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Abstract

Hypermutation may accelerate bacterial evolution in the short-term. In the long-term, however, hypermutators (cells with
an increased rate of mutation) can be expected to be at a disadvantage due to the accumulation of deleterious mutations.
Therefore, in theory, hypermutators are doomed to extinction unless they compensate the elevated mutational burden
(deleterious load). Different mechanisms capable of restoring a low mutation rate to hypermutators have been proposed. By
choosing an 8-oxoguanine-repair-deficient (GO-deficient) Escherichia coli strain as a hypermutator model, we investigated
the existence of genes able to rescue the hypermutable phenotype by multicopy suppression. Using an in vivo-generated
mini-MudII4042 genomic library and a mutator screen, we obtained chromosomal fragments that decrease the rate of
mutation in a mutT-deficient strain. Analysis of a selected clone showed that the expression of NorM is responsible for the
decreased mutation rate in 8-oxoguanine-repair-deficient (mutT, mutY, and mutM mutY) strains. NorM is a member of the
multidrug and toxin extrusion (MATE) family of efflux pumps whose role in E. coli cell physiology remains unknown. Our
results indicate that NorM may act as a GO-system backup decreasing AT to CG and GC to TA transversions. In addition, the
ability of NorM to reduce the level of intracellular reactive oxygen species (ROS) in a GO-deficient strain and protect the cell
from oxidative stress, including protein carbonylation, suggests that it can extrude specific molecules—byproducts of
bacterial metabolism—that oxidize the guanine present in both DNA and nucleotide pools. Altogether, our results indicate
that NorM protects the cell from specific ROS when the GO system cannot cope with the damage.
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Introduction

Maintaining the integrity of genetic information is crucial for all

living organisms. Mutations originate from replication errors and

DNA damage from endogenous and exogenous origin. Evolution,

through natural selection, has produced a number of systems to

prevent or repair these errors. The post-replication mismatch

repair system (MMR) repairs mainly replication errors (for a

review see [1]). Endogenous damage to DNA bases are repaired

primarily by base excision repair (BER) (for a review see [2]). Of

particular importance are oxidative DNA lesions which play a

major role in spontaneous mutagenesis, because oxidized bases

can mispair with noncognate ones [2]. Especially noteworthy amid

these oxidative lesions is oxidation of guanine to 7,8-dihydro-8-

oxo-29-deoxyguanosine (8-oxo-dG). Guanine is particularly sus-

ceptible to oxidation on account of its low redox potential. If 8-

oxo-dG is not repaired, it can be bypassed by DNA polymerases

and pair with either C or A, causing GC to TA transversions [2].

Because 8-oxo-dGTP is highly mutagenic, efficient sanitizing

mechanisms have evolved in all living cells to mitigate its highly

mutagenic potential. In E. coli there are at least three proteins,

MutM, MutY and MutT, engaged in avoiding the mutagenicity of

8-oxo-dGTP. These specialized proteins are known as the GO

system [3]. MutM removes 8-oxoG paired with C in DNA, while

the MutY protein removes A opposite 8-oxoG resulting from A

mispaired with unrepaired 8-oxoG during replication. E. coli

mutants defective in MutM or MutY exhibit higher than wild-type

GC to TA spontaneous transversions [3–5]. The MutT enzyme is

a nucleoside triphosphate pyrophosphohydrolase that converts 8-

oxo-dGTP to 8-oxo-dGMP and pyrophosphate, thereby inacti-

vating this mutagenic activity. In the absence of MutT there is an

increase in AT to CG mutations [3].

Despite the high mutational burden produced by the absence of

MMR or GO systems, naturally-occurring hypermutable E. coli

and Pseudomonas aeruginosa isolates deficient in these systems have

been found [6–10]. Hypermutable E. coli strains (mutators) can

increase in frequency in laboratory bacterial populations under

specific conditions that select rapid adaptation to environmental

changes [11–13]. However, cells with the mutator phenotype pay

a high biological price of deleterious mutations in the long run,

which may result in extinction [14,15]. Theoretical and experi-

mental evidence of this cost has been obtained in bacterial

populations propagated in the laboratory when submitted to

severe bottlenecks [16–18].

PLoS Genetics | www.plosgenetics.org 1 May 2010 | Volume 6 | Issue 5 | e1000931



Several possible ways to reduce the mutation rates of mutator

strains can be envisaged, among these, mutations in additional loci

that are able to reduce the mutation rate have been obtained in

laboratory populations of mutT mutators submitted to long-term

evolution [19]. However, after more than 20 years, the molecular

mechanisms responsible for these compensatory phenotypes have

not yet been described. Thus, our initial hypothesis raised the

question of whether some back-up mechanisms may have evolved

to alleviate the high cost of hypermutability in the absence of the

original antimutator function.

In this work, we looked for genes that, when over-expressed,

reversed or reduced the mutT mutator phenotype. To this end, we

constructed and explored an in vivo library of E. coli genomic DNA

fragments using a mini-Mu transposable element and the Mu

phage [20]. We found that multicopy expression of norM is able to

decrease the mutation rate in GO-repair deficient strains. NorM is

the prototype of the multidrug and toxin-extrusion (MATE) family

of cation-coupled efflux pumps, which includes many bacterial

and eukaryotic members [21].

