferation than counterparts from healthy controls. In addition, in vitro treatment
of PBMCs from BD-I patients with lithium for six days promoted the development of
moDCs even in the absence of GM-CSF and IL-4. The authors demonstrated that the
number of moDCs was increased in cultures from BD patients when compared to healthy
controls [205]. The second study showed that after six days of treatment with lithium
in vitro, moDCs exhibited decreased surface levels of CD14, but increased expression
levels of CD1a, a lipid-presenting molecule, and enhanced capacity to induce proliferation
of CD4+ T cells [206]. Especially the potential increase in lipid presentation efficiency
warrants future investigation as the role of this unconventional and complex antigen class
in inflammatory immune responses has only just begun to be revealed [207]. Taken together,
these two studies suggest that lithium impacts maturation and the ability of DCs to induce
adaptive immune responses and lipid recognition.

Drugs used in the treatment of AD have also been shown to mediate anti-inflammatory
effects on murine DCs in vitro. Koh and colleagues showed that fluoxetine, a selective
serotonin reuptake inhibitor (SSRI), inhibited LPS-induced TNF and IL-12p40 mRNA ex-
pression and protein secretion in bone marrow-derived DCs from IL-10 deficient mice
by suppressing the kinase IKK within the NF-κB signaling pathway [208]. Similarly,
another study showed that in vitro administration of desipramine, a norepinephrine re-
uptake inhibitor (NRI), reduced the secretion of TNF, IL-1β, and IL-12 by LPS-stimulated
murine bone marrow-derived DCs [209]. As in humans, these results indicate that the
anti-inflammatory and immunomodulatory effects of fluoxetine and desipramine can also
be observed in murine DCs opening up the possibility to address the in vivo impact of
these effects in animal models of depression-like behavior.

5. DCs in Rodent Models of Mood Disorders

Animal models of depression mirror certain aspects of the depressive syndrome, such
as anhedonia, behavioral despair, and neurovegetative changes, and have significantly
expanded our understanding of the pathogenesis of mood disorders. Depression-like
behavior is induced by exposing rodents to acute and chronic stress paradigms, maternal
separation, olfactory bulbectomy, selective breeding strategies for depression-related or
resilient behavior, or by utilizing genetically modified animals. In addition, optogenetic
and chemogenetic methods are used to investigate the neural circuit mechanisms within
depression-like behavior [210,211]. Furthermore, a number of studies use experimental
administration of endotoxins or pro-inflammatory cytokines to induce “sickness-behavior”
in rodents and unravel the underlying molecular mechanisms of inflammation-induced
depression. In social defeat models, a stress response is induced in defeated rodents, that
elicits an inflammatory response and glucocorticoid resistance in immune cells [212–215].

Widely used tests to quantify behavioral despair or stress coping behavior in rodents
are the forced swim test (FST) and the tail suspension test (TST). In both tests, animals
are exposed to inescapable situations [216]. The sucrose/saccharin preference test (SPT)
measures anhedonia and is based on the rodents’ natural preference for the sweetened
solution [217–219]. Models of stress-induced behavioral change can lead to both depression-
and anxiety-like behaviors, so experimentally induced anxiety-like behaviors are also
commonly studied, e.g., through testing approach-avoidance conflicts. For further insights
into animal models modelling depression, we recommend reviews on this topic [220–223].
In the following, we will highlight rodent models that have been used to better understand
the effects of DCs in depression-like behavior.
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5.1. Models of Inflammation-Induced Depression Induced by Endotoxin Administration

There is ample evidence that peripheral cytokines released in innate immunity trig-
ger mood changes [12,33]. Following PAMP/DAMP recognition by innate immune cells,
three cytokine-dependent pathways (humoral, neural, and cellular) mediate immune-brain
communication. The “humoral” pathway relates to the entry of cytokines into the brain
through “leaky” regions of the blood brain barrier such as circumventricular organs and the
choroid plexus. The “neural route” involves activation of afferent nerve fibers that express
cytokine receptors and relay signals to the brain, and the “cellular pathway” comprises the
chemokine-dependent recruitment of immune cells to the brain during neuroinflamma-
tion [57,224]. DCs contribute to all three pathways due to (i) release of pro-inflammatory
cytokines including IL-1β upon maturation and activation of afferent vagal nerve fibers
expressing IL-1β receptors, (ii) their localization near afferent vagal nerve fibers and associ-
ated paraganglia, and (iii) their immigration into the brain during neuroinflammation, and
local release of chemokines that recruit peripheral immune cells [48,160,225].

