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Abstract: The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication.
During this process, cells must ensure an accurate and complete genome replication when constantly
challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial
role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions
and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following
two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-
Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS)
or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism
leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation
impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway.
Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair
mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared
PCNA sequences from various fungal pathogens, considering recent advances in structural features.
Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal
drug development.

Keywords: PCNA; DNA damage tolerance; DNA replication stress; fungal genome stability;
DNA replication forks; post-translational modifications; translesion synthesis; template switch;
salvage recombination

1. Introduction. Proliferating Cell Nuclear Antigen (PCNA)

The sliding clamp proliferating cell nuclear antigen (PCNA), encoded by POL30 in
S. cerevisiae [1], is central to DNA replication and repair [2,3], and other fundamental
processes of DNA metabolism, such as chromatin assembly [4–6], sister chromatid cohe-
sion establishment [7–9], lagging strand maturation [10,11], epigenetic conversions and
inheritance [12–14], gene expression [15,16] and DNA damage checkpoint pathway ac-
tivation [17]. Initially, PCNA was discovered as a biological marker for systemic lupus
erythematosus disease [18]. In the early eighties, PCNA was identified as a cyclin [19,20]
due to its role in proliferation and correlative expression with the cell cycle. Subsequently,
it was characterized as a processivity factor for replicative DNA polymerase (Pol) δ [21–23],
Polα and β [24], and Polε [25,26]. Therefore, PCNA was related to DNA replication [27]
and it was given essential roles on the replication fork (RF), including leading- and lagging-
strand synthesis coordination in combination with replication factor C (RFC) [24], and
the synthesis of the leading strand during the elongation stage [28]. PCNA was soon
associated with nucleotide excision repair [29,30], together with the role of DNA Polδ in
UV-induced DNA damage [31,32]. Concomitantly, the function PCNA in DNA damage
repair was elucidated [33–35]. Indeed, PCNA has become a major scaffold protein for
DNA damage response by participating in multiple DNA repair pathways, including
DNA mismatch repair [36–38], base excision repair (BER) [39–42], double-strand break
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repair [43–45], translesion synthesis (TLS) [46–50], the resolution of deleterious interactions
between replication and transcription machinery [51], and in the post-translational regula-
tion of DNA damage tolerance (DDT) through a selection of various sub-pathways of the
post-replication repair pathway [52].

In this review, we briefly present the basic features of PCNA during the unper-
turbed cell cycle, focusing on S. cerevisiae budding yeast cells. We summarize how post-
translational modifications of PCNA are critical to channeling specific molecular pathways
in response to stalled RFs. Current knowledge concerning DDT pathways regulation is
highlighted. Furthermore, we provide a comparative study based on multiple alignments
of PCNA amino acid residues from various fungal pathogens causing systemic infections.
Specific differences in fungal PCNA epitopes reveal this essential protein as a potential
therapeutic target.

2. PCNA Structural Features

PCNA belongs to the conserved family of DNA sliding clamps (β clamps) [53–56].
It forms a homotrimer in a closed head-to-tail ring structure around DNA. Each PCNA
molecule has two globular domains linked by the inter-domain connecting loop (IDCL) [56].
The PCNA homotrimer is disposed in a pseudo-six-fold symmetry structure with an ex-
ternal layer of six β-sheets and an internal layer of twelve α-helices. The negatively
charged outer surface potentially inhibits unspecific protein interactions, while the pos-
itively charged inner surface of the clamp structure faces the DNA duplex [53–55]. This
interaction occurs through five basic lysine residues sliding on successive phosphates of
one DNA strand by a spiral movement [57,58]. Since DNA is a helical molecule, the sliding
of the PCNA homotrimer is tilted 30◦ and moves forward to backward every one-half turn
of DNA in a process defined as “cogwheeling” [58]. The clamp tilt at the 3′ end of the
DNA molecule may specify PCNA binding partners [59]. Another proposed mechanism
for sliding is the “switch” from five of the twelve α-helices tracked by the DNA, which
consequently changes the relative tilt to the 3′ terminus [57]. There exists a dynamic asso-
ciation/dissociation process, in which RFC loads PCNA onto RFs for its interaction with
replicative Polδ [60]. In S. cerevisiae, PCNA only interacts with Pol3 (the catalytic subunit
of Polδ) providing enough room between the inner walls of PCNA and the DNA to hold
water molecules, which may facilitate sliding [61]. Once the polymerase dissociates, PCNA
diffuses away from the primer terminus. Later, it re-associates with the polymerase to
finish replication. This back-and-forward clamp motion has been suggested as the possible
Polδ proofreading activity mechanism [58] or even the switch allowing translesion DNA
polymerase to bypass DNA lesions [59]. Additionally, post-translational modifications also
occur on the surface of the PCNA clamp to regulate DNA sliding [62,63] and in response to
DNA damage [64].

PCNA functions as a platform for a large amount of DNA replication and editing
enzymes [65,66]. Many of the PCNA interactors exhibit a short linear motif (SLiM) [67].
The PCNA binding motif is known as the PCNA-interacting peptide (PIP) box [68], through
which many PCNA-interacting proteins are recruited to function in DNA replication [69].
Its extended PIP degron version targets PCNA for degradation [70]. A second important
interaction motif is the AlkB homologue 2 PCNA interacting motif (APIM) [71–73], which
mediates the interaction with genotoxic responsive proteins [69]. Both motifs are topo-
logically similar and are localized in the hydrophobic pocket formed in the IDCL region
of the β-sheets external surface of the ring [74,75]. Moreover, another PCNA interaction
motif named the KA box has been described [76,77]. PCNA homotrimer may interact
with three different partners synchronically through the three IDCL regions, facilitating
spatio-temporal coordination for a multiplicity of purposes. Besides, the PIP box may
overlap with the Rev1-interacting region (RIR)- and the Mlh-1 interacting protein (MIP)
motifs [78], both of which include proteins related to DNA repair, enhancing the number
of interactions with genome maintenance interactors (see details in the text). Interestingly,
several PCNA binding partners are considered intrinsically disordered proteins (IDPs) or
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hold intrinsically disordered regions (IDRs) [79,80]. IDPs are unstructured in physiological
conditions and fold to stable structures when binding their functional targets [81]. Rather
abundant in eukaryotes, IDPs are relevant members of cellular signaling and become highly
regulated at the post-translational level [82]. Therefore, the existence of three hydrophobic
binding pockets in PCNA clamps, the redundancy of SLiM sequences, and the numerous
IDPs interactors increase the complexity of the regulation of PCNA-mediated processes.

2.1. Loading and Unloading PCNA onto Duplex DNA

Cellular nuclei contain both homotrimeric free PCNA and the PCNA-DNA complex,
which dynamically converge with the help of the loading and unloading machinery in a
cyclic manner [83]. Clamp loaders belong to the AAA+ ATPases, and generate the mechan-
ical force [84] to open and load PCNA homotrimers onto the single-strand DNA/double-
strand DNA junction of the RF. Once the PCNA function is finished, it is unloaded from the
DNA by an unloading complex. The loading/unloading cycle must be tightly regulated
for efficient genomic replication and repair [85,86]. PCNA is loaded onto DNA by the RFC
complex, which consists of RFC1 (large subunit) and RFC2, 3, 4 and 5 (small subunits).
Other members of the same family are the RFC-like complexes (RLCs), which also con-
tribute to the regulation of the chromatin-association of DNA clamps [87,88]. S. cerevisiae
harbors the following three RLCs: Ctf18, Elg1 and Rad24 (CTF18, ATAD5 and RAD17,
respectively, in humans), as large subunits and the following four small subunits: RFC2, 3,
4 and 5 [89].