Results

Search for multicopy suppressors of the mutator
phenotype of a mutT strain

As stated in the Materials and Methods section, the mini-Mu

system produces a plasmid overexpression library of chromosomal

fragments by homologous recombination between two adjacent

mini-Mu transposons. We screened for GO2 strains with a

reduced mutation rate using the colony papillation screen

described in figure 1. The screen of the mini-Mu library (about

1,500 clones) yielded several colonies with a clearly reduced

number of white Ara+ papillae on agar plates containing arabinose

and tetrazolium chloride. One of them, showing a papillation

pattern similar to the wild-type strain was chosen for further study

(Figure 1). Plasmid DNA was purified, retransformed into the

original DmutT strain and retested with the Ara2RAra+ reversion

assay. The ends of the fragment contained in the mini-Mu plasmid

were sequenced and the chromosomal region between them

inferred. This region included 16 genes, 8 with assigned functions

(gloA, rnt, lhr, sodB, purR, cfa, ribC and norM) (Figure 2). In principle,

we considered sodB, which encodes the Fe-dependent superoxide

dismutase, and norM, which encodes an orthologue of the MATE

family [21–23], as major candidates responsible for the decreased

mutation rate in the mutT-deficient background. Overexpression of

sodB may reduce the level of reactive oxygen species (ROS) in the

cell, leading to a reduced level of 8-oxo-dG, which consequently

compensates for the absence of MutT activity. On the other hand,

NorM is the prototype of the MATE family of cation-coupled

transporters, which characteristically possess 12 putative trans-

membrane domains and have been reported in all three kingdoms

of life [21]. Expression of NorM conferred resistance to several

agents, such as norfloxacin, aminoglycosides and ethidium

bromide, via a mechanism requiring the proton motive force

[24]. Interestingly, MATE proteins have been described as

exporters of toxic organic cations and guanidine [25], rendering

NorM an excellent candidate for the export of oxidative precursor

molecules.

norM is the antimutator gene
Plasmids containing the genes sodB [pCsodB] and norM

[pCnorM] were obtained from the Complete Set of E. coli K-12

Open Reading Frame Archive (ASKA) library [26]. These

plasmids, harboring the two cited genes cloned into the pCA24N

vector, were transformed into the host strain GLF1 DmutT::kan

[F9CC101] (Table 1), a strain that assays AT to CG Lac+

mutations. Several transformants carrying either pCsodB or

pCnorM, and the parental vector pCA24N, were analyzed by a

Lac+ reversion papillation assay. A clear decrease in the number of

Lac+ papillae was observed in the strain harboring pCnorM, but

not in those harboring pCsodB or the vector pCA24N (data not

shown).

Table 2 shows the mutation rates of strains NR10831, GLF0

(DnorM::kan) and GLF1 (DmutT::kan) harboring plasmids pCA24N

or pCnorM. No differences were observed between the wild-type

and the mutant DnorM::kan, and the presence of plasmid pCnorM

Figure 1. The papillation assay. The strain GLF1 DmutT::Kan Mu cts
produces red colonies (Ara2) on arabinose-tetrazolium chloride agar
plates. Ara+ revertants are spontaneously produced by mutation and
appear as white microcolonies growing out of the surface of the main
red colonies. The Ara2RAra+ reversion rate can be visualized by the
number of white papillae appearing per colony on tetrazolium-
arabinose plates incubated for 7 days. A: the mutator strain GLF1
DmutT::Kan Mu cts forms colonies with a high number of Ara+ papillae
(white); B: the strain GLF1 DmutT::Kan Mu cts harboring the mini-Mu
plasmid with the chromosomal fragment containing norM forms
colonies with a low number of papillae.
doi:10.1371/journal.pgen.1000931.g001

Author Summary

Some bacteria and eukaryotic cells produce a higher-than-
normal number of mutations (so-called ‘‘mutators’’).
Because some of the mutations produced can be favorable
(such as antibiotic resistance in bacteria or resistance to
anticancer drugs in human tumor cells), the high mutation
rate may provide a short-term advantage. However, the
production of huge numbers of mutations may compro-
mise the future of these cells because they also
accumulate disadvantageous mutations. Consequently,
cells may contain backup mechanisms to reduce the
accumulation of mutations. We have found that some
types of hypermutable mutants can escape this fate by
increasing the expression of an efflux pump predicted to
export specific oxidative substances, the precursors of
many mutations, and consequently reducing their number.
Amazingly, this over-expression may confer several advan-
tageous phenotypes simultaneously, such as antibiotic
resistance, protection against reactive oxygen species and
antimutability.

Figure 2. ORFs (arrows) present in the isolated chromosomal
fragment.
doi:10.1371/journal.pgen.1000931.g002

NorM Antimutator Effect
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did not modify mutation rates. However, the plasmid pCnorM

produced a dramatic decrease in the mutation rate when

introduced into the DmutT strain (Table 2). These results suggest

that, in the absence of additional damage, other protective

mechanisms may suffice to cope with this damage, and that the

anti-mutator effect of NorM can be observed only when

mutagenesis is increased by the absence of a key antimutator

mechanism such as MutT.

