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Abstract: This paper presents an open-source 

application for evaluating competing clinical trial 

(CT) designs using simulations. The S4 system of 

classes and methods is utilized. Using object-oriented 

programming provides extensibility through careful, 

clear interface specification; using R, an open-source 

widely-used statistical language, makes the 

application extendible by the people who design CTs: 

biostatisticians. Four key classes define the 

specifications of the population models, CT designs, 

outcome models and evaluation criteria. Five key 

methods define the interfaces for generating patient 

baseline characteristics, stopping rule, assigning 

treatment, generating patient outcomes and 

calculating the criteria. Documentation of their 

connections with the user input screens, with the 

central simulation loop, and with each other faciliates 

the extensibility. New subclasses and instances of 

existing classes meeting these interfaces can integrate 

immediately into the application. To illustrate the 

application, we evaluate the effect of patient 

pharmacokinetic heterogeneity on the performance of 

a common Phase I “3+3” design. 

 

1. Introduction 
In the past few decades, CT designers have proposed 

hundreds of designs for trials at different stages of 

drug development, ranging from preclinical to Phase 

IV trials. This abundance of designs mandates a 

question for the investigators and statisticians 

planning a trial: what design would be the “best” for 

their trial? Determining the answer must begin with 

careful consideration of the criterion by which to 

judge designs, which should reflect the goals of the 

trial.  

 CT simulation is used by academic research 

centers and pharmaceutical companies to improve the 

efficiency and informativeness of drug development 

[1-4]. Sophisticated commercial software for trial 

simulations is available for those with resources to 

cover fees and with design challenges matching the 

software’s capabilities. Academic research centers 

usually use locally developed software mainly due to 

cost and flexibility considerations. Cost issues are 

obvious. Flexibility is needed primarily to explore 

novel designs and novel evaluation criteria. This 

local software development focuses on answering 

specific research questions in compressed time 

frames, and is not routinely sharable. Inspired by the 

success of open-source software development 

projects, we are building an open-source simulation 

experiment platform with the intention of harnessing 

the power of distributed peer review and transparency 

of process. Techniques in S4 classes and methods [5] 

are utilized to make our package trustworthy, clear 

and extendible. 

In the spirit of personalized therapy, our 

simulation experiment platform acknowledges 

differences among study participants in three aspects. 

The population model for patients’ baseline 

characteristics may be a mixture model (for example, 

reflecting pharmacogenetic heterogeneity). The 

outcome model may depend on patient-specific 

characteristics, and trial designs may allow treatment 

assignments to depend on measured or assayed 

patient baseline characteristics (for example, clinical, 

pathological, physiologic, genetic, or 

pharmacokinetic characteristic).  

Our vision for this simulation experiment 

platform is to provide a framework in which new trial 

designs, new models, and new evaluation criteria are 

easily accommodated. The scope of this framework is 

reviewed in the discussion section. In the following 

sections, we will describe the framework and its 

implementation using S4 classes and methods in 

detail, and to illustrate the application, we evaluate 

the effect of patient pharmacokinetic heterogeneity 

on the performance of the standard Phase I “3+3” 

design without dose de-escalation. This example 

introduces a new evaluation criterion for Phase I 

trials mapping from “recommended dose” to the 

chance of future success in the drug development.  

 

2. CT Simulation Experiment Framework 

To begin a CT simulation experiment, besides the 

number of simulations of a CT, the experimenter 

needs to provide specifications for four major 

components: population models, CT designs, 

outcome models and evaluation criteria.  

The population model specification contains all the 

necessary information to obtain the values for a 

participant’s baseline characteristics which may 

affect either the treatment assignment decision or the 

patient’s outcome. The design specification contains 

all design parameter values for a specific design. The 

outcome model specification provides the model 
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parameter values for a specific outcome model which 

generates each participant’s clinical outcome based 

on his/her baseline characteristics and treatment 

assignments. The evaluation specification includes 

parameter values if any for a specific evaluation 

criterion.  

An experiment consists of three loops over the 

population models, designs, and outcome models of 

interest. Within these outermost loops is a loop over 

CT simulations, and within this loop is the loop over 

patients simulated for a single CT simulation. The 

results are evaluated by the specified criteria at the 

end of simulations under a particular design, 

population model and outcome model. 
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Figure 2.1 Central Simulation Loop 

We display the central simulation loop in Figure 2.1. 

