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ABSTRACT
The link between the gut microbiota and metabolic syndrome (MetS) has attracted
widespread attention. Christensenellaceae was recently described as an important
player in human health, while its distribution and relationship with MetS in Chinese
population is still unknown. This study sought to observe the association between
Christensenellaceae and metabolic indexes in a large sample of residents in South
China. A total of 4,781 people from the GGMP project were included, and the
fecal microbiota composition of these individuals was characterized by 16S rRNA
sequencing and analyzed the relation between Christensenellaceae and metabolism
using QIIME (Quantitative Insight Into Microbial Ecology, Version 1.9.1). The results
demonstrated that microbial richness and diversity were increased in the group with
a high abundance of Christensenellaceae, who showed a greater complexity of the co-
occurrence network with other bacteria than residents who lacked Christensenellaceae.
The enriched bacterial taxawere predominantly represented byOscillospira,Ruminococ-
caceae, RF39, Rikenellaceae and Akkermansia as the Christensenellaceae abundance
increased, while the abundances of Veillonella, Fusobacterium and Klebsiella were
significantly reduced. Furthermore, Christensenellaceae was negatively correlated with
the pathological features of MetS, such as obesity, hypertriglyceridemia and body mass
index (BMI). We found reduced levels of lipid biosynthesis and energy metabolism
pathways in people with a high abundance ofChristensenellaceae, whichmay explain the
negative relationship between body weight and Christensenellaceae. In conclusion, we
found a negative correlation between Christensenellaceae and MetS in a large Chinese
population and reported the geographical distribution of Christensenellaceae in the
GGMP study. The association data from this population-level research support the
investigation of strains withinChristensenellaceae as potentially beneficial gutmicrobes.

Subjects Bioinformatics, Microbiology, Metabolic Sciences
Keywords Christensenellaceae , 16S rRNA sequencing, Metabolic syndrome, Human gut
microbiota, Bioinformatic analysis

INTRODUCTION
Metabolic syndrome (MetS) is a disease that brings together a variety ofmetabolic disorders.
With economic development and the improvement of living standards, the incidence of
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MetS has also gradually increased, making this disease a global public health problem.
MetS is characterized by abdominal obesity, dyslipidemia, hypertension, and elevated
blood sugar, and it currently affects approximately 20 to 30% of adults worldwide (Grundy,
2008). There are several factors involved in the development of the disease, including host
genetic factors (Kraja et al., 2011), eating habits and sedentary lifestyle (He et al., 2018),
but the pathogenesis of MetS has not been fully elucidated.

With technological development, the role of the microbiome in human health has
been increasingly emphasized. The gut microbiota impacts a range of human health
conditions, including metabolic processes, immune-related diseases and neurological
disorders (Integrative HMP Research Network Consortium, 2019; Festi et al., 2014; Fung,
Olson & Hsiao, 2017). Studies on MetS and the gut microbiota in mouse models have
shown that the development of MetS involves a combination of the gut microbiota, host
genes and diet (Ussar et al., 2015; Zmora, Suez & Elinav, 2019). Specific gut microbiota,
bacterial metabolic pathways and their interactions with human health are new focuses of
microbiome research (Proctor, 2019), and understanding of the microbiome is intended
to pave the way for future microbiological therapies (Douillard & De Vos, 2019). An
increasing number of studies have reported that probiotics in the intestinal tract can
maintain intestinal homeostasis by regulating glucose and lipid metabolism, inhibiting the
inflammatory response, and improving metabolic disorders (Lau et al., 2019; Plaza-Díaz et
al., 2017; Sanders et al., 2019), thus preventing MetS and related complications.