RFC loads PCNA on primer-template junctions. The spiral-shaped RFC complex
assembles with PCNA and opens the PCNA ring at the expense of ATP. After DNA binding,
the PCNA clamp closes and the RFC dissociates [90–92]. Yeast and human Ctf18-RLC can
load PCNA on gapped DNA, but in a less efficient manner than the RFC complex; however,
Rad24-RLC and Egl1-RLC cannot [93,94]. Genome-wide PCNA occupation experiments
showed that the RFC complex primarily loads PCNA on the lagging strand, while Ctf18-
RLC preferentially loads PCNA on the leading strand [8]. Upon checkpoint activation, the
Rad24-RFC clamp loader transports the Rad17p-Mec3p-Ddc1p complex to DNA lesions.

Once chromosomal DNA is duplicated, PCNA unloads from the DNA. The ATAD5-
RLC unloader (Elg1-RLC in yeast) dissociates PCNA from DNA after DNA replication and
repair [85,94–96]. Different studies reinforce the Elg1-RFC complex as a PCNA unloader
genome [97–99]. Indeed, the absence of Elg1, as well as defects in PCNA unloading, lead to
chromosome instability [100–102]. Despite controversy on the loading and unloading role
of the Ctf18-RFC clamp [93,94], PCNA unloading by the RFC2, 3, 4 and 5 and the RFC2 and
5 subcomplexes has been reported in vitro [103]. Additionally, PCNA unloading is regu-
lated by distinct mechanisms, namely replisome and nucleosome recruitment [94,104–107],
ubiquitination of PCNA [108,109], PCNA acetylation followed by degradation [64], or the
eventual dissociation of PCNA from DNA independently of unloaders [103].

2.2. PCNA and Replicative DNA Polymerases: Leading and Lagging DNA

The B-family of DNA polymerases α, δ and ε replicate chromosomal DNA in eu-
karyotic cells. DNA polymerization occurs in the 5′ to 3′ direction in both antiparallel
strands of DNA at the RF. Polα and the primase complex not only start the synthesis on
the leading strand but also constantly produce primer–template junctions on the lagging
strand. PCNA is loaded onto primer–template junctions, which Polδ uses to polymerize the
DNA of the lagging strand. For leading strand synthesis, Polδ polymerizes the DNA of the
first Okazaki fragment (over the replication origin), followed by Polε, which performs the
continuous leading strand synthesis [110,111]. Polδ and Polε are among the most accurate
DNA polymerases [112]. Conversely, Polα lacks 3′ to 5′ proofreading exonuclease activity.
Notably, while Polε may only correct its own erroneously incorporated nucleotides, Polδ is
able to replace both its own and Polε errors [113,114]. In fact, recent evidence has placed
Polδ as primarily responding to the stalling of leading-strand synthesis by surpassing other
polymerases [115]. The stalling of Pol ε causes the uncoupling of leading-strand synthesis
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from template unwinding. Nevertheless, template unwinding and lagging-strand synthesis
continue, generating stretches of RPA-coated ssDNA on the leading strand. Switching
replicative polymerases allows for the rapid continuation of replication after uncoupling, by
ensuring high-fidelity replicative polymerase DNA synthesis on the leading strand, to elude
mutagenic DDT processes and checkpoint activation [116] (Figure 1). Once DNA synthesis
is finished, the complex regulation of PCNA unloading is tightly controlled by different
processes [64,94,98,103–107,109,117]; then, PCNA clamps multiple enzymes necessary for
chromosome assembly [4–6], sister chromatid cohesion [7–9] or gene expression [15,16].
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Figure 1. The polymerase switch facilitates the bypass of DNA lesions on the leading strand. (a) Dur-
ing unperturbed replisome progression, leading and lagging strands are synthesized by Polε and
Polα/Polδ, respectively. (b) When the replisome encounters a DNA lesion that Polε is not able to
tolerate, Polδ plays a key role in the initiation of leading-strand synthesis. The Cdc45-Mcm2-7-GINS
(CMG) helicase complex is depicted in grey. Blocking DNA lesion is depicted as a red star.

3. Post-Translational Modifications of PCNA and the DDT Pathways

Endogenous processes, as well as exogenous DNA damaging agents, such as UV-
irradiation and alkylating agents, may lead to the formation of bulky lesions that eventually
stall RFs. Organisms have developed a collection of mechanisms to ensure the progression
of DNA replication in the presence of DNA-disturbing events, the DDT pathways. The post-
translational modification of PCNA triggers DNA damage response, mainly by determining
the interacting proteins to be recruited. Three main DDT pathways can be involved,
which are as follows: the translesion synthesis (TLS), template switch (TS) and salvage
recombination (SR) pathways (Figure 2).

3.1. Translesion Synthesis (TLS)-Mediated DDT Error-Prone Pathway

Bulky lesions may prevent DNA synthesis by classical replicative DNA polymerases,
consequently leading to stalled RFs. In this scenario, genome instability and chromosome
rearrangements may compromise cell viability. To avoid prolonged uncoupling, cells trigger
a DDT mechanism termed TLS that allows replication to proceed through damaged DNA
or stalled RFs. However, replicative DNA polymerases are not efficient at incorporating
nucleotides when the opposite DNA template is damaged. Instead, TLS is executed by
specialized TLS polymerases, which are less stringent to DNA damage and are able to
synthesize across DNA lesions, with no associated proofreading activity. The decrease
in fidelity may trigger the accumulation of mutations. In fact, TLS represents the major
accumulation of mutations by an error-prone bypass pathway in eukaryotes [118–127].
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Figure 2. PCNA post-translational modifications regulate DDT pathways. When fork stalling persists,
cells activate DDT mechanisms through post-translational modifications on PCNA. Monoubiqui-
tination of PCNA at K164 by Rad6-Rad18 promotes the switch from Polδ to translesion synthesis
(TLS) polymerases for error-prone TLS damage bypass. K63 extended polyubiquitination of PCNA
on K164 by Mms2/Ubc13-Rad5 for error-free damage bypass mediates template switching (TS). This
modification might be also implied in fork protection by fork reversal. Unloading of SUMO-PCNA
bound to Srs2 (sumoylated by Ubc9-Siz1) provides the salvage recombination pathway (SR) alterna-
tively to TS or TLS, either at stalled replication forks (RFs) or, as shown, at gaps left behind RFs after
re-initiation. Cell cycle stages where DDT processes predominantly take place in yeast are indicated.
Blocking DNA lesions are depicted as a red star.

3.1.1. TLS Polymerases Structural Features

TLS polymerases belong to the B-family (Polζ) and the Y-family (Polη, Polι, Polκ
and Rev1) of DNA polymerases [128]. Despite being highly conserved throughout evo-
lution [129], the TLS pathway displays substantial variability in polymerase distribution
among species. Thus, only Polζ, Polη and Rev1 are present in budding yeast.