The solid black arrows trace the overall simulation 

flow. The dashed blue arrows show how the 

specifications are associated with the actions on the 

flow. The dotted red and green arrows show 

exchange of data between actions and the loop’s 

temporary data repository (which is not intended to 

represent a CT database). As the simulation starts, a 

new patient (or in some cases n patients as a group) 

enters the CT. The loop generates this new patient’s 

baseline characteristics and then assigns treatments 

based on the design, new patient’s baseline 

characteristics, and (if applicable) accumulated data 

from previous patients. A patient’s outcomes are 

generated from his/her baseline characteristics and 

treatment assignments. After the loop simulates 

outcome data for this new patient, it applies the 

stopping rule to decide whether to terminate the 

simulation or continue the simulation by enrolling 

another new patient. The simulation continues until 

the stopping rule concludes that it must terminate. 
 

3. Framework Implementation 

3.1 S4 Classes and Methods 

R is a language and environment for statistical 

computing and graphics. The R language has 

functional-programming semantics, whereas it 

supports the object-oriented programming (OOP) 

style.  R has two different OOP systems, known as 

S3 and S4. Compared to S3, S4 is more formal, 

rigorous and closer to the “traditional” OOP other 

languages like Java and Python follow [5].  The main 

difference between S4 and “traditional” OOP is that 

the method definitions in the S4 system do not reside 

in a class definition and methods sharing common 

conceptual properties and thus the same name are 

stored within the generic function according to their 

signature, a named list of classes with the names 

corresponding to the formal arguments of the 

function. With the promise of making software 

trustworthy, clear and extendible, S4 classes and 

methods are highly encouraged in the R software 

development [5]. 

  The classes and methods discussed next are the 

ones participating in the central simulation loop as 

seen in the Figure 2.1, and the ones for evaluation. 

For better illustration, we describe methods under the 

classes they are closely associated with. We 

summarize the key classes along with their 

definitions in the Table 3.1. 

 

3.1.1 Class: “DesignSpecifier” 

“DesignSpecifier” is a class union with member 

classes (a special case of subclasses) representing the 

objects of specification for a specific CT design. 

These classes contain slots for the design parameters. 

For example, a class “APlusBNoDeEscSpecifier” 

represents objects of specification for A+B without 

dose de-escalation design described in Lin and Shih’s 

paper [6], and it contains slots for tier doses, the 

initial cohort size (A), the additional cohort size (B) 

and several slots (C, D, E) for the dose-limiting 

toxicity (DLT) counts that are associated with 

stopping and dose assignments for the next group of 

patients. 

 Two methods are closely associated with the 

subclasses of “DesignSpecifier”: “applyStoppingRule” 

and “assignTrt”, which both have a subclass of 

“DesignSpecifier” and a list representing 

accumulated CT data in signature. 

“applyStoppingRule” produces a list with three 

elements: a Boolean decision on whether to stop the 

trial, conclusions if the trial is to stop and the number 

of additional patients to enroll as a group if the trial is 

to continue. The “assignTrt” method has one 

additional argument corresponding to current patient 

baseline characteristics and this method generates 

treatment assignments for the current patient. 
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3.1.2 Class: “BaseCharModelSpecifier” 

“BaseCharModelSpecifier” is a class that represents 

objects of model specification for generating a 

specific baseline characteristic. It contains slots for 

this baseline characteristic name, the names of other 

baseline characteristics which are involved with the 

generation of this baseline characteristic in the model, 

and a string of user-defined R generating function by 

which we assume nothing about the model for 

generating this baseline characteristic. 

 The “generateBaseChar” method has two 

arguments corresponding to an instance of 

“BaseCharModelSpecifier” and a list of values for 

other baseline characteristics that are involved with 

the generation. This method generates a single 

baseline characteristic for a patient. 

 

3.1.3 Class: “PopModelSpecifier” 

“PopModelSpecifier” is a class that represents 

objects of a population model specification. It has a 

slot to hold a list of “BaseCharModelSpecifier” 

objects. 

 The “generateBaseChars” method has only one 

argument corresponding to an instance of 

“PopModelSpecifier”. When generating a new 

selected patient’s baseline characteristics, each of the 

“BaseCharModelSpecifier” objects is utilized by the 

method “generateBaseChar” in turn. We facilitate 

expression of the total joint distribution of 

characteristics by means of sequential conditional 

distributions. 