In this study, we focused on a family of Firmicutes named Christensenellaceae, where the
type strain Christensenellaceae minuta was first isolated from the feces of a healthy Japanese
man in 2012 and named after the Danish microbiologist Henrik Christensen (Morotomi,
Nagai & Watanabe, 2012; Waters & Ley, 2019). Since this family of bacteria was recently
isolated, little is known about its biological function other than its association with the
host and with other microorganisms. Goodrich et al. (2014) found that Christensenellaceae
accounted for 0.01% of human feces from the UK Twins population. In data from China
(Kong et al., 2016; Wang et al., 2015), South Korea (Kim et al., 2019) and Italy (Biagi et al.,
2016), the bacteria were found to be highly abundant in centenarians. Brooks et al. reported
that American females have a higher abundance ofChristensenellaceae than Americanmales
(Brooks et al., 2018). In addition, a study conducted in Amsterdam showed that the relative
abundance of Christensenellaceae is ethnicity specific (Brooks et al., 2018; Deschasaux et
al., 2018). These studies demonstrated that age, gender, and ethnicity are associated with
the abundance of Christensenellaceae. The relative abundance of Christensenellaceae in
the intestine was found to be inversely proportional to body mass index (BMI) (Fu et al.,
2015; Goodrich et al., 2014; Oki et al., 2016; Peters et al., 2018b) and exhibited a negative
correlation with obesity and inflammatory bowel disease (Braun et al., 2019; Gevers et al.,
2014; Imhann et al., 2018).

We previously performed the Guangdong Gut Microbiome Project (GGMP) study,
constructing the largest intestinal microbiota database for Eastern countries to date. In the
present study, we selected the Christensenellaceae-related population from GGMP to find
out the relationship between Christensenellaceae and regional distribution, metabolic index
and metabolic diseases. We also focused on the connection between sequential operational
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taxonomic unit (sub-OTU) (Amir et al., 2017) members of Christensenellaceae and the
metabolic index. We also utilized the GGMP dataset to reveal the metabolic pathway
signatures of Christensenellaceae. A better understanding of the relationship between MetS
and Christensenellaceae may lead to new therapeutic approaches for MetS.

MATERIALS & METHODS
Data collection and criteria for MetS
The data used in this analysis from the GGMP were described previously (He et al., 2018b).
In brief, 9,172 individuals were investigated, and 6,896 people finished the survey and
household sampling (2,276 missing metadata). By further filtering the metadata, some
individuals with sequence number less than 10,000 were excluded from this analysis, so a
total of 6,879 individuals were retained. The GGMP employs an in-person questionnaire
to collect individual metadata. To evaluate how Christensenellaceae members affect the
metabolism and gut microbes, we also compiled information on whether the individuals
had diabetes, dyslipidemia, and pre-diabetic symptoms.

MetS was diagnosed as described by the Joint Committee for Developing Chinese
Guidelines on Prevention and Treatment of Dyslipidemia in adults, based on three of
the following five criteria for participants: (1) waist circumference >90 cm (male) or
>85 cm (female), (2) fasting blood glucose (FBG)≥ 6.1 mmol/L (110 mg/dl) or previously
diagnosed with diabetes, (3) triglyceride (TG)≥ 1.7 mmol/L (150 mg/dl), (4) high-density
lipoprotein (HDL) <1.04 mmol/L (40 mg/dl), and (5) systolic/diastolic blood pressure
(SBP/DBP) ≥ 130/85 mmHg or previously diagnosed with high blood pressure.

Sample collection and DNA extraction
Stool samplers, ice bags and ice boxes were provided to collect and store samples after the
questionnaire survey. After defecation, each participant recorded their Bristol stool score
and stored the sample in an ice bag. All the samples were stored in a freezer (−18 ◦C to
−20 ◦C) for less than 3 days and then transported to the research laboratory (Guangdong
CDC) in a cold-chain vehicle to maintain a low-temperature environment. Samples
were transported and stored at the research laboratory in −80 ◦C freezers until further
processing.