Effect of norM on the Val-R mutation rate
The norM antimutator effect was observed for a lac marker on

the F9pro-lac episome. This may indicate a phenomenon similar to

the process of ‘‘stress-induced mutation’’, which may occur

preferentially in the F9 episome [27]. To test this possibility, we

used acquisition of valine-resistance (Val-S to Val-R) to verify the

antimutator properties of NorM for a chromosomal marker. The

valine-resistance (Val-R) mutation assay has been used previously

by others [28,29]. Table 3 shows that plasmid pCnorM is able to

reduce the frequency of Val-R mutants of the strain GLF9 DmutT

by two orders of magnitude, as in the case of the lac reversion

assay.

In conclusion, the experiments described above show that the

expression of NorM in a multicopy plasmid reverses or reduces the

mutator phenotype caused by the lack of MutT activity at both

episomal and chromosomal markers.

Effect of norM expression on the mutator phenotype of
other GO-repair-deficient strains

The norM effect might be due to the active extrusion of toxic

metabolites involved in the oxidative damage of guanine. In this

case, the same effect, i.e., a decrease in mutation rate, should also

be observed in the mutM mutY background, because both MutM

and MutY remove errors caused by the presence of 8-oxodG in

the DNA. This double mutant has an elevated rate of GC to TA

transversions [3]. The frequency of Lac+ mutants was measured

for strain NR10834 and its mutant derivatives GLF6 (mutM),

GLF7 (mutY) and GLF8 (mutM mutY) containing either pCA24N or

pCnorM (Table 4). All these strains carry the lacZ missense allele

Table 1. Bacterial strains, plasmids and phages used in this study.

Strains, plasmids and phages Relevant genotype; phenotype Source or reference

strains

MEC222 (scavenger) MG1655 lacZDT::cat; Lac2, CmR [49]

MC4100 araD139 D (argF lac)205 flbB5301 ptsF25 relA1 rpsL150 deoCI [53]

Pop3001.6 MC4100 malT::Mu cts [pEG109] Laboratory collection

BW25113 rrnB3 DlacZ4787 hsdR514 D(araBAD)567 D(rhaBAD)568 rph-1 [46]

JW0097 BW25113 DmutT::Kan; KanR [46]

JW1648 BW25113 DsodB::Kan; KanR [46]

JW1655 BW25113 DnorM::Kan; KanR [46]

NR10831 ara, thi, Dprolac [F9 CC101]; RifR, NalR; assays AT to CG transversions [45]

GLF0 NR10831 DnorM::Kan; KanR This work

GLF1 NR10831 DmutT::Kan; KanR This work

GLF1 Mu cts NR10831 DmutT::Kan Mu cts; KanR This work

GLF2 NR10831 DmutT This work

GLF3 NR10831 DnorM::Kan; KanR This work

GLF4 NR10831 DmutT DnorM::Kan; KanR This work

GLF5 NR10831 DmutT::Kan; KanR This work

NR10834 ara, thi, Dprolac [F9 CC104]; RifR, NalR; assays CG to TA transversions [45]

GLF6 NR10834 DmutM::bla; AmpR This work

GLF7 NR10834 mutY::Tn10; TetR This work

GLF8 NR10834 DmutM::bla mutY::Tn10; AmpR TetR This work

MG1655 F2 l2 ilvG rfb50 rph-1 Laboratory collection

GLF9 MG1655 DmutT This work

GLF10 NR10831 DsodB::Kan; KanR This work

phages

Mu cts Mu cts62 (temperature-sensitive repressor) [54]

MudII4042 Mu cts62 A+ B+ cat (CmR) repPl5A lac(’ZYA)931 [54]

plasmids

pEG109 MudII4042::phoA-proC [51]

pCP20 pSC101ts flp [55]

pCA24N Ori ColE1 CmR lacIq PT5lachistag::GFPuv4 [26]

pCnorM norM in pCA24N [26]

pCsodB sodB in pCA24N [26]

doi:10.1371/journal.pgen.1000931.t001

NorM Antimutator Effect
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present in the episome F9CC104 [30], which reverts to Lac+

uniquely by a GC to TA transversion mutation. The mutM mutant

shows a slight increase in mutant frequency, and both the mutY

and the double mutM mutY mutants show a high mutant frequency

(one and two orders of magnitude, respectively, in relation to the

wild-type strain NR10834) (Table 4). The expression of norM from

the multicopy plasmid decreased the mutant frequency of these

three mutants significantly (P values,0.05 in all cases; see Table 4

for values). These mutant frequencies were even below that of the

wild-type. At this stage, unfortunately, we have no satisfactory

explanation for this phenomenon, although the transcriptional or

postranscriptional regulation of the activity of other systems

cannot be ruled out.

These results strongly suggest that the norM effect is due to an

active extrusion of toxic metabolites involved in the oxidative

damage of guanine, even when 8-oxodG is incorporated into the

DNA.