 

3.1.4 Class: “OutcomeModelSpecifier” 

“OutcomeModelSpecifier” is a class union with 

member classes representing objects of specification 

for a specific outcome model. The member classes 

contain slots for outcome model parameters if any 

and one auxiliary slot if otherwise (S4 regards a class 

with no slots as a virtual class and does not allow for 

the instantiation from a virtual class). For example, 

class “ToxDoseThresholdModelSpecifier” is one of 

the member classes of “OutcomeModelSpecifier”, 

which represents objects of specification for the 

toxicity dose threshold model. This model can be 

described using the following equation: 

if 

if 

T

T

T z
y

t z
  

where y  denotes the outcome, T denotes toxicity 

response, t denotes non-toxicity response, z refers to 

dose assignment, T  is the dose threshold for toxicity 

response respectively. No parameters are in this 

model. 

 The “generateOutcomes” method has arguments 

corresponding to an instance of member class of 

“OutcomeModelSpecifier”, current patient’s baseline 

characteristics and treatment assignments. It produces 

outcomes for a patient. 

 

3.1.5 Class: “EvalSpecifier” 

“EvalSpecifier” is a class union with member classes 

either directly representing or being the superclasses 

of the classes that represent the objects of 

specification for a specific evaluation criterion. The 

member classes or subclasses of member classes have 

slots for the evaluation criterion parameters if any 

and one auxiliary slot if otherwise. For example, 

“EvalNPatAtTierDose” class represents objects of 

specification for evaluating the number of patients at 

some tier dose. This class contains one slot for this 

tier dose. 

 The “evaluateDesign” method utilizes 

information from an instance of a member class of 

“EvalSpecifier”, simulated data and conclusions from 

simulated CT to produce the result from a single 

evaluation criterion. 

 
Table 3.1 Class Definition 

 

3.2 Interface: requirements and provisions 

Extensibility of our platform requires that a user, with 

a novel design, novel model (population or outcome) 

or novel evaluation criteria challenge, can develop 

new subclasses of the key classes and their associated 

methods, assuring that they will work together. The 

classes and methods described in the previous section 

pass information packets whose exact structure will 

vary in different experiments. We describe below two 

examples that show the “requirements and provisions” 

relationship among classes and methods. 

 Example 1: The “applyStoppingRule” method 

associated with the “APlusBNoDeEscSpecifier” class 

requires toxicity outcomes for the last A or A+B 

patients, experiment will be halted with an 
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appropriate error message if the “generateOutcomes” 

method fails to provide toxicity outcome. 

 Example 2: The “generateOutcomes” method 

associated with “ToxDoseThresholdModelSpecifier” 

class requires toxicity dose threshold from the 

“generateBaseChars” method, error will come out if 

the “generateBaseChars” method fails to provide the 

toxicity dose threshold.  

 Thus, a central component of the open-source 

strategy is to document these requirements and 

provisions for each class and method, to facilitate and 

encourage sharing of innovation. 

 

4. Example 

4.1 Objective 

In this experiment, we are trying to evaluate the 

effect of patient pharmacokinetic heterogeneity on 

the performance of the standard Phase I “3+3” design 

without dose de-escalation. We represent 

pharmacokinetic heterogeneity in terms of bimodality 

of the distribution for toxicity dose threshold. The 

parameter values in the population model are selected 

only for illustration purposes. 

 

4.2 Experiment Set-up 

Design: Standard Phase I “3+3” design without dose 

de-escalation, with tier doses following the modified 

Fibonacci sequence:  3, 6, 10, 13, 15. 

Population Model 1 (Unimodal): The one baseline 

characteristic produced is a toxicity dose threshold, 

which follows a lognormal distribution whose mean 

is 13, the 4
th

 dose: 
2 2log ~ ( log(13), 0.1 )T N . 

Population Model 2 (Mixture): The previous 

population model 1 is mixed with a small 

subpopulation at much higher risk of toxicity in the 

ratio 0.9 to 0.1. The toxicity dose threshold in this 

subpopulation follows a lognormal distribution:   
2 2log ~ ( log(3), 0.1 )T N  

Outcome Model: The outcome has one Boolean 

component. Dose-limiting toxicity (DLT) occurs if 

the dose exceeds the patient’s toxicity threshold.  