Peripheral administration of LPS in humans and rodents induces “sickness behavior”
commonly used to study inflammation-related depression. In humans, sickness behav-
ior is characterized by fatigue, social withdrawal, and decreased appetite. A few hours
after injection, LPS induces anxiety symptoms and depressed mood [59]. These emo-
tional changes correlate with fever and elevated serum IL-6 and TNF levels [59,226–228].
Rodents exposed to LPS show weight loss, decreased motor activity, and food intake,
associated with increased proinflammatory cytokine levels in the periphery and brain.
Subsequently, there is an increase in IDO levels, in neuroinflammation, and depression-like
behavior [57,77,229–231]. Inflammation-induced depression also occurs after exposure
of rodents to the viral mimetic poly I:C, which binds to TLR3 and the Rig-I-like receptor
(RLR) MDA5 and has been associated with reduction in brain-derived neurotrophic factor
(BDNF) signaling and increased levels of kynurenine [232]. Interestingly, endotoxins from
Gram-positive bacteria (lipoteichoic acid; LTA) that bind to TLR2 can also induce neu-
roinflammation in mice, but without inducing behavioral changes [233]. One explanation
could be that different signaling pathways are induced by these TLRs. Ligation of TLR2
and TLR4, activates NF-kB mediated signaling, which induces expression of genes for pro-
inflammatory cytokines. In contrast, TLR3 and TLR4 induce a signaling pathway involving
transcription factor IRF3 activation, which leads to production of type I IFN [234,235].

More specifically, LPS-binding to TLR4 activates a complex signaling pathway depen-
dent on the adaptor molecules MyD88 and TRIF leading to translocation of NF-κB and IRF3
into the nucleus for transcription of inflammatory genes and type I IFN [55,77]. Although
the exact mechanism of LPS-induced mood changes is still unclear, it has been proposed
that TLR4/NF-κB signaling induces IDO concurrent with upregulation of inflammatory
cytokines [77,236]. The enzyme IDO is expressed by several cell types such as fibroblasts,
myeloid-derived suppressor cells, and myeloid cells including mature DCs [237–239]. IDO
catalyzes the first and rate-limiting step of degradation of tryptophan, an important precur-
sor of serotonin [240]. Increased IDO activity leads to impaired metabolism and depletion
of tryptophan, increased formation of kynurenine, and accumulation of its toxic down-
stream metabolite quinolinic acid (Figure 1). This neurotoxic challenge is associated with
depressive symptoms [57]. A large number of studies have demonstrated the association
of depressive symptoms with type I IFN treatment [14,15,241]. Of note, a subset of human
and murine DCs are highly capable to produce IDO after triggering IFN response elements
in the IDO gene when exposed to type I and/or type II IFNs [240]. Two recent studies
highlighted the role of IDO activity in type I IFN-induced depressive symptoms through
induction of neurotoxic kynurenine metabolites. In patients affected by hepatitis C virus,
IFNα treatment induced IDO expression and the increase of the neurotoxic quinolinic acid
in the brain. Moreover, levels of quinolinic acid correlated with depressive symptoms [242].
Additionally, in another study, IFNα treatment increased depressive symptoms in patients
with hepatitis C associated with an enhanced ratio of kynurenine/tryptophan, a corre-
late for IDO activity. The ratio of kynurenine/neuroprotective metabolite kynurenic acid
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was enhanced, thus reflecting enhanced neurotoxicity [243]. The causative involvement
of IDO in depressive-like behavior was shown by blocking IDO with its antagonists 1-
Methyltryptophan (1-MT), a treatment preventing LPS-induced depression-like behavior
in mice [77]. Similarly, Hemmati and colleagues showed that exogenous application of GM-
CSF mediated antidepressant effects in mice, likely by inhibiting TLR4/NF-κB-dependent
induction of IDO [84].
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Figure 1. DC subsets in mood disorders and depression-like behavior. Plasmacytoid DCs (pDCs) produce high levels of
type I IFN after sensing viral RNA by TLR-7 and/or CpG containing DNA by TLR-9 ligation. Type I IFNs induce IDO
expression, leading to depletion of tryptophan, an important precursor of serotonin, and increased formation of neurotoxic
kynurenine metabolites such as quinolic and kynurenic acid. Following social stress, glucocorticoids induce the expression
of Tsc22 domain family protein 3 (TSC22D3) in DCs, a crucial glucocorticoid-dependent regulator of DC effector functions.
Through secretion of IL-12 and presentation of antigens by MHC II, conventional DC1 (cDC1) induce Th1 cells that produce
inflammatory cytokines involved in the development of AD, including TNF and IFNγ. Social stress leads to increased
expression of CD80, CD44, and CCR7 in conventional DC2 (cDC2)/monocyte-derived DCs (moDCs) and the secretion of
inflammatory cytokines, including IL-1β, IL-6, and IL-23 involved in Th17 cell development and maintenance. PAMPs
(e.g., LPS) and DAMPs bind to PRRs and activate the pyrin domain-containing 3 (NLRP3) inflammasome complex leading
to caspase-1 activation and maturation of e.g., IL-1β. IDO—indoleamine 2,3-dioxygenase; PAMPs—pathogen-associated
molecular patterns; DAMPS—damage-associated molecular-patterns.