Multicopy expression of norM protects against killing by
hydrogen peroxide in a mutT-deficient background

GO-deficient cells are more sensitive to H2O2-induced killing

than those of the wild-type [31,32] via a mechanism that is still

unknown. This has led us to investigate the effect of norM

expression on cell protection against H2O2-induced killing.

Figure 3 shows that norM expression in the multicopy plasmid

promotes evident protection for mutT cells from H2O2-induced

killing (P = 0.009). However, this protection is not statistically

significant in the wild-type background (P = 0.6) (Figure 3). As in

the case of mutagenesis, these results suggest that NorM protects

cells from oxidative damage mainly in the absence of a key

protective mechanism and when this damage is increased, e.g. in

the presence of ROS-generating substances. Therefore, it is

conceivable that NorM could protect cells from oxidative damage

in the absence of a key cellular ROS-protective mechanism, such

as superoxide dismutases [33]. When we tested the effect of norM

expression in a sodB mutant background (lacking the Fe-dependent

form of superoxide dismutase), we found that norM expression

promotes only a minor protection, statistically not significant

(P = 0.12), against H2O2 in this sensitive background (Figure 3).

Altogether these results show that NorM offers evident

protection against H2O2-killing when the GO system cannot cope

with the damage, although it provides no protection in the absence

of other ROS protective mechanisms, such as superoxide

dismutase SodB, or in the wild-type background. This suggests

that NorM acts almost exclusively as a backup of the GO system,

and is capable of alleviating both the increased oxidative DNA

damage as well as the mutagenesis produced by the lack of this key

system.

Effect of norM expression on intracellular ROS levels
All the previous results suggest that norM expression can reduce

the intracellular ROS levels under specific circumstances. We have

examined ROS levels qualitatively via the use of dihydrorhoda-

mine 123 (DHR) and flow cytometry. DHR is a probe for the

detection of intracellular reactive oxygen species. It is oxidized into

rhodamine 123, which produces a maximal emission at 529 nm

when excited at 507 nm (Enzo Life Sciences). Figure 4 shows that

norM expression in the multicopy plasmid pCNorM can reduce the

amount of reactive oxygen species slightly, but consistently, in the

wild-type strain (Figure 4A). However, the same plasmid produced

a greater reduction in the ROS intracellular level of the DmutT

strain compared to the wild-type (Figure 4C) (note that the ROS

intracellular levels, measured as oxidized rhodamine 123, are

represented in a logarithmic scale). Expression of norM reduces the

ROS level only slightly in the sodB-defective background

(Figure 4D). In parallel experiments, ROS intracellular levels

were measured after H2O2 treatment for 30 min. As expected,

treated cells produced higher levels of ROS in all cases (the

histograms are shifted slightly to the right), with minor reductions

produced by the expression of norM, compared to values from cells

harboring the empty vector (Figure 4E–G). The higher effect was

observed in the mutT-deficient background (Figure. 4G). Once

Table 2. Spontaneous Lac2 to Lac+ mutation rates of the wild-type, DmutT and DnorM derivatives containing the empty vector or
the norM-encoding plasmid.

Strain Mutation ratea (mutations/cell/generation) Fold Increase

NR10831 [pCA24N] 1.76102966.8610210 1

NR10831 [pCnorM] 2.26102962.2610210 1.3

GLF0 DnorM::Kan [pCA24N] 2.36102963.8610210 1.3

GLF0 DnorM::Kan [pCnorM] 2.06102962.3610210 1.2

GLF1 DmutT::Kan [pCA24N] 3.36102761.761028 194

GLF1 DmutT::Kan [pCnorM] 4.861021062.8610210 0.3

amean 6 SEM of the mutation rates for 3 independent experiments are shown.
doi:10.1371/journal.pgen.1000931.t002

Table 3. Spontaneous ValineR mutant frequencies.

Strain Mutant Frequencya (mutants/viable cell) Fold Increase

MG1655 [pCA24N] 3.46102766.261028 1

GLF9 DmutT::Kan [pCA24N] 5.26102466.661025 1,530

GLF9 DmutT::Kan [pCnorM] 4.76102662.861026 13.6

amean (6 SEM) of the mutant frequencies for 4 independent experiments are shown.
doi:10.1371/journal.pgen.1000931.t003

NorM Antimutator Effect
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again, and in agreement with the data from the H2O2-protection

experiments, our results suggest that the expression of norM acts

almost exclusively as a back-up mechanism of the GO-system.

Effect of norM expression on protein carbonylation
One of the most important effects of an increased intracellular

ROS level is protein carbonylation. Thus, we studied the effect of

norM expression on protein carbonylation in H2O2-treated and

non-treated wild-type and DmutT cells. The level of spontaneous

protein carbonylation in both the wild-type and mutT non-treated

cells growing in the exponential phase was undetectable with the

OxyBlot kit. Nevertheless, when submitted to H2O2 pre-

treatment, the expression of norM in the multicopy plasmid

pCNorM produced a consistent decrease in the amount of

carbonylated proteins in both the wild-type NR10831 and the

DmutT strains (Figure 5A and 5B).