A total of 200 mg of each fecal sample was used for DNA extraction using the Fecal DNA
Bead IsolationKit (Bioeasy, Shenzhen) according to themanufacturer’s instructions. Before
the specimens were submitted to laboratory analysis, we prepared external standards to
control for potential batch effects becausemultiple technicians andmachines were involved
in sample processing. Briefly, fecal samples were collected from three donors. For each
donor, the samples were manually homogenized to obtain an even mixture, divided into
200 tubes and stored at −80 ◦C. All stool samples were processed with identical protocols,
including three external standards for each batch. For each DNA sample, the bacterial 16S
rRNA gene was amplified with the following barcoded primers (shown from 5′ to 3′): V4F
(GTGYCAGCMGCCGCGGTAA) and V4R (GGACTACNVGGGTWTCTAAT) (Walters
et al., 2016). The primers contained Illumina adapters and a unique 8-nucleotide barcode.
The PCR conditions included an initial denaturation at 94 ◦C for 5 min; 30 cycles of
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denaturation at 94 ◦C for 30 s, annealing at 52 ◦C for 30 s, and elongation at 72 ◦C for 45 s;
and a final extension at 72 ◦C for 5 min. The products were submitted for next-generation
sequencing on an Illumina HiSeq 2500 platform using 500-cycle version 2 reagent kits
(Beijing Genome Institute, BGI, Beijing).

Microbiome bioinformatic analysis
Raw sequence data were managed and analyzed using Quantitative Insights Into Microbial
Ecology software (QIIME, version 1.9.1) (Caporaso et al., 2010), and the sequences with
Phred quality scores below 20 were then discarded. Themethod for processing of sequences
was identical to that described in our previous reports (He et al., 2018b). PCoA based on
unweighted UniFrac distances comparing bacterial community structure of samples
between G1 and G2. Permutational multivariate analysis of variance (PERMANOVA)
was carried out to measure effect sizes and significance differences in beta diversity.
The threshold of statistical significance was set at P < 0.05. We carried out multivariate
association analyses with linear modeling (MaAsLin) as described by Morgan et al. (2012)
to examine the relationship between sequential taxonomic units and each of the MetS
diagnostic factors and several related diseases. Age was used as a confounder, and the
false discovery rate was limited to 0.05. The R package (ggtree) (Yu et al., 2018) was used
to visualize the evolution tree data after multi-sequence comparison with QIIME. Data
plotting and statistical analyses were performed by R (3.2.2) statistical software.

Ethics approval and consent to participate
The present study was approved by the Ethical Review Committee of the Chinese Center
for Disease Control and Prevention under approval notice no. 201519-A. Written consent
was obtained from all participants.

Statistical analysis
The significance of differences between two groups was resolved by theWilcoxon rank-sum
test. Spearman’s rank correlation test was applied to analyze the correlation between two
variables. The chi-square test was utilized to compare the ratios of two groups. P values less
than or equal to 0.05 were considered significant. The Benjamini and Hochberg method
was used to modulate the P value for multiple hypotheses.