With respect to BD, accumulating evidence points toward an impairment of the
kynurenine pathway in BD. For example, enhanced IDO expression was found in anterior
cingulate cortex of post-mortem brain tissues of BD patients [244]. A recent meta-analysis
assessed kynurenine metabolites in peripheral blood in individuals with BD and HC.
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Interestingly, individuals with a manic episode showed the most pronounced reduction in
peripheral blood levels of tryptophan, whereas kynurenic acid levels were more reduced
among depressed subjects [245].

Although DCs were not examined in these studies, IDO expression by peripheral DCs
may be of particular significance as a pathophysiological mechanism in mood disorders.
IDO expressing DCs have been shown to exert tolerogenic effects and mediate suppression
of effector T cells and promotion of Tregs [246]. On the other hand, pDCs are highly capable
of secreting high levels of type I IFN and thus induce IDO activation in DCs [81,240].
Interestingly, inflammatory disorders associated with high levels of type I IFN such as
lupus erythematosus, HIV/AIDS and rheumatoid arthritis are frequently associated with
depressive symptoms [247,248]. Thus, DC-induced IDO activation, which can be triggered
via type I IFN, may play an important role in MDD. Therefore, monitoring IDO-expressing
DCs, tryptophan metabolism, and quinolinic acid levels in individuals with MDD or BD
may lead to a better understanding of the role of DC-dependent immune activation and
IDO in the development of mood disorders.

5.2. DCs in Animal Models of Stress-Induced Behavioral Changes

Changes in the phenotype and function of DCs in the stress response have been
investigated in only few in vivo studies (Table 3). Nevertheless, findings from these
experiments suggest important functions of DCs in the stress response and depression-like
behavior that influence antiviral T-cell responses and tumor immunity [249–251]. Powell
and colleagues examined the effect of a social stressor on DCs in the social disruption (SDR)
paradigm in mice [252]. In SDR, rodents are defeated by an aggressive conspecific in their
home cage [253]. Here, after six days of SDR, DCs from the spleen of subordinate animals
expressed increased levels of MHC I, CD80, and CD44 compared to those from non-stress
controls [252]. In addition, DCs from mice exposed to SDR secreted higher amounts of IL-6
and TNF after in vitro LPS stimulation and were glucocorticoid resistant. In a follow-up
study, the authors demonstrated that adoptive transfer of DCs from stressed mice confers
enhanced adaptive immunity to influenza A virus in recipient animals [250]. In summary,
SDR induces glucocorticoid resistance and DC maturation associated with an enhanced
capacity to induce antiviral T cell responses.

Table 3. DCs in rodent models of AD.