-Polζ comprises the Rev3 catalytic subunit and Rev7, Pol31 and Pol32 accessory
subunits. Former in vitro studies determined that Rev3 physically interacts by its N-
terminal region with Rev7, with both being subunits required for a minimally functional
complex [130]. Later, it was shown that Pol31 and Pol32, which are both subunits of Polδ,
were purified along with Rev3-Rev7 to form a fully functional complex [131–134]. The
recently resolved structure of Polζ reveals the presence of a pentameric ring conformation
that contains two Rev7 subunits, in addition to Rev3, Pol31 and Pol32 [135]. Similarly to
other members of the B-family DNA polymerases, Rev3 harbors two conserved metal-
binding motifs of cysteine, CysA and CysB (Figure 3a). The zinc finger (ZF) motif CysA is
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placed toward the N-terminal side of the CTD and mediates DNA-dependent interactions
of Polζ with PCNA. The CysB motif containing a [4Fe-4S] cluster, located in the C-terminal
portion of the CTD, serves as a docking site for additional polymerase subunits, such as
Pol31 in yeast and POLD2 in mammalian cells. The substitution of cysteine residues that
coordinate the [4Fe-4S] cluster prevents the specific binding of Rev3-Pol31 [130,136].
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Figure 3. Structure organization of PCNA-interacting mediators involved in DDT in S. cerevisiae:
TLS polymerases (a–c), modifying-E3 enzymes (d–f) and Srs2 helicase (e). (a) Subunits of Polζ. The
catalytic subunit, Rev3, contains an inactive 3’-5’ exonuclease domain (exo-), a DNA polymerase
domain (pol), and a conserved CysA and CysB sites in its C-terminal domain (CTD), containing
a Zinc Finger (ZF) and a [4Fe-4S] cluster, respectively. The Rev7 binding site is located towards
its N-terminal domain (NTD). Rev7 contains the Hop1, Rev7 and Mad2 family domain (HORMA).
Pol31 contains a Rev3/Pol3 binding site and a phosphodiesterase domain (PDE). Pol32 binds Pol1
and contains a PCNA-interactive motif (PIP). (b) Polη includes pol and PAD domains in its NTD, a
ubiquitin-binding zinc finger motif (UBZ), and the PIP1 and PIP2 motifs at the CTD. (c) Rev1 contains
a pol domain, a polymerase associated domain (PAD), two small ubiquitin binding motifs (UBM), a
small rev7 binding domain CTD and a BRCA1 NTD (BRCT). (d) E3 Ub-ligase Rad18 contains a RING
(Really Interesting New Gene) domain, the SUMO interacting motif (SIM), the UBZ motif, SAF-A/B,
Acinus, Pias (SAP) domain, and Rad6-Binding Domain (R6BD). (e) E3 Ub-ligase Rad5 contains the
Rev1 binding domain, a HIRAN domain (HIP116 Rad5p N-terminal), the helicase domain (SNF2),
and a RING domain. (f) E3 SUMO-ligase Siz1 includes SAP, PINT and SP-RING domains, and the
SIM motif. (g) Srs2 helicase contains the helicase domain at its NTD, a Rad51 interacting domain, and
a PIM and a SIM motif at CTD. The name and length (number of amino acids) of each PCNA-binding
protein are indicated.

Disorder prediction algorithms show that Rev3, Rev7 and Pol31 are mostly structured.
Conversely, Pol32, which is uniquely attached to the complex by Pol31 [137], has an IDR
at the C-terminus containing a PIP motif that may bind PCNA [138]. Polζ plays a major
role in extending mismatched primer termini in both spontaneous and damage-induced
mutagenesis [139]. Thus, the deletion of Rev3 eliminates 50–70% of spontaneous mutations
and more than 90% of damage-induced mutagenesis in S. cerevisiae cells [140–142].

-Polη is thought to be a first responder in TLS, being rapidly recruited to stalled RFs.
It was first identified in yeast due to its ability to replicate UV light-induced DNA lesions
such as cis-syn thymine-thymine (TT) and cyclobutane pyrimidine dimers (CPD), in an
error-free manner [143,144]. In humans, Polη was first identified as the mutated product of
the XPV gene in patients with the xeroderma pigmentosum-variant [145].

Polη presents an IDR at the C-terminus [138,146] with a small ubiquitin-binding zinc
finger (UBZ) motif that may interact with the ubiquitin moiety on ubiquitin-modified
PCNA [146]. It also contains a PIP motif, PIP1, which binds to a hydrophobic pocket on
the front face of PCNA or to a hydrophobic pocket on the CTD of Rev1, in a mutually
exclusive manner [147,148]. Recently, a second PIP motif was found, termed PIP2. Both



J. Fungi 2022, 8, 621 7 of 29

PIP1 and PIP2 share the ability to mediate the interactions with Rad6-Rad18, with PIP1
displaying a higher affinity than PIP2. Multiple PIP motifs on Polη may facilitate the
recruitment of Polη to the complex to optimize TLS [149] (Figure 3b). Biochemical studies
reveal that PCNA-binding stimulates the efficiency of nucleotide incorporation opposite
both undamaged and damaged sites, achieved primarily by a reduction in the Km for the
nucleotide, without affecting its low processivity or fidelity [150].

-Rev1 contains a polymerase domain, a polymerase-associated domain (PAD) that
is the active site that coordinates the essential metallic ions required for the nucleotidyl
transferase reaction, and two IDRs, whereby the N-terminal IDR encloses a BRCT (breast
cancer-associated protein-1 C-terminal) domain that binds on the front of PCNA at a site
that partially overlaps with the PIP motif-binding site [151,152], while the C-terminal IDR
contains two small ubiquitin-binding motifs (UBM) [153], and a small CTD [72,154,155].
This four-helix bundle binds to a region of the catalytic core of Polζ [156,157]. In addition, it
binds to the PIP motifs of Polη, at a distinct site from where Polζ binds [147]. Subsequently,
Rev1 may simultaneously bind Polζ and Polη (Figure 3c).

Compared to replicative polymerases, TLS polymerases exhibit intrinsic structural
features that couple with their role in synthesizing damaged DNA [116]. In this sense,
the Y-family DNA polymerases hold an especially flexible conformation at active sites to
provide room to tolerate a variety of bulky, damaged template bases [158,159]. Moreover,
two of their domains, involved in choosing and positioning the correctly paired nucleotides
in the active site of the polymerase, are shorter and make fewer contacts with the DNA and
the incoming dNTP [139]. These domains clench DNA, consequently adopting a DNA–
dNTP binding closed conformation that may alter the mechanism of the proper selection of
dNTP [139,158,160,161]. Additionally, the ability to excise mismatched dNTPs disappears,
since they do not display proofreading exonuclease activity. In the case of the B-family Polζ,
its ZF domain moves from an open to a closed conformation after binding the proper dNTP,
an ability that confers higher fidelity compared to the Y-family DNA polymerases [135].
Nevertheless, in Polδ, the efficient extension of a mismatch is prevented by contacting the
terminal base pair with the linker between the NTD and the PAD. Conversely, in Polζ,
these contacts are absent, triggering the inactivation of the exonuclease domain [123,162]
(extensively reviewed in [154,159]).

3.1.2. Monoubiquitin-PCNA Modification Mediated by Rad6-Rad18

The activation of TLS involves post-translational modifications of the sliding clamp
PCNA, consisting of monoubiquitination at highly conserved lysine K164 by the Rad6 E2
ubiquitin conjugase and the Rad18 E3 ubiquitin ligase. Although PCNA monoubiquiti-
nation is an essential step in TLS, its specific role is still not known in detail. However, it
has been assumed that ubiquitin-modified PCNA is a signal to recruit TLS polymerases
to stalled RFs [124,153,163–166]. Accordingly, an increased activity of both Rev1 and
Polη is observed when binding ubiquitin-modified PCNA, compared with unmodified
PCNA [166].