Evaluation Criteria:  

 Number of patients enrolled in the CT 

 Number of patients experiencing DLT 

 Probability of success in Phase II trial at 

recommended dose (RD), where the success is 

defined by concluding that the drug is worthy for 

further studies in the Phase II trial 

The future Phase II trial used to represent a medical 

research beneficial outcome refers to a trial using a 

two-stage Bryant and Day design [7], where both 

toxicity and efficacy outcomes are considered. The 

design parameters are [8]: for the first stage, the 

sample size is 19 patients, the cut-off values for 

efficacy and non-toxicity outcomes are 5 and 11 

respectively; for both stages together, the sample size 

is 33 patients, the cut-off values for efficacy and non-

toxicity outcomes are 12 and 22 respectively. The 

underlying model for dose thresholds for toxicity and 

efficacy responses for Phase II patients are assumed 

to follow bi-lognormal distribution:  

log(13) 1 0.4
(log , log ) ~ ( , )

log(10) 0.4 4
T E N

We simulate 1000 replications of Phase I trials as 

described above under two scenarios where scenario 

1 uses unimodal population model and scenario 2 

uses mixture population model. 

 
4.3 Results 

 
Table 4.1 Number of Patients Enrolled by Scenarios  

 
Table 4.2 Number of Patients Experiencing DLT by 

Scenarios 

 
Table 4.3 RD by Scenarios 

 
Table 4.4 Probability of Success at RD  

The above Tables 4.1-4.3 list the distribution of 

number of patients enrolled, number of patients 

experiencing DLT, and RDs under two scenarios 

respectively. RD is set to be zero when lower dose 

than starting dose needs to be claimed as RD. The 

average number of patients enrolled is 13.7 under 

scenario 1, and 14.0 under scenario 2. The average 

number of patients experiencing DLT is 2.5 under 

scenario 1, and 2.9 under scenario 2. The addition of 

a small subpopulation of highly toxicity sensitive 

patients causes the Phase I trials to recommend a 

lower dose more frequently. Table 4.4 shows the 

probability of a successful phase II trial at each RD. 

Given our specified Phase II design and dose 

thresholds distribution for the patients in the Phase II 

trials, the dose of 6 is associated with the highest 

probability of a successful Phase II trial.  

Summarizing across the trials, the average 

probabilities of success in phase II trial for the two 

scenarios are 13% under scenario 1, and 16% under 

scenario 2. We do not observe any obvious different 
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results between two scenarios based on the specified 

evaluation criteria in this example. Therefore, this 

example doesn’t provide evidence that patient 

pharmacokinetic heterogeneity affect the 

performance of the standard Phase I “3+3” design 

without dose de-escalation. 

 

5. Discussion 

The framework presented here covers most CT 

designs. There are some exceptions. Our framework 

cannot cover CTs where treatment assignments may 

occur more than once to a patient, for example, in 

studies with re-randomization of a subset depending 

on intermediate clinical outcomes. As for the other 

components, there are no obvious limitations beyond 

the willingness of contributors to construct subclasses 

reflecting the models and criteria they prefer.  

 CT designs should consider both the potential 

risks/benefits for the patients on the trial and the 

potential scientific/medical value of the knowledge to 

be gained. In our example, we assessed the scientific 

or medical value (
SU ) by the probability of success 

of a subsequent Phase II trial at the RD produced 

from the Phase I trial. Since a Phase I trial is often a 

first-in-human trial, the ethical concerns are critical. 

Operating characteristics which reflect the effects on 

the enrolled patients focus primarily on tabulations of 

adverse events [9, 10]. We could and probably should 

consider the balance among various societal and 

patient utilities and disutilities. This simulation 

experiment platform provides a way to do that. For 

example, if the patient has two possible outcomes, T 

(toxicity) and t (non-toxicity), the patient utility can 

be represented by: 

1

( )
i

n t

P i

i h T

U u h  

where ( )iu h is the utility for the outcome 
ih . Total 

utility is measured by the sum of patient utility, 

societal utility and total sampling cost: 

Tot P P S S C CU U U nu  

where 
Cu is the cost per patient, and the ’s are 

multipliers which convert among the different kinds 

of utilities.  

 Commercial simulation platforms for evaluating 

CT designs are out of reach for many academic 

centers conducting clinical research.  Academic 

centers also have innovative CT methodology 

researchers facing an extremely varied array of 

design challenges. To disseminate the innovation, 

expand design capabilities and enhance efficiency, an 

open source solution is urged. 

 Future development of this system will include 

publishing it as an open-source R package, setting up 

an archive site for users to contribute new subclasses 

and corresponding methods (new designs, population 

models, outcome models, and criteria), a user-

friendly GUI, user evaluation by CT designers. 

Complex factorial evaluations will be 

computationally time-consuming. Parallelization for 

these demanding tasks is possible, for example, 

several R packages provide support for parallel 

processing [11].  
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