Animal Model Duration Tissues Analyzed Alterations Found in DCs Reference

SDR 6 days Spleen
Increased MHC I, CD80 and CD44 expression and
glucocorticoid resistance ex vivo and IL-6 and TNF

productionafter in vitro stimulation with LPS
[252]

SDR 6 days Spleen, lung

Enhanced maturation and capacity to induce antiviral T
cell responses, adoptive transfer of splenic DCs from

SDR exposed mice confers immunity towards influenza
A virus, glucocorticoid resistance

[250]

SDS 10 days Spleen
Increased MHC II and CD80 expression by DCs of
susceptible mice, higher IL-12+ DC proportions in

resilient mice
[251,254]

SDS 10 days Spleen, LN, tumor

Upregulated TSC22D3 expression and reduced
capability to produce type I IFN in tumor-infiltrating

DCs after SDS and reduced capability to induce IFN-γ
secretion in tumor-infiltrating T cells

[249]

SDS 10 days Skin
Downregulated DNMT1 and upregulated CCR7

expression in skin DCs, exacerbated
experimentally-induced atopic dermatitis

[255]

SDR and SDS 6 (SDR) and 10
(SDS) days

Spleen, blood, bone
marrow

Reduced cDC1 and cDC2 cell percentages in bone
marrow after SDR and SDS; reduced DC percentages in

peripheral blood of subordinate animals after SDR
[256]

SDR—social disruption; SDS—chronic social defeat stress; LN—lymph node; DCs—dendritic cells; cDC1—conventional dendritic cells 1;
cDC2—conventional dendritic cells 2; CORT—corticosterone; TSC22D3—TSC22 domain family member 3; DNMT1—DNA Methyltrans-
ferase 1.

In a recent study on immune consequences of stress exposure, we compared DCs in
stress-susceptible versus resilient mice exposed to chronic social defeat stress (SDS) [251].
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Consistent with previous studies, a 10-day exposure to SDS induced social avoidance
behavior (susceptibility) in approximately half of the animals, whereas the other animals
showed social interaction (resilience) comparable to controls [257]. We found that DC fre-
quencies were reduced in the spleens of all mice exposed to SDS, regardless of susceptibility
or resilience. However, exclusively DCs from susceptible animals showed an enhanced
maturation phenotype with increased expression of MHC II and co-stimulatory CD80
molecules. The T-cell differentiation cytokine IL-12 plays an important role in adaptive
immune responses and has also been implicated in stress responses [258–260]. Interestingly,
phenotypically mature DCs from susceptible mice did not show an increased capacity to
produce IL-12. Instead, stress-resilient animals showed an increased proportion of IL-12-
producing DCs after LPS stimulation. Thus, we defined a specific stress-related phenotype
of DCs with phenotypically more mature DCs in susceptible mice versus an increased
capacity of DCs to produce IL-12 in resilient animals [251]. Our findings of an altered
phenotype of DCs in SDS were associated with higher blood levels of corticosterone (CORT)
and increased numbers of Th17 cells in stress-susceptible mice compared to resilient mice
or undefeated controls [251,254].

Glucocorticoids exert anti-inflammatory and immunosuppressive effects on several
cell types including DCs. Following activation of the HPA axis during the stress response,
elevated levels of the adrenal glucocorticoid CORT are produced [261]. Stimulation of bone
marrow-derived DCs with CORT has been shown to impair LPS-induced up-regulation of
maturation-associated markers. By binding to the glucocorticoid receptor (GR) on DCs,
CORT inhibited transcription of CD80 and CD86, induced intracellular retention of MHC
II, and impaired LPS-induced production of IL-6, IL-12, and TNF. Moreover in vivo, treat-
ment of mice with CORT reduced their ability to prime naïve CD8+ T cells [262]. Another
study investigated the effect of CORT on the ability of DCs to process and present virally
expressed antigens to CD8+ T cells. CORT suppressed the formation of peptide-MHC
I complexes on the surface of virus-infected DCs and decreased their T cell stimulation
capacity. Of note, DCs alter expression of GR isoforms that control sensitivity to gluco-
corticoids depending on their maturation stage. Thus, only mature, but not immature
DCs are sensitive to glucocorticoid-induced apoptosis after in vivo and in vitro glucocorti-
coid stimulation due to expression of proapoptotic GR isoforms [263]. Interestingly, DCs
may therefore become resistant to the suppressive effects of CORT after chronic social
stress [252]. This may explain why these indirect immunosuppressive effects of social
defeat can affect DCs in different ways depending on their maturation stage.