RESULTS
The overall gut Christensenellaceae configuration of people in the
GGMP
Exploration of the effects of the gut microbiota requires data from studies performed
with a regionalized study design, comprehensive sampling and standardized experimental
protocols. The population included in the GGMP has been previously described (He et
al., 2018b). In the GGMP project, 6896 individuals were included according to our entry
criteria, which followed the guidelines of the Joint Committee for Developing Chinese
Guidelines as mentioned in a previous article (He et al., 2018). In the GGMP study,
totally 6896 samples were characterized by 16S rRNA gene sequencing, and more than
17,083 quality-filtered sequences were obtained through QIIME analyses.Based on our
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statistics, the family Christensenellaceae accounted for an average of 0.11% of human fecal
bacteria in the residents. Then, we grouped the individuals based on the abundance of
Christensenellaceae; in total, 3316 people had no Christensenellaceae in their intestines
(Group1, G1), and we selected the upper quartile population as Group2 (G2, n= 1465)
according to Christensenellaceae abundance. The abundance of Christensenellaceae in
this study was bias distributed, the overall median value was 0, and the maximum
value was 15.1%. Statistics found that the average abundance of Christensenellaceae
in the G2 group was 0.49%.To characterize the diversity and richness of the bacterial
community, the alpha indices, estimated by four different parameters, were analyzed
for each sample. As shown in Fig. S1, the diversity and richness estimators in the two
cohorts were significantly different. Compared with the G1 subjects, the G2 subjects had
a significantly high alpha diversity indexes, such as the Chao1, observed OTU, PD_whole
tree and Shannon indexes (p< 0.001 for each). To measure the degree of similarity of
the fecal microbial communities, we performed a principal coordinate analysis (Fig. 1A),
and we found obvious differences between the two groups (R2= 0.07184, P = 0.001).
Additionally, we applied linear discriminant analysis effect size (LEfSe) (Segata et al., 2011)
for quantitative analysis of biomarkers within different cohorts. A total of 20 features had
significantly different abundances between G1 and G2(LDA>3) (Fig. 1B). At the genus
level, the fecal microbiota of people who lacked Christensenellaceae was enriched with
the taxa Proteobacteria, Enterobacteriales, Bacteroidaceae, Lachnospiraceae and Klebsiella,
whereas individuals with a high proportion of Christensenellaceae exhibited enrichment of
Ruminococcaceae, Mollicutes, RF39, Akkermansia and Rikenellaceae.

To examine the Christensenellaceae components in detail, we analyzed the sub-OTUs
at the family level. After chimera removal and quality filtering, a total of 134 different
sub-OTUs of Christensenellaceae were identified at the 100% sequence identity level, and
eight of them had read counts greater than 1,000 (Fig. 1C). An evolutionary tree was
constructed to further observe the evolutionary distance of each sub-OTU and several
reference genome (Fig. S1).

The distribution of Christensenellaceae in GGMP
In our survey for the GGMP study, the distribution of Christensenellaceae in Guangdong
Province varied based on geographic location. According to the average abundance
data, Christensenellaceae is unevenly geographically distributed, with the abundance
typically reduced in or near large and economically thriving centers such as Guangzhou
(0.08%) and Shenzhen (0.09%). In contrast, Shanwei had the highest abundance (0.22%),
followed by Huizhou (0.19%) and Meizhou (0.18%). The abundances in other cities
is shown in Fig. 2A. In addition, we collected data on per capita annual income and
Christensnellaceae abundance in each region (Fig. 2B). According to the map, the higher
the level of urbanization, the lower the abundance of Christensenellaceae in the intestinal
tract of urban residents.

When the MetS prevalence in different cities was compared, there was a significantly
negative correlation between MetS and Christensenellaceae abundance (Fig. 2C). Residents
in Zhanjiang, Shanwei, Foshan and Maoming had Christensenellaceae abundances higher
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Figure 1 Bacterial community structure analysis and sequential operational taxonomic units of Chris-
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Full-size DOI: 10.7717/peerj.9591/fig-2