Cells lacking RAD6 are extremely sensitive to a large variety of DNA-damaging agents,
such as UV and ionizing irradiation, among others [167–169]. Besides, cells display slow
growth and impaired meiotic recombination and sporulation [170,171]. Rad6 E2 ubiquitin-
conjugating activity is required to achieve all its known functions [172]. Furthermore,
different E3 ubiquitin ligase enzymes are known to recruit Rad6 to the specific target.
Thus, besides Rad18, E3-Bre1 is responsible for H2A and H2B ubiquitination [173], while
E3-Ubr1 participates in the N-end rule pathway [174]. Nonetheless, PCNA’s DDT activity
is exclusively accomplished through interaction with Rad18 [175]. Although less severe,
RAD18 mutants also exhibit sensitivity to DNA-damaging agents and growth defects.
Unlike RAD6 mutants, ∆rad18 mutant cells do not exhibit defects in meiotic recombination,
sporulation or N-end rule protein degradation. Evolutionary conserved from yeast to
mammals [176], Rad18 contains a C3HC4 zinc finger (ZF) domain termed RING (really
interesting new gene) that is characteristic of E3 enzymes, a SUMO interacting motif (SIM)
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that promotes the sumoylation of Rad18 in vivo and in vitro, and a C2H2 ZF domain for
nucleic acid binding. Contradictory results are found in the literature about the role of
the Rad18 C2H2 ZF. Peptides containing the ZF of human Rad18 were shown to bind
ubiquitin, both in vitro and in vivo [177]. In contrast, human Rad5 orthologs, SHPRH and
HLTF, were both shown to bind human Rad18 via its ZF in a competitive manner with
ubiquitin [178]. More recently, Frittmann et al. identified the ZF motif of Rad18 as the Rad5
binding domain [179]. Rad18 also contains a Rad6-binding domain, R6BD [180] and a SAP
(SAF-A/B, Acinus, PIAS) domain that mediates its interaction with DNA [180] (Figure 3d).
Both DNA-binding and nucleotide-binding activities may promote Rad18 recruitment to
ssDNA at DNA lesions, in an ATP-dependent manner [181]. Human Rad18 has a Polη-
binding domain at its C-terminus [180], which is not found in yeast. Interestingly, it has
been shown that Rad6 forms a stable complex with Rad18 [182].

In S. cerevisiae, the persistent stalling of RFs generates an accumulation of Replication
Protein A (RPA) that exhibits an exceptionally high affinity for ssDNA, quickly coating
ssDNA templates downstream of stalled primer/template junctions [182], and forming
extended filaments to protect ssDNA from degradation or from forming abnormal struc-
tures [126]; these filaments restrict PCNA to the upstream dsDNA region by avoiding its
diffusion along ssDNA [183]. The Rad6-Rad18 complex is directly engaged with an RPA
filament by the interactions between Rad18-RPA [159,180].

3.1.3. DNA Polymerase Switching during TLS

The term polymerase switching refers to the process by which one DNA polymerase
replaces a second one at the 3′-OH end of a primed DNA template. Two model strategies
to switch replicative polymerases for TLS have been described. A first model is termed the
PCNA “tool belt”, in which multiple binding proteins may be recruited to PCNA monomers
that are not bound by Polδ. Thus, the ubiquitin moiety is located on the backside of PCNA,
where TLS polymerases may be engaged, while Polδ remains bound at the front [184].
This model is supported by a recent work of the human Polδ-PCNA-FEN1 complex on
DNA [73], suggesting this mechanism for flap cleavage in Okazaki fragment maturation.
Lancey et al. [73] showed the ability of PCNA to adopt a 20◦ tilted position, leading to the
destruction of the critical interactions for DNA synthesis between the catalytic subunit of
Polδ and PCNA, while the polymerase remains bound to PCNA via the PIP box. Other
pieces of evidence for the “tool belt” model of polymerase switching have been reported in
other organisms such as Escherichia coli [185,186] and archaea [187].

The second proposed mechanism comprises the formation of Rev1 bridges, in which
a TLS polymerase is linked to PCNA via Rev1, without directly interacting with the
clamp. In this model, Polδ dissociates from PCNA and DNA to permit TLS. Rev1 interacts
with PCNA through the BRCT domain, and through PIP-like motifs with other Y-family
polymerases [78] or with the Rev7 subunit of Polζ [116,188]. Accordingly, numerous studies
support a non-catalytic role of Rev1 in the recruitment of other TLS polymerases [189–192].
Single-molecule studies revealed that both mechanisms, “tool belt” and Rev1 bridges,
are able to dynamically interchange without dissociation [116,147]. Furthermore, their
relative contribution is likely to be lesion-specific (for more information on the subject,
see [142]). Additionally, the fact that both the major DNA polymerase Polδ and the TLS Polζ
require the same accessory subunits Pol31 and Pol32 [131,132,193] leads to the proposal
of a possible switching mechanism between Polδ and Polζ. Pol3 dissociates from Pol31-
Pol32 bound to PCNA at stalled forks, whereas the Rev3-Rev7 heterodimer is recruited by
Pol31-Pol32-binding-PCNA [131,194].

Defective-Replisome-Induced-Mutagenesis (DRIM) occurs when problems in repli-
cation factors, affecting replisome integrity or Polα, Polδ or Polε, promote the use of Polζ
to continue DNA synthesis copying undamaged DNA. As a consequence, the low fidelity
of Polζ causes an increase in the mutational rate [195–198]. PCNA monoubiquitination at
K164 and Polζ recruitment were also observed during DRIM. Moreover, hydroxyurea (HU),
which impedes replication, induced Polζ DNA synthesis, independently of damage, sug-
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gesting that DRIM could function as the response to replication impediments [195]. These
observations indicate that PCNA contributes to the increased mutagenesis observed in
DRIM, which is independent of DNA damage. On the other hand, it has long been debated
whether TLS occurs at the replication fork or, conversely, post-replicatively, behind the fork.
In S. cerevisiae, Rev1 and Polη protein abundance is subjected to cell cycle regulation, being
low at the G1 and G1/S stages, and peaking in the G2-phase. This is achieved mostly at the
level of protein stability. However, in the case of Rev1, a cell cycle-dependent increase of its
transcript levels was also observed [199–201]. It has been postulated that this pattern of
regulation could be associated with the role and timing of Y-family polymerases in TLS,
which would take place predominantly during G2/M in S. cerevisiae [199], supporting the
concept that TLS polymerases act after bulk genomic replication. In agreement, Lopes
et al. observed that TLS could counteract the accumulation of small ssDNA gaps in UV-
irradiated yeast cells without affecting fork progression, which suggest that TLS occurs
behind replication forks, in a post-replicative manner [202]. Conversely, Polη recruitment
to DNA damaging sites occurs independently of the cell cycle stage in mammal cells, which
suggests the ability of the polymerase to function in all cell cycle phases [203].

3.2. Rad5-Mediated Error-Free DDT Bypass Pathway
3.2.1. Polyubiquitinated PCNA by Rad5- Error-Free Pathway

Monoubiquitinated PCNA may be modified by the heterodimeric E2 ubiquitin conju-
gase enzymes Ubc13-Mms2 and the E3 ubiquitin ligase Rad5, in S. cerevisiae, (or the Rad5
orthologous SHPRH and HLTF in humans). This modification involves K63-polyubiquitin
chain extension onto K164 of PCNA. Genetic studies support this notion, since RAD5,
UBC13 or MMS2 mutant cells are impaired in PCNA polyubiquitin chain formation, with-
out affecting its monoubiquitination in vivo [163]. Polyubiquitinated-PCNA presumably
signals error-free DDT pathway activation, mostly mediated by transient template switch-
ing, TS, in which the stalled nascent DNA strand uses the newly synthesized, undamaged
strand of the sister chromatid as a template for replication [204,205] (see Section 3.2.3).
Accordingly, mutants in this error-free pathway exhibit higher sensitivity to DNA dam-
aging agents than mutants in the TLS pathway [206,207]. Polyubiquitin chain studies
reveal that, rather than the total number of ubiquitin moieties, chain geometry is critical
for error-free DDT bypass, suggesting that a still unknown receptor, with high selectivity
for UBD, mediates TS activation [208]. Further work is required to uncover the complexity
of ubiquitin as a signalling factor, the mechanisms by which polyubiquitinated-PCNA
activates TS, and the effectors that are involved.