Discussion

The integrity of genetic information is a critical process for life.

Consequently, a number of systems have evolved to prevent or

repair replicative and postreplicative errors. The GO system,

which is able to prevent and repair oxidative damage produced by

the oxidation of deoxy-guanine to 8-oxo-dG, is a key component

of the antimutation cell machinery. However, despite the great

mutational burden produced by the absence of the GO system,

naturally-occurring hypermutable E. coli and P. aeruginosa isolates

deficient in mutT have been found [6,10].

Hypermutable E. coli strains (mutators) show a selective

advantage over the wild-type as they can produce more favorable

mutations. In fact, it has been demonstrated that mutators can

increase in frequency under specific conditions of environmental

change in laboratory bacterial populations [11–13].

However, hypermutation may represent a colossal evolutionary

cost for bacteria because most of the mutations are neutral or

deleterious [14,15]. Theoretical and experimental evidence of this

cost has been obtained in laboratory propagated bacterial

populations when they were submitted to severe bottlenecks

[16–18]. The accumulation of deleterious mutations in genes

experiencing relaxed selection or no selection at all will cause a

more rapid fitness loss if mutators later encounter environments in

which those genes are important [34,35]. Thus, from a theoretical

stand-point, hypermutator populations must reduce the mutation

rate or face the possibility of extinction, at least under specific

conditions. There are three possible ways to reduce the mutation

rate for a mutator: (i) reverse the mutation that produced the

mutator allele; (ii) replace the mutator allele with a wild-type gene

from a non-mutator cell via horizontal gene transfer; and (iii)

compensatory mutations at additional loci. Two studies strongly

suggest that the replacement of the mutator allele with a non-

mutator by horizontal transfer may have occurred in nature

[36,37]. Evidence of the third way, i.e., mutations at additional

loci that reduce the mutation rate, has been obtained in laboratory

populations of mutators submitted to long-term evolution,

although the genes responsible for this have not been character-

ized [19]. Moreover, some antimutator mutations in the a
catalytic subunit of the DNA-polymerase III compensate the high

mutation rate of mutT-deficient strains and dnaQ (proofreading-

deficient) mutators, such as mutD5, by increasing replication

fidelity [38–40]. Finally, a different mode is to reduce the cost of

accumulating deleterious mutations (deleterious load). Increased

levels of the heat-shock chaperones, DnaK and GroEL, in lineages

that accumulate many mutations, reduce the fitness cost produced

by deleterious load [41].

The hypothesis we tested was that some back-up mechanisms

could alleviate the high cost of hypermutability in the absence of

Table 4. Spontaneous Lac2 to Lac+ mutant frequencies of the wild-type and mutM, mutY and mutM mutY derivatives with or
without the norM-encoding plasmid.

Strain Mutant frequencya (mutants/viable cell) Fold Increase

NR10834 [pCA24N] 4.26102861.461028 1

GLF6 DmutY::bla [pCA24N] 8.96102761.561027 21.2

GLF6 DmutY::bla [pCnorM] 1.16102962.0610210 0.03

GLF7 mutM::Tn10 [pCA24N] 1.46102761.361027 3.3

GLF7 mutM::Tn10 [pCnorM] 7.261021061.4610210 0.02

GLF8 mutM mutY [pCA24N] 6.16102661.061026 145

GLF8 mutM mutY [pCnorM] 1.26102967.5610210 0.03

amean (6 SEM) of the mutant frequencies for 4 independent experiments are shown. P-values were obtained for pairwise comparisons by the nonparametric Mann–
Whitney U test. The mutant frequency of the wild-type strain, NR10834 [pCA24N], is significantly different from those of the strains DmutY::bla [pCA24N] (P = 0.016),
DmutY::bla [pCnorM] (P = 0.009), mutM::Tn10 [pCnorM] (P = 0.014), mutM mutY [pCA24N] (P = 0.009) and mutM mutY [pCnorM] (P = 0.009).

doi:10.1371/journal.pgen.1000931.t004

Figure 3. Viability after H2O2 treatment. The data represent
survival percentages after 30 min of 50 mM H2O2 treatment. Data for
strains NR10831, NR10831DnorM, NR10831DmutT, and NR10831DsodB
harboring either the empty vector pCA24N (black) or the plasmid
expressing norM, pCNorM, (gray) are shown. Survival is represented as
the percentage of cfu after H2O2 treatment relative to before treatment.
The error bars indicate one standard error of the mean of four
independent replicates.
doi:10.1371/journal.pgen.1000931.g003

NorM Antimutator Effect
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Figure 4. ROS levels in E. coli wild-type and norM, mutT and sodB derivatives. Representative histograms plotting the spontaneous
fluorescence of 15,000 non-treated (A–D) and H2O2-treated (E–H) cells, revealed by DHR, as measured by flow cytometry. Cells containing either the
empty vector or the norM-containing plasmid are represented as red or black lines, respectively. A and E: wild-type strain (non treated and H2O2-
treated, respectively); B and F: norM-deficient strain; C and G: mutT-deficient strain; D and H: sodB-deficient strain.
doi:10.1371/journal.pgen.1000931.g004

NorM Antimutator Effect
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the original antimutator function. We chose deficiency in the GO-

repair system as a model. Our strategy was to look for genes

which, when over-expressed, rescue or reduce the mutT mutator

phenotype. Our results indicate that the expression of a pump

from the multidrug and toxin extrusion (MATE) family is able to

counteract the mutagenic effect of the lack of mutT, completely

restoring the basal levels of AT to CG transversions. Interestingly,

Yang et al [42] found that the overproduction of emrR, encoding a

negative regulator of the multidrug resistance pump EmrAB, led

to a mutator phenotype, suggesting a link between multidrug efflux

and mutagenesis.