A recent study defined impressively that changes in DC function represent a mecha-
nistic connection between social stress and reduced response to immunogenic chemother-
apy [249]. The authors showed that glucocorticoid-dependent regulation of DC effector
functions in social stress depends on TSC22D3 (Tsc22 domain family protein 3), also known
as glucocorticoid-induced leucine zipper (GILZ) protein. TSC22D3 has previously been
shown to mediate many glucocorticoid effects in immune and non-immune cells and to
induce an anti-inflammatory phenotype in myeloid cells. TSC22D3 also regulates antigen
processing and presentation by DCs and thus mediates most glucocorticoid effects in both
tolerogenic and immunogenic DCs [264,265]. Yang and coauthors showed in a murine
tumor model that SDS upregulated the expression of TSC22D3 in tumor-infiltrating DCs
which was dependent on GR signaling [249]. TSC22D3 reduced the ability of DC to produce
type I IFN and induce IFN-γ secretion in tumor-infiltrating T cells. Importantly, TSC22D3
mediated immunosuppression and abolished the efficacy of immunogenic chemotherapy
and suppressed cancer-preventive immunity strategies. In addition, a correlation between
plasma CORT levels and TSC22D3 expression in PBMCs has been found in patients with
cancer and negative mood [249]. These important findings shed light on the relevance of
DCs in psychosocial stress responses in antitumor immunity.

Another gene involved in social stress-dependent regulation of DC functions is
DNMT1 coding for the DNA methyltransferase 1, a key regulator of DNA methylation [266].
In a recent study it was shown that SDS in mice increased CORT plasma levels, and in-
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duced downregulation of DNMT1 and upregulated CCR7 expression in skin DCs. At a
functional level, social stress exacerbated experimentally-induced atopic dermatitis in these
animals [255].

Recently, the effects of repeated social defeat (RSD) with social disruption (SDR)
on DCs of the spleen and peripheral blood were compared in mice [256]. Both stress
paradigms equally induced social avoidance in the same manner and caused a decrease in
the proportion of DC subsets (cDC1 and cDC2) in the bone marrow of defeated animals.
However, DCs in the peripheral blood of the subordinate animals were reduced only when
the animals were subjected to SDR but not RSD. These findings suggest that RSD alters the
distribution of DCs and possibly migration to other sites such as the brain.

6. Future Perspectives

DCs are able to shape the immune response in stress and mood disorders in several
ways. They are sensors of DAMPs and can induce sterile inflammation in innate immunity
on the one hand and trigger adaptive T-cell responses on the other (Figure 2). Both arms
of the immune response have been seen altered in AD. In this review, we summarized
the distinctive key findings on DCs and their effector molecules in individuals with AD,
in clinical trials and in vitro studies, and in mouse models for depression-associated be-
havior. The capacity of DCs to migrate, secrete pro- and anti-inflammatory cytokines and
chemokines, and activate T-cell responses, as well as the ability for the large-scale ex vivo
generation and gene modification of DCs from human blood monocytes make them ideal
candidates for therapeutic applications in AD. Promising studies link the phenotype and
function of DCs to stress resilience and suggest an essential role for these cells in controlling
the efficacy of tumor therapy after stress. However, large parts of DC biology in AD still
remain to be elucidated, precluding definitive conclusions. There are many unanswered
questions, such as the influence of DC subtypes on neuroinflammation and behavior, the
specific immunosuppressive effects of stressors on DCs in different maturation stages, and
their functional impact on the development and progression of AD in humans. A better
understanding of the potentially multifaceted roles of DCs in the stress response with
relevance to AD may point to novel treatment strategies by employing this cell type as
therapeutic targets in mood disorders.
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altered functions in immune cells, including dendritic cells (DCs). DCs can induce neuroinflammation
in many ways, e.g., by secretion of inflammatory cytokines and/or induction of Th cells, such as
Th17 cells (see Figure 1). Peripheral DCs may modulate neuroinflammation by invasion into the
brain (cellular route) and secretion of cytokines and chemokines that reach the brain (humoral route)
and activate afferent nerve fibers (neural route). Microglial activation has been found in AD and
in corresponding rodent models and may lead to brain alterations such as hippocampal atrophy, a
feature of AD.
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