3.2.2. Structural Features of Rad5, Interactions and Associated Activities

Rad5 has structured domains separated by IDRs. These domains include HIP116,
Rad5p, the N-terminal (HIRAN) domain, helicase domain, and a RING domain, which is
strikingly embedded into the helicase domain (Figure 3e). The HIRAN domain of Rad5
contains an oligonucleotide-binding fold (OB) that specifically binds the 3′ end of ssDNA,
but prevents the binding of dsDNA binding [209–212].

Rad5 belongs to the SF2 superfamily of helicases [213]. Its helicase domain encom-
passes the half C-terminus of Rad5, and harbors seven conserved motifs, including Walker
A and Walker B ATP-binding motifs. Furthermore, the helicase domain also binds DNA.
The DNA-dependent ATPase activity of Rad5 becomes stimulated by either ssDNA or
dsDNA. The yeast Rad5 DNA helicase activity is specialized in RF regression [212] (see
Section 3.2.4). The Rad5 RING consists of a C3HC4 zinc finger-type domain formed by
seven cysteine residues and one histidine residue coordinating two zinc ions [212]. It binds
to Ubc13-Mms2 and is involved in Rad5 ubiquitin ligase activity [214]. Ubiquitin ligase and
ATPase activities are essential for a functional error-free DDT pathway. Hence, mutations in
any of the associated domains show sensitivity to DNA damage and increased mutagenesis,
similar to ∆mms2 or ∆ubc13 mutant cells [215]. Remarkably, both ATPase and helicase do-
mains overlap with the E3 ligase activity (see Section 3.2.3) through the polyubiquitination
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of PCNA, making it difficult to determine whether the helicase domain plays a catalytic
role during DNA damage bypass. Through in vivo and in vitro characterization of helicase
domain-specific mutants, Toth et al. show that the Walker B motif of the helicase domain is
not necessary for Rad5-Ubc13 interaction, and that the Rad5 RING and helicase domains
can function independently of each other [216].

In addition to Ubc13-Mms2, Rad5 physically interacts with Rad18, PCNA, and Rev1.
Rad5 interacts with Rad18 through its N-terminus, where the HIRAN is located [214].
Although the functional implications of this association are unclear, the interaction between
Rad5 and Rad18 may play a role in recruiting Rad5-Ubc13-Mms2 to monoubiquitinated
PCNA. PCNA-binding to Rad5 is formed by its N-terminus, which harbors a PIP-like motif
that also binds Rev1 [3,217]. Interestingly, Rad5 binds to unmodified PCNA and monoubiq-
uitinated PCNA with analogous affinities [218]. Regarding Rad5-Rev1 interaction, crystal
structural studies have determined that the Rev1 CTD binds specifically to a region of Rad5
containing a PIP-like motif [217]. This interaction promotes the recruitment of Polζ for TLS,
pointing out that Rad5 may regulate Rev1-mediated TLS, thus playing a critical role in
selecting TLS or error-free DDT pathways [217,219]. Nevertheless, the detailed function of
Rad5 in TLS remains to be eluded. In addition, recent studies highlight a role for Rad5 in
allowing for the bypass of both ssDNA gaps and methyl methanesulfonate (MMS)-induced
DNA damage [220,221]. In the presence of MMS, Rad5 accumulates and forms nuclear
foci during the S phase [222]. Several pieces of evidence show that a specific DNA lesion
structure is required for the recruitment of Rad5 to the damaged site. Moreover, Polη or
mutations in the BER pathway may impede or decrease Rad5 foci formation, respectively,
supporting a possible role of Rad5 in mediating the pathway selection [220].

3.2.3. Template Switch (TS) Model

The TS model for the error-free mechanism of DDT requires a process of strand in-
vasion, which progresses in an HR-dependent manner [175]. Hence, some components
playing a role in the HR also participate in the TS pathway. Frequently, specific HR interme-
diate structures are generated during the process. In summary, the TS begins with a strand
invasion, in which the undamaged sister chromatid is transiently used as a replication
template, exchanging the template for the blocked nascent strand, in order to carry over
replication. This step is likely mediated by Rad51, and once the region containing the
DNA lesion in the parental strand is replicated, the nascent strand switches back again to
its original proper strand, leading to the restart of normal replication. Consequently, the
appearance of derivative intermediates as X-shaped DNA or Rec-X structures (also called
“sister chromatid junctions”, SCJ) occurs with some frequency throughout the process.
Evidence based mostly on genetic approaches and the characterization of DNA interme-
diates using two-dimensional gel electrophoresis shows that these structures are usually
resolved by the RecQ-helicase complex Sgs1/Top3/Rmi1 (BLM-TOPIIIa-RMI1-RMI2 in
humans) [204,223,224]. Indeed, ∆sgs1 mutants accumulate X-shaped DNA structures at
damaged RFs, without impairing fork progression, in a Rad51 and Rad52-dependent pro-
cess [224,225]. Additionally, the endonuclease Mus81-Mms4 presumably cleaves these
intermediates [226,227].

Chromatin remodeling changes that occur during replication seem to play an im-
portant regulatory role in promoting error-free DDT by TS, thus preventing mutagenic
bypass and toxic recombination. Specifically, the member of the High Mobility Group
(HMG) family, Hmo1, facilitates TS due to its ability to mediate DNA bending. At least
two different Hmo1-mediated actions lead to the achievement of TS selection, namely the
formation of SCJ and prevention of the SR pathway [228] (see Section 3.4.3).

3.2.4. Fork Reversal Model

Fork reversal or fork regression is a regulated process used to stabilize stalled RFs
and promote error-free lesion bypass, preventing ssDNA extension. This process requires
the action of helicases and DNA translocases (reviewed in [229,230]). To overcome or
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facilitate the repair of a lesion that stalls the fork, nascent daughter strands dissociate from
parental strands and anneal with each other, while the fork regresses and parental strands
are reannealed, generating a four-way junction structure named “chicken foot” [231], where
free ends on the reversed daughter strands must be protected from degradation. Fork
reversal may imply TS, when the regressed lagging strand is used as the template to copy
the leading strand.

In human cells, fork reversal has been described as a general mechanism for RF protec-
tion under mild genotoxic treatments [232]. Regarding fungi, this process has been mainly
studied in S. cerevisiae, in checkpoint mutant cells under DNA damage conditions [231], or
in Polαmutant cells, proficient for bulky DNA synthesis but deficient in re-priming [233].
In fact, fork reversal in yeast was considered a pathological structure that appears in
checkpoint-mutant cells and was associated with the inability to restart RFs [234]. How-
ever, fork reversal has also been detected in wild type cells treated with camptothecin
(CPT), a Topoisomerase I inhibitor, causing DNA torsional stress [235,236]. Therefore, it is
assumed that fork reversal in yeast is not a general mechanism to protect stalled forks as in
mammalian cells, but it may be enhanced when re-priming is not efficient. It might be a
mechanism to pause and protect the stalled fork in the presence of DNA torsional stress,
and/or a backup pathway to TLS or TS [237].

Different helicases and DNA translocases can trigger fork reversal. In vitro studies
using DNA model molecules described that Rad5 is able to bind the 3′OH free end of
the leading strand, through the HIRAN domain, and unwind the leading arm of the
fork to trigger branch migration on the reversed fork [238,239]. However, a recent study
questioned the ability of the HIRAN domain of S. cerevisiae and Kluyveromyces lactis Rad5
to bind ssDNA-3′OH, suggesting a different contribution to fork reversal [240].