NorM is the prototype of the MATE family of cation-coupled

transporters, which include many bacterial members [21].

Curiously, one of these members is E. coli DinF, which also seems

to be involved in the efflux of DNA damage-inducing compounds

(Guelfo, J.R. et al, unpublished data). Based on sequence

similarity, two human MATE transporter genes, hMATE1 and

hMATE2, have been described [43]. hMATE1 is primarily

expressed in the liver, skeletal muscle and the kidney, whereas

hMATE2 is expressed in testis. It is thought that mammalian

MATE transporters mediate the final step in the excretion of toxic

organic cations [43]. The existence of these NorM orthologues in

mammalian cells suggests that they might play a similar

antimutator role, protecting the cells from endogenous and

exogenous mutagenic metabolites.

Several lines of evidence strongly suggest that NorM extrudes

molecules that oxidize dG to 8-oxo-dG, when present in both the

DNA and the dNTP pool: (i) overexpression of norM is also able to

reduce the elevated rate of GC to TA transversions induced by the

lack of both MutM and MutY activities, which act on errors

produced when 8-oxo-dG is present in the DNA; (ii) there is a

decrease of intracellular ROS and carbonylated protein levels in

the mutT background; and (iii) there is significant protection of

mutT-deficient cells from H2O2-induced killing.

The fact that overexpression of NorM reduces mutagenesis in

MutM MutY-deficient cells (which do not have increased ROS

levels but rather decreased removal of 8-oxo-dG from DNA), but

not in the wild-type cells, is intriguing. An alternative hypothesis is

that in wild-type cells most spontaneous mutagenesis is not caused

by 8-oxo-dG, but is rather due to other problems and pathways.

Therefore, lowering ROS levels in the wild-type cells does not

affect those pathways or spontaneous mutant frequencies.

However, in MutM MutY-deficient cells, the mutagenesis caused

by 8-oxo-dG exceeds the levels from the normally main

spontaneous mutation pathways. Once this happens, either

because cells are mutM mutY or because they were treated with

H2O2, GO-mediated mutations dominate and these are reduced

by NorM.

Altogether our results suggest that NorM may act as a specific

backup mechanism able to alleviate both oxidative DNA damage

and mutagenesis when the GO system is impaired. The nature of

the oxidizing molecules putatively extruded by NorM remains

unknown. However, the apparent substrate specificity of NorM

provides a good starting point to understanding why GO-deficient

cells are more sensitive to H2O2-induced killing than those of the

wild-type.

Concerning the evolutionary aspect, the major goal of this work

is to demonstrate that a mutator phenotype can be reverted by

extragenic-based mutation. To our knowledge, this kind of

mutator-phenotype rescue has not been described before and

may provide an explanation as to how some naturally-occurring

hypermutator populations can avoid losing fitness by deleterious

load. This striking discovery suggests that the surprisingly high

proportion of E. coli mutators deficient in a repair pathway (up to

1%) in nature [6–8] could have been even higher, because some of

the mutator phenotypes may have been hidden by extragenic

‘‘compensation’’. In any case, irrespective of possible overproduc-

tion of NorM in nature, this overproduction has been necessary to

discover the antimutator and ROS-protective effect of NorM.

The over-expression of norM in bacteria has been associated

with multiple drug resistance [25,44]. Here we reveal that this

over-expression may confer several advantageous phenotypes

simultaneously, such as antibiotic resistance, protection against

ROS and antimutability.

Materials and Methods

Strains and constructions
The strains, phages and plasmids used in this study are listed in

Table 1. The strains with the F9pro-lac episomes NR10831

[F9CC101] and NR10834 [F9CC104] carry the lacZ marker on

these F9 episomes containing specific mutations that can revert

to Lac+ by only one defined mutational event [30,45]. These

strains were kindly provided by Dr. I. Fijalkowska (Institute

of Biochemistry and Biophysics, Warsaw, Poland). Strains

NR10831DnorM::Kan (GLF0), NR10831DmutT::Kan (GLF1)

and NR10831DsodB::Kan (GLF10) were constructed by P1

transduction of the alleles from strains BW25113DnorM::Kan

(JW1655), BW25113DmutT::Kan (JW0097) and BW25113DsodB::-

Kan (JW1648), respectively, obtained from the Keio collection,

NARA Institute (http://ecoli.aist-nara.ac.jp) [46]. Strains

NR10834 DmutM::bla (AmpR) and NR10834 mutY::miniTn10

(TetR) were constructed by P1 transduction from strains

BW853Dfpg::bla and CSH11 mutY::miniTn10 [47], respectively.