than 0.15% in their gut and exhibited a low prevalence of MetS. Similarly, city dwellers
in Guangzhou, Shenzhen and Shaoguan had a low Christensenellaceae abundance, and
a high proportion of the population exhibited MetS. However, a negative correlation
was not observed in residents in Jieyang and Meizhou. Notably, the prevalence of MetS
in G2 subjects was lower than that in G1subjects in most regions (Fig. 2D). Moreover,
there was a significant difference in the prevalence of MetS in people with different
abundances of Christensenellaceae in Qingyuan (p < 0.01) and Shanwei (p < 0.05).
AlthoughChristensenellaceae abundance varies in different regions, the negative correlation
between MetS and Christensenellaceae is universal.
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Christensenellaceae is associated with host metabolic index and
MetS status
To explore the relationship between Christensenellaceae abundance and human health,
we next assessed how variable the body parameters were in terms of Christensenellaceae
richness. We selected 4,781 subjects associated with Christensenellaceae from the GGMP
project, and subjects in this study cohort had a wide range of age, BMI and blood test
indicators (Table 1). As previously described, we classified the subjects into two categories
(G1 andG2) according to the abundance ofChristensenellaceae.The differences between the
two groups were mainly reflected in the following aspects: age, anthropometric parameters
and biochemical criteria (Table 1). Because variations in metabolites could be related to
differences in age (Dunn et al., 2015), we reanalyzed the correlation between the indices
after adjusting for age. Compared to the G1 group, people rich in Christensenellaceae
showed significantly low BMI, waist circumference and waist-to-height ratio (WHtR). The
high-value group also showed lower levels of biochemical indices, such as TG, alanine
transaminase (ALT) and uric acid (UA), than the non-Christensenellaceae group (Fig. S2).
The level of HDL was significantly higher in people with Christensenellaceae, indicating the
abundance of Christensenellaceae has a positive correlation with HDL level.

In addition, we calculated the correlation coefficients between the waist circumference,
WHtR, BMI, TG level and other clinical parameters of all subjects to evaluate the
connection intensity between the abundance of Christensenellaceae and the host metabolic
index (Fig. 3A). We found that waist circumference and WHtR remained significantly
decreased in people rich in Christensenellaceae compared to the people who lacked
Christensenellaceae. Recently, waist circumference and WHtR were proposed as predictors
of the incidence of MetS (Perona et al., 2019; Suliga et al., 2019). Therefore, we measured
the prevalence of MetS in individuals with GGMP. People rich in Christensenellaceae had
low prevalence of metabolic diseases, including overweight, obesity, fatty liver disease, and
hypertriglyceridemia.

We also tested for connections between the sequential taxonomic units of
Christensenellaceae and the indicators to observe whether the changes in sub-OTUs at
the family level of Christensenellaceae are consistent. These top eight sub-OTUs, with reads
number greater than 1,000, had the same correlation with each parameter (Fig. 3A). They
all had negative correlations with ALT, TG, UA, waist circumference and WHtR. Among
the sub-OTUs, sub-OTU3228 had a significantly negative correlation with TG, ALT, UA
and BMI. Nevertheless, most of the taxonomic units were positively related to HDL and
blood urea nitrogen (BUN).

In addition to morphological indicators and circulating metabolites, we also identified
an association between the family Christensenellaceae and metabolic diseases such as fatty
liver disease, obesity, hypertriglyceridemia and digestive system disease (Fig. 3B).Moreover,
we found that sub-OTU3228, sub-OTU5291, sub-OTU12860, and sub-OTU14698 were
negatively correlated with overweight, obesity and hypertriglyceridemia. Although most
of the associated taxa were shared across obesity and lipid metabolites, several sequences
were predominantly linked to digestive diseases rather than metabolic disorders. Notably,
the abundances of sub-OTU3228 and sub-OTU14698 were negatively associated with
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Table 1 Anthropometric parameters and biochemical criterions variations stratified by abundance of
Christensenellaceae.

G1-value (n= 3316) G2-value (n= 1465) P-value

Age(years)
Median[SD] 53.0[14.5] 55.0[15.2] <0.001

Sex
Female 1830(55.2%) 824(56.2%) 0.517
Male 1486(44.8%) 641(43.8%)

BMI(kg/m2)
Median[SD] 23.4[3.61] 22.5[3.23] <0.001
Missing 39(1.2%) 27(1.8%)

Waist(cm)
Median[SD] 80.4[10.1] 78.3[9.22] <0.001
Missing 39(1.2%) 27(1.8%)

WHtR
Median[SD] 0.512[0.0651] 0.497[0.0603] <0.001
Missing 39(1.2%) 27(1.8%)

Obesity
Yes 394(11.9%) 92(6.3%) <0.001
No 2883(86.9%) 1346(91.9%)
Missing 39(1.2%) 27(1.8%)