Fork reversal is also triggered by Mph1 in S. cerevisiae and Fml1 in Schizosaccharomyces
pombe [241,242], both of which are orthologues of FANCM. Related to this, the Mph1
function is necessary to protect forks stalled by interstrand cross-link (ICL) lesions [243].
The Mph1 function in fork regression is positively regulated by Mhf1, Mhf2 and Mte1 [244],
and it is negatively regulated by Smc5, a subunit of the Smc5/6 complex [245], necessary for
the restart of stalled RFs, among other functions in maintaining genome stability (reviewed
in [246]). Additionally, the inhibition of Rrm3 and Pif1 helicases by the checkpoint kinase
Rad53 limits fork regression under replication stress in budding yeast [247]. Moreover,
Exo1 nuclease represses fork reversal in budding yeast, probably by resecting the nascent
regressed strand [248].

In mammalian cells, PCNA polyubiquitination mediated by UBC13 and ZRANB3
binding trigger fork reversal [249,250], although other DNA translocases are recruited to
stalled forks through interaction with different factors (reviewed in [229,230]). In yeast,
fork regression has been detected in wild type cells treated with CPT, but PCNA polyu-
biquitination has not been described under this condition [251]. This result suggests that
PCNA polyubiquitination might not be required, at least for fork reversal initiation in yeast,
although the protective role of Mph1 in cross-link-stalled forks in S. cerevisiae requires the
ubiquitination of Pol30 [243]. Therefore, PCNA ubiquitination may be present during fork
reversal under different damage conditions.

3.3. Alternative Ubiquitination Sites in PCNA

Alternative ubiquitination sites have been identified in S. cerevisiae (reviewed in [252]).
K107 is specifically ubiquitinated in response to deficient DNA ligase I activity and to
the accumulation of unligated Okazaki fragments [253,254]. This modification has been
proposed as a DNA nick sensor. The ubiquitination of this alternative site is required to
initiate the S phase checkpoint and promote a cell cycle delay when the maturation of
Okazaki fragments is impaired. It depends on Rad5 (or Rad8 in fission yeast), together
with the E2 partner formed by Mms2 and Ubc4, but not by Ubc13 [253,255]. K107 in
yeast PCNA is positioned at the interface between PCNA subunits [255], suggesting that
ubiquitination at this site might change the PCNA structure and the interaction between
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subunits, which would impair the correct function of PCNA. Related to this, in fission
yeast, K107 ubiquitination was proposed to contribute to increased non-allelic crossovers,
leading to gross chromosomal rearrangements (GCRs) depending on Rad52 [255].

In S. cerevisiae, PCNA is also ubiquitinated at K242 in response to defects in the
maturation of Okazaki fragments [256]. This modification on K242 is related to a higher
mutation rate, depending on TLS.

3.4. PCNA Sumoylation: Regulation of Homologous Recombination (HR)
3.4.1. Srs2 Helicase Negatively Regulates the HR Pathway

Yeast PCNA is also conjugated with SUMO. Its significance, however, is less under-
stood than ubiquitination. It is mostly accepted that the SUMO-modified PCNA leads to
the suppression of HR through the recruitment of the Srs2 helicase [257], which removes
Rad51 nucleoprotein filaments from ssDNA [258], and is critical to antagonize HR and
to remove unproductive recombination intermediates [259]. The SRS2 gene was origi-
nally identified in screens for suppressors of yeast ∆rad6 sensitivities to trimethoprim and
UV [260]. The Srs2 function prevents HR, since suppressions mediated by an ∆srs2 mutant
require functional components of the HR [261].

Srs2 activity involved in disrupting Rad51 nucleofilaments was termed “strippase”
activity, which differs from the helicase function, although both entail the Srs2 translocase
activity. Srs2 interacts with both Rad51 and SUMO-modified PCNA to complete its anti-
recombination role during DNA replication. While the helicase domain is located at its
N-terminus, Srs2 presents a flexible C-terminal region responsible for different protein
interactions [262]. Accordingly, a conserved SIM and a degenerated PCNA interaction
motif (PIM-like) are present at the very end of the C-terminus [184,263] (Figure 3g). Both
motifs are required for optimal binding to SUMO-modified PCNA, which targets Srs2 to
stalled RFs to suppress HR. Although Srs2 physically interacts with unmodified PCNA,
the affinity of the interaction is significantly increased in SUMO-modified PCNA [264].
Alternatively, it has been proposed that the binding of Srs2 to SUMO-modified PCNA
dissociates the replicative Polδ and the TLS Polη from the repair synthesis machinery and,
thus, prevents the extension of recombination intermediates. To impede recombination,
this latter mechanism involves only Srs2 recruitment through the SIM motif but not its
translocase activity nor its Rad51 interaction [265].

Srs2 is evolutionarily conserved among fungal species. Interestingly, several species
do not share the canonical C-terminus-containing motifs, as in S. cerevisiae [266]. In contrast,
other species such as S. pombe present an additional related anti-recombinase protein [267].
Although Srs2 has additional roles during cell replication to warrant accurate genomic
duplication, this review focuses on its functions as anti-recombinase.

3.4.2. PCNA Sumoylation by Ubc9-Siz1

SUMO attachment to PCNA occurs primarily at the same K164 residue involved in
monoubiquitination, and it is mediated by the E2 SUMO conjugase Ubc9 and the E3 SUMO
ligase Siz1. To a minor extent, sumoylation at K127 has also been reported, in which only
Ubc9 is required. K164 SUMO-modified PCNA occurs constitutively during the S phase in
S. cerevisiae, but it is not related to cell cycle checkpoints. Despite sharing K164 residues,
the levels of both SUMO and ubiquitin modifications do not seem to antagonize each other,
since in ∆rad18 mutants, which are unable to ubiquitinate PCNA, the SUMO-modified
PCNA levels remain invariable [163].

Ubc9 was isolated using SUMO affinity chromatography [261,268]. Siz1 is a member
of the Siz/PIAS RING family of SUMO E3 ligases. Structural studies of Siz1 revealed that
it contains an N-terminal PINIT domain, a central zinc-containing RING-like, SP-RING
domain, and a CTD, termed SP-CTD (Figure 3f). Biochemical studies show that both the
SP-RING and SP-CTD are required for the activation of the E2~SUMO thioester, while the
PINIT domain is essential in interactions with the K164-PCNA [215].
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Recently identified structural models of PCNA covalently modified by ubiquitin and
SUMO indicate structural differences between them. Hence, ubiquitin has segmental flexi-
bility and occupies discrete positions on PCNA. Conversely, SUMO associates by simple
tethering and adopts extended flexible conformations. These differences point to distinct
roles in DNA damage response regarding pathway regulation, and interacting proteins.
Accordingly, this SUMO-PCNA structural model couples with Srs2 activities [269], since
Srs2 requires a considerable degree of flexibility to execute its functions at the appropriate
location. In addition, the SUMO moiety on PCNA-SUMO binds Rad18 and positions it to
allow for the ubiquitination of K164 in other PCNA subunits of the trimer [270]. Similarly,
Rad18 must exert its functions in various positions around the PCNA ring, hence, an
expanded spatial range is also essential [270].

3.4.3. Salvage Recombination (SR) Pathway

The salvage pathway, or salvage recombination (SR), is an alternative mechanism
to DDT (reviewed in [271]). It is considered the last option, occurring at late S or G2
phases, since recombination events during replication must be highly controlled to avoid
the accumulation of toxic recombination intermediates and genomic instability.