The vector used in this study was pCA24N, harboring a ColE1

replicon and a predicted copy number per cell of around 20 [26]

(Table1). The plasmids pCnorM and pCsodB contain the wild-

type norM and sodB genes, respectively, cloned in the vector

Figure 5. Protein carbonylation. Carbonylation is observed in the
wild-type and mutT-derivative strains containing either the empty
vector or the plasmid expressing norM, following treatment with 10mM
H2O2 for 15 min. A: Bar graph quantifying the protein carbonylation
(femtomoles of DNP) in cells containing the empty vector pCA24N
(black bars) or the norM-plasmid pCNorM (gray bars) in the wild-type
(left bars) and mutT strains (right bars). The data are the mean values
from four separate experiments and error bars represent one standard
error. B: Representative blot showing the accumulation of protein
carbonyl groups in H2O2 challenged cells.
doi:10.1371/journal.pgen.1000931.g005
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pCA24N. These genes are transcribed from the pT5/lac promoter,

which is repressed by the product of the lacI gene. Despite the

predicted strict repression, our data with GFP fusions indicate that

most genes cloned in this plasmid are transcribed, even in the

absence of IPTG (data not shown). Plasmids were obtained from

the Complete Set of E. coli K-12 Open Reading Frame Archive

(ASKA) library [26].

Media
All strains were grown routinely in Luria-Bertani (LB) [48]. The

arabinose papillation assay was carried out in tetrazolium

arabinose, which contains (per litre) tryptone (10 g), yeast extract

(1 g), NaCl (5 g), agar (16 g), arabinose (10 g) and tetrazolium

chloride (0.05 g). Lactose reversion and valine-resistance assays

were conducted in M9 minimal medium, as described below. For

M9 minimal medium (MM) preparation, M9 salts (Sigma) were

supplemented with thiamine (2.5 mg/l), MgSO4 (1 mM) and

amino acids (0.04 mg/ml), when required. Glucose or lactose were

used as carbon source at 2 mg/ml final concentration. Solid and

soft medium contained 15 g/l and 7 g/l of agar, respectively.

Valine resistance assays were performed in glucose MM and the

plates were supplemented with valine (0.04 mg/ml). Lac reversion

assays were carried out in MM. Inocula were grown with glucose

as carbon source and the plates were supplemented with lactose as

unique carbon source according to Miller [48]. The scavenger

strain MEC222 [49], harboring a truncated lacZ allele (lacZDT::cat)

with the C-terminal region replaced by the cat cassette (Table 1),

was added to the lactose agar MM before being spread (40 ml of a

stationary-phase culture per litre of media, approximately 107

cells/plate). Plates were stored overnight at room temperature.

The desired cultures for Lac reversion assays were spread in a M9

top-agar layer, without carbon source and supplemented with 5-

bromo-4-chloro-3-indolyl-3-D-galactoside (X-Gal), as described by

Miller [48].

When required, antibiotics were added to the media: kanamycin

(Km) 50 mg/ml, chloramphenicol (Cm) 40 mg/ml, ampicillin

(Amp) 100 mg/ml and tetracycline (Tet) 20 mg/ml.

DNA manipulations and phages handling
DNA manipulations have been described previously [50].

Plasmid DNA was routinely extracted by alkaline lysis and

transformed into E. coli strains by the CaCl2 method [50].

Procedures for handling bacteriophages Mu and P1 have been

described [48].

Antimutator screen
MudII4042 was used to construct an in vivo random library of E.

coli chromosomal fragments into a multicopy plasmid [51].

MudII4042 is a derivative of the Mu bacteriophage that contains

the P15A replication origin and the chloramphenicol-resistance

gene. This mini-Mu element can transpose at high frequency

when de-repressed and it can be replicated in a lytic growth when

present with a helper Mu cts phage. The heat-induced lysate of a

MudII4042 Mu cts strain, Pop3001.6 in this case, produces a

variety of packaged DNA. Sequences flanked by two copies of this

mini-Mu can be packaged along with them. After infection,

homologous recombination can occur between the mini-Mu

sequences, resulting in the formation of plasmids carrying the

transduced sequences. This library was transduced into the GLF1

(DmutT) strain (Table 1) and plated onto arabinose-tetrazolium

agar plates with chloramphenicol. The hypermutable DmutT strain

produces red colonies with a high number of white papillae as a

result of the spontaneous reversion of Ara2 to Ara+. The plates

were incubated for a total of 7 days and examined at daily intervals

for colonies with decreased reversion to Ara+, as visualized by the

number of white papillae appearing per colony. About 1,500

clones were analyzed for the Ara2RAra+ reversion rate. The

clones with an evident decrease in this rate (low number of Ara+

papillae) were selected, their plasmids purified, retransformed into

the original DmutT strain, retested and preserved for further

analysis. The plasmid from one of them, presenting a papillation

pattern similar to the wild-type (mutT+) strain, was sequenced and

analyzed in detail. The sequences at the ends of the cloned

fragments were analyzed using BLAST searches, thereby identi-

fying the region cloned in the mini-Mu-derived plasmid. This

plasmid contained several genes, some of which were considered

by us as better candidates to reduce mutation rate. To find the

gene responsible for this decreased papillation we used the

appropriate plasmids, pCsodB and pCnorM, from the Complete

Set of E. coli K-12 Open Reading Frame Archive (ASKA) library.