MetS
Yes 739(22.3%) 227(15.5%) <0.001
No 2529(86.4%) 1209(82.5%)
Missing 38(1.1%) 29(2.0%)

Hypertriglyceridemia
Yes 414(12.5%) 99(6.8%) <0.001
No 2864(86.4%) 1339(91.4%)
Missing 38(1.1%) 27(1.8%)

UA(µmol/L)
Median[SD] 330[94.5] 315[87.3] <0.001
Missing 38(1.1%) 27(1.8%)

TG(mmol/L)
Median[SD] 1.15[1.56] 0.9555[1.36] <0.001
Missing 38(1.1%) 27(1.8%)

ALT(U/L)
Median[SD] 16.0[16.5] 14.0[13.7] <0.001
Missing 107(3.2%) 52(3.5%)

Hb(g/L)
Median[SD] 143[21.9] 141[20.3] <0.001
Missing 38(1.1%) 27(1.8%)

HDL(mmol/L)
Median[SD] 1.22[0.520] 1.25[0.435] 0.0155
Missing 40(1.2%) 27(1.8%)

Notes.
SD, standard deviation; BMI, indicates body mass index; WHtR, waist-to-height ratio; UA, uric acid; TG, triglyceride;
ALT, alanine transaminase; Hb, hemoglobin; HDL, high density lipoprotein.
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digestive disorders, while sub-OTU3228 showed a strong positive correlation with the
occurrence of diabetes mellitus (T2DM). Besides the above four members, the remaining
taxonomic units with read counts greater than 1,000 were not significantly associated with
these metabolism-related disorders.

Specific microbial taxa associated with Christensenellaceae
We used co-occurrence network analysis to investigate the interactions among the
microbes in the complex intestinal microbiota. After pairwise correlation analysis of
the bacteria in all the volunteers’ stool samples, the major bacteria associated with
Christensenellaceae in the individuals enrolled in the study are shown in Fig. 4A. Of all
the species, the abundances of Veillonella, Ruminococcus, Fusobacterium, and Blautia were
most highly negatively related to Christensenellaceae. Additionally, species such as Ralstonia
and Klebsiella had a negative correlation with the abundance of Christensenellaceae.
In addition, we identified a significant positive association of Christensenellaceae
with Oscillospira, Ruminococcaceae, RF39, Rikenellaceae and Akkermansia. Moreover,
Lachnospiraceae, Roseburia and Sediminibacterium also showed expected relationship
with Christensenellaceae.

The focus was not only on the family level of the microbiota but also on the
sub-OTUs of Christensenellaceae. The correlation between sequential taxonomic
units of Christensenellaceae and other bacteria was universal. As shown in Fig. 4B,
the eight sequences with read counts in excess of a thousand were consistent with
the relationships between other bacteria. The four sequences sub-OTU14698, sub-
OTU3228, sub-OTU12860, and sub-OTU5219 showed the strongest correlation, and
the predominant bacteria in the positive correlation included Oscillospira, Clostridiales,
RF39 and Rikenellaceae. Nevertheless, Veillonella, Fusobacterium, Blautia, Megamonas and
Streptococcus were negatively associated with these five sub-OTUs. In general, the bacterial
network relationship at the sequence level and the family level is basically the same.