In budding yeast, during replication, sumoylated PCNA recruits the Srs2 helicase,
which inhibits unscheduled recombination at ongoing RFs by disrupting Rad51 fila-
ments [257,264]. The Srs2 anti-recombinogenic function is locally counteracted by Esc2 at
stalled RFs [272], to allow for the error-free bypass of DNA lesions depending on recombi-
nation. Esc2 contributes to this pathway with the following two different functions: (i) it
facilitates Elg1 association to damaged forks, enhancing PCNA unloading, together with
bound Srs2, therefore, it limits the quantity of Srs2 specifically at damaged forks. (ii) In
addition, Esc2 interacts through its SUMO-like domain (SLD), with the SIMs of Srs2 and
Slx5, a subunit of the Slx5/Slx8 SUMO-targeted ubiquitin ligase (STUbL), causing local
ubiquitination and proteasome-dependent degradation of Srs2. As a consequence, a low
presence of Srs2 facilitates the Rad5-dependent TS pathway at stalled forks.

∆rad5 cells are hypersensitive to various genotoxic agents, but the deletion of MGS1,
which encodes a DNA-dependent AAA+ ATPase involved in maintaining genome sta-
bility [273], suppresses the sensibility of ∆rad5 mutants to MMS and HU. This result
indicates the existence of an alternative repair pathway, inhibited by Mgs1 to prevent
harmful recombination at stalled forks [274]. Mgs1 (WRNIP in humans) binds to PCNA
and polyubiquitinated PCNA, has ssDNA annealing activity and interacts with Polδ, which
may alter PCNA and Polδ interaction (reviewed in [275]). A lack of Mgs1 (or its ATPase
activity) allows for this alternative bypass of DNA damage, implying the unloading of
PCNA and Srs2 from stalled forks. This event facilitates the recruitment of Rad51 and the
recovery of the fork by recombination, depending on Rad52, Rad59 and Polδ [274]. The
recovery of RF also depends on Sgs1 to dissolve the recombination intermediates [276].
Similarly, the deletion of SRS2 or expression of a Pol30 mutant version, that cannot be
sumoylated (K164R, K127R), allows for SR in budding yeast [276], as Srs2 recruitment by
PCNA sumoylation on either K164 or K127 inhibits recombination.

Although the different mechanisms for tolerating DNA damage are explained as
different pathways, there may be a linear transition from one to another in vivo. How cells
decide which pathway to use is still not well understood. Different factors and conditions
such as the presence of replication stress or DNA damage, the type of DNA lesion, or the
presence of topological stress, among others, might influence the selection of the DDT
pathway that best fits each cell requirement.

3.5. PCNA Inner Surface Acetylation in Response to DNA Damage

The evolutionary highly conserved PCNA inner surface plays an important role for
DNA polymerase processivity during replication and repair [3]. However, the dynamic
interaction between DNA and the positively-charged sliding surface is not well under-
stood [277]. Billon et al. showed that lysines on the inner surface of PCNA become
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acetylated in response to DNA damage, making cells more resistant to DNA-damaging
agents. Specifically, K20 and K77 act as specific responders, since cell sensitivity to DNA
damaging agents increases when they are replaced by acetyl-mimic glutamine residues.
EcoI cohesin acetyltransferase acetylates K20 in vitro and in vivo in response to DNA
damage, which stimulates repair by sister-chromatid-mediated HR. Moreover, the crystal
structure of the PCNA ring acetylated on K20 reveals structural differences at the interface
between PCNA subunits, which may suggest that transient conformational changes of
the PCNA ring could have an effect on the sliding motion on the DNA. The effect of K77
acetylation has yet to be determined [278].

4. Comparative Study of PCNA from Systemic Pathogenic Fungi

The PCNA structure is conserved among fungi; however, certain differences exist in
their sequences. Whether and how this variability influences the structure and regulation
of PCNA must be experimentally confirmed. There is abundant information about the
post-translational modifications that regulate PCNA function in humans and budding
yeast [279], but less is known about other fungal species. In this review, the PCNA protein
sequence from S. cerevisiae is compared with PCNA proteins belonging to 14 systemic
pathogens, yeasts and filamentous fungi, from different phylum, namely Ascomycota, Ba-
sidiomycota and Mucoromycota (Figure 4). We focused on both higher and lower conserved
domains or residues to understand regulatory modifications and structural features specific
to fungi, in order to identify fungal PCNA as a therapeutic target.

Protein sequence alignment of PCNA from the contrasted fungal species indicates
that the C-globular domain is less conserved than the N-globular domain, mainly in the
region corresponding to the previously described P-loop or back loop (residues 183 to 195
in S. cerevisiae), where fungal PCNAs contain a 310 helix, which is not present in human
PCNA [269,280]. Besides, PCNA from Cryptococcus neoformans contains an insertion in
this region of over 80 residues, absent in the rest of the species. IDCL and CTD sequences
are well conserved, together with the G178 residue, which is involved in the stability of
the ring, and along with K168, is required for Rad5 interaction [281]. K168 is conserved
in all the compared fungal species, except in C. neoformans, where a threonine takes its
place. The phosphorylation of tyrosine114 and 211 (Y114, Y211) stabilizes human PCNA,
avoiding its ubiquitination and degradation by the proteasome, or alters PCNA interaction
with mismatch repair (MMR) proteins, suppressing MMR, thus increasing mutational
rates [282–284]. These modifications might be possible in fungal species as both residues,
Y114 and Y211, are conserved, although they have not been reported to date. Interestingly,
Pol30 expression with a Y114F mutation is unable to support budding yeast growth;
therefore, this residue is essential for PCNA functions [281].

Some differences are detected in residues that are post-translationally modified to
regulate the PCNA function in S. cerevisiae [252]. K164, which is ubiquitinated and
sumoylated, is central to DDT regulation. Moreover, in budding yeast, Pol30 is also
sumoylated at K127, although to a minor extent [163]. Although K164 is conserved in all
the 15 compared species, K127, located in the IDCL sequence, is not; only S. cerevisiae
and Candida glabrata contain a lysine at position 127. Nevertheless, the surrounding
residues L126 and I128, required to correctly interact with Polδ, are always conserved. This
modification on K127 is important to inhibit recombination events on forks, and to decrease
Eco1 interaction with PCNA, which may impair cohesion establishment, mediated by the
Eco1-dependent acetylation of cohesin (reviewed in [279]). Conversely, the acetylation
of PCNA on K20 by Eco1 is related to recombination repair, as it diminishes replicative
polymerase processivity and promotes HR [278]. This modification is conserved in budding
yeast and humans. It has not been described in other fungal species, although K20 is
conserved in all the species compared in this review.
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Figure 4. Alignment of multiple PCNA sequences of fungal pathogens, causing systemic infections,
compared to S. cerevisiae. Multiple sequences alignment of S. cerevisiae PCNA and PCNA from
14 pathogenic fungal species is shown. S. cerevisiae (P15873), Candida glabrata (Q6FWA4), Candida
albicans (Q5AMN0), Ajellomyces capsulatus (A6R5C7), Coccidioides immitis (A0A0J7B5C4), Rhizopus
microsporus (A0A0A1P4Z3), Paracoccidioides brasiliensis (A0A1D2J4G1), Mucor circinelloides (S2K5N0),
Pneumocystis jirovecii (A0A0W4ZHN6), Lichtheimia ramosa (A0A077WRZ8), Lichtheimia corymbifera
(A0A068SE94), Cryptococcus neoformans (Q5K7Y2), Blastomyces dermatitidis (T5B6A2), Aspergillus
flavus (B8N1A6), Aspergillus fumigatus (A0A0J5SJF1). PCNA sequences were obtained using Uniprot
repository database (Uniprot entries are indicated in parentheses), and the sequence alignment was
carried out using UGene software. Identical residues are shaded dark blue, whereas similar residues
are shaded light blue. Secondary structural features are indicated above the sequences alignment,
α-helices (yellow) and β-strands (green). Conserved IDCL motifs and K164 residues are shaded pink.
The symbol on the upper part of the alignment indicates lysine modification—triangle for acetylation;
rhombus for ubiquitylation; and circle for SUMOylation.
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Focusing on alternative ubiquitination sites on yeast PCNA, K107 and K242, occurring
as a response to a deficiency in Ligase I activity or in the presence of unligated Okazaki
fragments ([254,255,257]), and as observed in Figure 4, we can conclude that these positions
are not well conserved among fungi. There is a very low conservation of the K242 position,
although some of the fungal species in Figure 4 present a lysine at position 240, as human
PCNA. K107 is located in the previously described J-loop [280]. This position is conserved
in S. cerevisiae, C. glabrata and C. neoformans. However, in some other species there is a
lysine residue at position 106 (Candida albicans, Rhizopus microsporus, Mucor circinelloides,
Lichtheimia ramosa and Lichtheimia corymbifera), although post-translational modifications at
this position have not been reported to date. In human cells, the down-regulation of DNA
ligase I (LIG1A) also induces PCNA monoubiquitination [253]. In this case, the alternative
ubiquitinated lysine is not known, since the K107 position is not conserved in human
PCNA, although it contains a close-by lysine at position 110 [255], which is also present in
other metazoans. Position 110 has a more conserved composition in all the fungal species
compared in Figure 4, with arginine or lysine residues at this position. Curiously, all the
compared species that contain a lysine at position 106, also present a lysine at position
110. Both, K107 in yeast PCNA, and K110 in human PCNA, are placed at the interface
between PCNA subunits [255], suggesting that ubiquitination at these sites could alter their
interaction and promote the release of PCNA from DNA. Nevertheless, the methylation
of K110 in human PCNA was described as mediating trimerization and stabilizing the
interaction of Polδ [285].