This library contains each E. coli open reading frame cloned into

the pCA24N vector [26]. Plasmids harboring the candidate genes

were taken from this collection and transformed into the host

strain GLF1 (Table 1). All transformants were analyzed by Lac+

reversion frequency.

Mutation rate and mutant frequency measurements
To calculate mutation rates pre-inocula were initiated in tubes

with 3 ml of M9 glucose directly from frozen samples. The pre-

inocula were grown at 37uC overnight to stationary phase. From

each culture less than 105 cells were inoculated in 100 ml of M9

glucose and divided into 10 independent cultures, 10 ml each and

less than 104 cells/culture. These inocula were grown for

24 hours. Appropriate dilutions of the saturated cultures were

plated on selective media valine-MM or Lac-X-gal-MM to

determine the number of valine resistant mutants or Lac+ mutants,

respectively. LB plates were used to determine the total colony-

forming units (cfu). Mutation rates (number of mutants per cell per

division) were estimated by the method described [52]. To

calculate mutant frequencies (number of mutants per total cell

count), the mean number of mutants per millilitre was determined

and divided by the average number of cfu per ml. Experiments

were repeated at least three times.

Flow cytometry
Flow cytometry analysis was performed using the H2O2-

activated fluorescent dye Dihydrorhodamine 123 (DHR) (Enzo

Life Sciences). Wild-type and mutant derivatives were grown in

M9 at 37uC, as described above, and then each one was split into

two cultures (one control and one treated with 50 mM H2O2) and

incubated for 30 min. Cells (0.5 ml/culture) were pelleted by

centrifugation, resuspended in saline containing 15 mM DHR, and

then incubated for 15 min and diluted 1:50 in phosphate-buffered

saline. The fluorescence levels (excitation 488 nm and emission

530 nm) of 15,000 cells were then counted for each strain under

each condition using a FACSCalibur cytometer (BD Biosciences).

WinMDI (The Scripps Institute, Purdue University, USA) was

used for data analysis and generation of histograms.

Determination of the cellular level of protein
carbonylation

Wild-type and mutant derivatives were grown, as described

above, and then each was split into two cultures (one control and

one treated with 50 mM H2O2) and incubated for 30 min. After

the time indicated, peroxide was removed by centrifugation.

Subsequently, the cells were washed and resuspended in M9

medium preheated to 37uC and further incubated. Cells were

NorM Antimutator Effect
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lysed as follows: 1 ml of the culture was washed with 50 mM Tris

buffer (pH 7.5) and centrifuged for 10 min at 14,000 rpm. The

pellet was re-suspended in 150 ml lysis buffer containing 0.5 mg/

ml lysosyme, 20 mg/ml DNAse, 50 mg/ml RNAse, 1 mM EDTA,

and 10 mM Tris (pH 8). 15ml of 10% SDS solution was added and

the cells were incubated at 100uC for 5 min. In order to examine

the level of protein carbonylation in these lysates, we used the

Chemicon OxyBlot kit (Chemicon) to derivatize the carbonyl

groups in the protein side chains to 2,4-dinitrophenylhydrazone

(DNP-hydrazone) by reaction with 2,4-dinitrophenylhydrazine.

These DNP derivative crude protein extracts were dot blotted onto

a nitrocellulose membrane, which was incubated with primary

antibody specific to the DNP moiety of the proteins, and

subsequently incubated with secondary (goat anti-rabbit) horse-

radish peroxidase-antibody conjugate directed against the primary

antibody. Carbonylation was observed by the ECL, enhanced

chemiluminiscence, reagent (Amersham Pharmacia Biotec). The

intensity of each dot was quantified by densitometry analysis using

the Image Master VPS-CL software. The intensity of each dot was

normalized to equal levels of protein, which were determined

using Bradford reagent (Bio-Rad) and expressed in femtomoles of

DNP, according to the control of the OxyBlot kit.

Estimation of H2O2-induced cell death
The strains were grown at 37uC in M9 supplemented with

appropriate antibiotics to mid-exponential phase and washed with

0.9% NaCl. The cells were treated with 50 mM H2O2 for 30 min

at 37uC and washed with 1 ml of 0.9% NaCl. A non-treated

control was also included. Appropriate dilutions were immediately

plated onto LB plates and incubated overnight at 37uC to

determine viability. Experiments consisted of five independent

cultures for each strain. Cell survival was calculated by comparing

the number of cfus of treated cells to those of the cells not treated.

Statistical analysis
The statistical signification for pairwise comparisons was

estimated by the Mann-Whitney U test. P values#0.05 were

considered to be statistically significant.
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