Functional properties predicted by PICRUSt
We performed PICRUSt analysis to predict the KEGG functional orthologs of the
fecal microbiota metagenomes based on 16S rRNA sequences. Principal component
analysis (PCA) showed that the KO profile of the gut microbiota in people with high
abundance ofChristensenellaceae diverged from that of the gutmicrobiota of people lacking
Christensenellaceae (Fig. S3). 71.2% of the variation within these two groups was captured
by the first principal component (PC1). As shown in Fig. 5, broad potential communication
pathways were identified between the individuals, including metabolism, cellular process,
environmental information process, genetic information process and human disease.
The LEfSe algorithm was applied to detect differences in the functional pathways of the
microbiota between the two groups. In total, 6 functional orthologs were significantly
different in Christensenellaceae-rich people (LDA score>3); the enriched orthologs were
nucleotide metabolism; cellular process; ribosome; translation; replication and repair; and
genetic information processing. In contrast, the prevalent markers among the controls
included those associated with transporters, membrane transport and environmental
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information processing (Fig. 5). Moreover, several metabolic pathways were abundant
in the non-Christensenellaceae group, including those involved in energy metabolism
(methane metabolism), lipid metabolism (fatty acid biosynthesis) and carbohydrate
metabolism (fructose and mannose metabolism) (Table S1). In terms of metabolic disease,
people with Christensenellaceae have a relatively low risk of diabetes mellitus (Table S1).
These findings suggest that Christensenellaceae may affect the way in which we metabolize
and regulate ponderal growth.

DISCUSSION
This study was based on a rigorous experimental design and strict quality control, and
fecal samples and host information of 6,896 volunteers were collected in Guangdong
Province. The use of 16S rRNA sequencing helped us clearly elucidate the complexity of
the gut microbial ecosystem. We could focus not only on the composition and distribution
of intestinal bacteria but also on the metabolic functions of these bacteria. Through
the integration of these data, we could focus on the associated OTUs classified within the
Christensenellaceae family. And we can target these OTUs as a keystone and link the etiology
and pathogenesis of MetS to intestinal microorganisms to provide potential therapeutic
targets.

First, the present study showed a variation in Christensenellaceae among residents
in different areas by comparing the average abundance for each region. Based on our
previous research, MetS prevalence was significantly higher in individuals with higher
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G2G1

Figure 5 Differential pathways in individuals with different abundance of Christensenellaceae. G1,
LDA score <−3, orange color; G2, LDA > 3, blue color.

Full-size DOI: 10.7717/peerj.9591/fig-5

economic status than in those of with lower economic status (He et al., 2018a). As we found
that Christensenellaceae is negatively correlated with MetS, it can be explained to some
extent that people in economically developed regions have lower intestinal abundance
of Christensenellaceae. Moreover, the individual differences in Christensenellaceae may
simply be a result of environmental or genetic factors (Waters & Ley, 2019). And our
results for large study population showed that the negative correlation between MetS and
Christensenellaceae is consistent in most areas.

As previously reported, the abundance of Christensenella, Bifidobacterium and
Akkermansia has been recognized as a signature of the gut ecosystem for healthy aging
and longevity (Biagi et al., 2016;Derrien, Belzer & De Vos, 2017;Wang et al., 2015). We also
found that people with a high abundance of Christensenellaceae were older than those in
the control group. Changing functions of the intestine with age may affect the abundance
of bacteria.

The microbiota inhabiting the intestinal cavity affects body health by altering the
metabolome and regulating the bacterial bioavailability of nutrients in the lumen. (Johnson
et al., 2015; Liu et al., 2018; Romano et al., 2015). In this study, we observed a significant
association between the gut microbiota and the variation in BMI and blood lipid levels,
which is independent of age. We observed that the abundance of Christensenellaceae was
significantly related to the individual variance in BMI and to the blood levels of TG and
HDL but has not much correlation with low-density lipoprotein (LDL) or total cholesterol
(TC) levels. The analysis showed that people with higher Christensenellaceae abundance in
their gut had lower BMI and lower TG levels. These results are consistent with the previous
report demonstrating that Christensenellaceae abundance was negatively correlated with
BMI and triglycerides and positively correlated with HDL levels in the Dutch LifeLines
DEEP cohort (n= 893) and reports fromother countries (Fu et al., 2015;Peters et al., 2018a;

Li et al. (2020), PeerJ, DOI 10.7717/peerj.9591 13/21

https://peerj.com
https://doi.org/10.7717/peerj.9591/fig-5
http://dx.doi.org/10.7717/peerj.9591


Waters & Ley, 2019). As lowHDL levels are one of the criteria of metabolic syndrome (Yang
& Wang, 2019). The positive relationship between Christensenellaceae and HDL suggests a
potentially beneficial role in metabolism. Therefore, in the complex network of indicators
associated with Christensenellaceae, these findings show the negative correlation between
Christensenellaceae with the prevalence of MetS.