Differences between human and fungal PCNAs in post-translational modifications
and target residues might be exploited to identify new treatments against fungal infections.
Nevertheless, low conservation among fungi and/or coincidences in residues that are also
modified in human PCNA would make this kind of approach difficult.

Mutations on PCNA that separately affect replication or repair, or mutations disturbing
both functions have already been studied in budding yeast. For some of them, the PCNA
structure and activity of wild type and mutant proteins have been compared [281,286].
Importantly, these studies concluded that in many cases, PCNA may incorporate mutations
and still maintain its function in replication, although in some cases a higher mutation rate
has been detected.

A comparison of different fungal species revealed interspecies incompatibility in
the PCNA binding and coevolution of PCNA-partner interactions. Based on the IDCL
sequence, two main groups were identified (group I and group II). Partners in species
classified in group I are not able to bind chimeric constructs of PCNA with IDCL sequences
present in group II, and partners from group II do not bind PCNA-containing group I IDCL
sequences [287]. Hence, S. cerevisiae, C. glabrata and Candida albicans are classified in group
I, and the rest of the compared species in Figure 4, in group II.

Recently, the structural resolution of PCNA from C. albicans, Aspergillus fumigatus and
Neurospora crassa demonstrated interesting results about evolutionary differences/similarities
in the PCNA structure and sequence requirements for binding PIP domain-containing
interactors [280,288–290]. Differences in IDCL and the previously described J-loop, located
between residues 105 and 110 in S. cerevisiae (Figure 4), implied structural variations that
tend to limit PCNA interaction with partners from different species [280,290]. Even within
group I, slight sequence variances could impair cross-species full complementation, as
detected in C. albicans and S. cerevisiae [280]. These studies propose the following approach
to control the replication of fungal pathogens: the use of model PIP-box peptides, with
sequence variations that may enhance binding to fungal PCNA. Former experiments in the
protein-directed evolution on PCNA, in order to increase the affinity for different partners,
caused severe defects in replication and repair [291]. These results suggested that evolution
has not favored strong PCNA-partner affinities. This might be in accordance with the many
different functions that PCNA coordinates and the partner exchange that is required to
perform them [292].
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In fact, differences in PCNA domains necessary for interaction with various part-
ners imply interspecies barriers that open the possibility of treating infections in humans,
thus affecting the PCNA function specifically in pathogens [289]. However, a defective
response to DNA damage in fungal pathogens has been associated with the appearance
of drug-resistant mutants. Although defects in DNA damage repair cause a higher death
rate, they also enhance the accumulation of mutations, which may be a driving force for
microevolution. Some fungal pathogens present deficiencies either in repair genes or in
signalling DNA damage [293–296]. Accordingly, genetic instability and the development of
drug resistance have been reported under stress conditions or during host infection [297].
Moreover, different punctual mutations on PCNA have been identified to promote its func-
tion in replication, but were found to cause higher mutation and recombination rates [286].
Therefore, a profound comprehension of the function and structure of PCNA from different
species and the significance of distinct punctual mutations is essential in order to develop
specific and secure therapeutic targets against PCNA to treat mycotic infections.

5. Future Perspectives

Over the years, researchers have focused on unravelling DDT mechanisms. However,
a deeper comprehension of its regulation is essential and will need to be addressed in the
near future, including a detailed understanding of its molecular mediators. The activation
of an accurate DDT molecular response is promoted by post-translational modifications
of the PCNA sliding clamp. Thus, PCNA monoubiquitination drives the error-prone TLS
pathway, whereas polyubiquitination enables error-free TS. PCNA may also be sumoylated
and lead to Srs2 helicase recruitment, which negatively controls the SR alternative repair
mechanism. Since TLS polymerases exhibit low fidelity, their error-prone activity must be
tightly regulated and restricted to the vicinity of bulky DNA lesions. Nevertheless, the
molecular events that balance between ending once the PCNA is monoubiquitinated or, on
the contrary, continue to add a polyubiquitinated chain are still unknown. Concerning TLS,
biochemical and structural analyses of TLS polymerases have allowed for considerable
progress toward their characterization. However, critical questions remain to be solved,
such as those related to PCNA conformational changes when different TLS polymerases
bind to it, either cooperatively or competitively, and whether these changes affect poly-
merase switching. An interesting remaining issue is the way that other processes also
related to replication contribute to the modification of DDT, in coordination with PCNA. In
this sense, chromatin state and chromosome structure as well as to replication timing are
important topics for future research. Moreover, quantitative proteomics studies might shed
light on the identification of new PCNA-associated DDT modulators. Remarkably, another
significant topic to be explored is the coexistence of various post-translational modifications
in the same PCNA trimer, and how they interact with each other to determine the repair
mechanism required in each condition.

Unfortunately, fungi are among the leading causes of opportunistic infections affecting
immunocompromised patients. The high incidence of invasive mycoses in patients with
HIV/AIDS represents an increasing threat to public health and underscores the urgent
need for novel drug development strategies [298]. The variability in the PCNA sequence
and structure between human and fungal pathogens opens the possibility to use specific
drugs against PCNA functions in pathogens, impairing replication and growth. Research
in fungi has revealed different sequence requirements for the interaction of PCNA with
specific partners, which are not only highly helpful to the development of new anti-fungal
treatments, but also crucial to understanding PCNA function in all organisms, including
humans. This knowledge may be useful to find specific treatments against cancerous
cell growth, based on PCNA inhibition. Nonetheless, the development of antifungal
drugs is extremely difficult, since fungi, as eukaryotic organisms, share many similarities
with human host cells. Therefore, targeting novel fungal PCNA epitopes may hinder the
appearance of multiresistant species, highlighting the importance of exhaustively testing
putative new fungal targets.
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