The microbial interaction network has been considered an important biological factor
in the occurrence and progression of metabolic system diseases. We observed significant
microbial community changes in people with high abundance of Christensenellaceae, in
whom the richness and diversity of the microbial community increased significantly.
Our results highlight the positive correlation between Christensenellaceae and Oscillospira,
Ruminococcaceae, RF39, Rikenellaceae and Akkermansia (Goodrich et al., 2014), while the
bacteria were negatively related toVeillonella, Fusobacterium andKlebsiella. Previous studies
have shown that Oscillospira and Ruminococcaceae are positively associated with health
and leanness (Konikoff & Gophna, 2016; Zietak et al., 2016). Other noteworthy taxa include
Akkermansia, RF39 and Rikenellaceae, which have been experimentally confirmed to be
probiotics and are considered beneficial to limit high fat-induced body weight gain. (Alard
et al., 2016;Wang et al., 2017). Moreover, previous reports have shown that Fusobacterium
and Klebsiella are positively correlated with the levels of cholesterol and LDL and alter lipid
metabolism (Fei et al., 2020; Koren et al., 2011). How Christensenellaceae members impact
the diversity and structure of the intestinal microbiota is still unclear. Nevertheless, it is
plausible that changes in the intestinal niche induced by Christensenellaceae can promote
lipid metabolism and contribute to the maintenance of normal body weight.

Our work showed differences in the predicted microbiota function in people with
different abundances ofChristensenellaceae. Previous reports indicated that obesity markers
were typically positively associated with the KEGG categories of fructose metabolism
(Hannou et al., 2018) and methane metabolism (Mathur et al., 2013), which are enriched
in people who lack Christensenellaceae. However, it’s not a general consistency with the
previous result that Methanobacteriaceae increased in G2 group. PICRUSt represents
the methane metabolism of the whole gut flora, but the single increased abundance
of Methanobacteriaceae does not indicate the overall function. The high abundance of
Christensenellaceae in individuals showed decreased fatty acid biosynthesis. Increasing
evidence has shown that fatty acid accumulation is significantly associated with metabolic
diseases and obesity (Sonnenburg & Bäckhed, 2016). This confirmed the previously observed
negative correlation between Christensenellaceae and metabolic indicators. To develop
a deeper understanding of MetS progression, further follow-up studies are required
to examine the significance of microbial functional variations in body metabolism.
Furthermore, metatranscriptomic and metabolomic analyses could be used to elucidate
the detailed pathways of gene and metabolite interactions, enhancing the understanding of
the effects of intestinal bacteria.

CONCLUSIONS
In the present study, we used multivariate association analyses to explore the association
between Christensenellaceae and metabolic indexes in nearly 5,000 participants in South
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China. Based on the results, Christensenellaceae is related to a low risk of MetS and
obesity, showing similarities to results obtained in Western populations. In addition,
significant correlations were found between Christensenellaceae and other intestinal
bacteria through analysis of the bacterial network. The bacteria that were positively
correlated with Christensenellaceae were mainly beneficial bacteria that had been
identified previously, while some pathogenic bacteria were negatively correlated with
Christensenellaceae. Finally, PICRUSt was applied to analyze the pathway differences
caused by Christensenellaceae, which provided bioinformatics evidence for predicting the
correlation between Christensenellaceae and metabolic alterations in the gut microbiota
community. However, the underlying mechanisms through which Christensenellaceae
members regulate host metabolism need to be explored.
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