
An R Package for Simulation Experiments Evaluating Clinical Trial Designs

Yuanyuan Wang
1
and Roger Day

1, 2

1
Department of Biostatistics

2
Department of Biomedical Informatics

University of Pittsburgh, Pittsburgh, PA 15213, USA

Abstract: This paper presents an open-source

application for evaluating competing clinical trial

(CT) designs using simulations. The S4 system of

classes and methods is utilized. Using object-oriented

programming provides extensibility through careful,

clear interface specification; using R, an open-source

widely-used statistical language, makes the

application extendible by the people who design CTs:

biostatisticians. Four key classes define the

specifications of the population models, CT designs,

outcome models and evaluation criteria. Five key

methods define the interfaces for generating patient

baseline characteristics, stopping rule, assigning

treatment, generating patient outcomes and

calculating the criteria. Documentation of their

connections with the user input screens, with the

central simulation loop, and with each other faciliates

the extensibility. New subclasses and instances of

existing classes meeting these interfaces can integrate

immediately into the application. To illustrate the

application, we evaluate the effect of patient

pharmacokinetic heterogeneity on the performance of

a common Phase I “3+3” design.

1. Introduction
In the past few decades, CT designers have proposed

hundreds of designs for trials at different stages of

drug development, ranging from preclinical to Phase

IV trials. This abundance of designs mandates a

question for the investigators and statisticians

planning a trial: what design would be the “best” for

their trial? Determining the answer must begin with

careful consideration of the criterion by which to

judge designs, which should reflect the goals of the

trial.

 CT simulation is used by academic research

centers and pharmaceutical companies to improve the

efficiency and informativeness of drug development

[1-4]. Sophisticated commercial software for trial

simulations is available for those with resources to

cover fees and with design challenges matching the

software’s capabilities. Academic research centers

usually use locally developed software mainly due to

cost and flexibility considerations. Cost issues are

obvious. Flexibility is needed primarily to explore

novel designs and novel evaluation criteria. This

local software development focuses on answering

specific research questions in compressed time

frames, and is not routinely sharable. Inspired by the

success of open-source software development

projects, we are building an open-source simulation

experiment platform with the intention of harnessing

the power of distributed peer review and transparency

of process. Techniques in S4 classes and methods [5]

are utilized to make our package trustworthy, clear

and extendible.

In the spirit of personalized therapy, our

simulation experiment platform acknowledges

differences among study participants in three aspects.

The population model for patients’ baseline

characteristics may be a mixture model (for example,

reflecting pharmacogenetic heterogeneity). The

outcome model may depend on patient-specific

characteristics, and trial designs may allow treatment

assignments to depend on measured or assayed

patient baseline characteristics (for example, clinical,

pathological, physiologic, genetic, or

pharmacokinetic characteristic).

Our vision for this simulation experiment

platform is to provide a framework in which new trial

designs, new models, and new evaluation criteria are

easily accommodated. The scope of this framework is

reviewed in the discussion section. In the following

sections, we will describe the framework and its

implementation using S4 classes and methods in

detail, and to illustrate the application, we evaluate

the effect of patient pharmacokinetic heterogeneity

on the performance of the standard Phase I “3+3”

design without dose de-escalation. This example

introduces a new evaluation criterion for Phase I

trials mapping from “recommended dose” to the

chance of future success in the drug development.

2. CT Simulation Experiment Framework

To begin a CT simulation experiment, besides the

number of simulations of a CT, the experimenter

needs to provide specifications for four major

components: population models, CT designs,

outcome models and evaluation criteria.

The population model specification contains all the

necessary information to obtain the values for a

participant’s baseline characteristics which may

affect either the treatment assignment decision or the

patient’s outcome. The design specification contains

all design parameter values for a specific design. The

outcome model specification provides the model

61

parameter values for a specific outcome model which

generates each participant’s clinical outcome based

on his/her baseline characteristics and treatment

assignments. The evaluation specification includes

parameter values if any for a specific evaluation

criterion.

An experiment consists of three loops over the

population models, designs, and outcome models of

interest. Within these outermost loops is a loop over

CT simulations, and within this loop is the loop over

patients simulated for a single CT simulation. The

results are evaluated by the specified criteria at the

end of simulations under a particular design,

population model and outcome model.

Continue?
Terminate

Simulation!

Generate Patient

Baseline

Charatceristics

Assign

Treatments

Generate

Patient

Outcomes

Data

Design

Specification

Population

Model

Specification

Design

Specification

Outcome Model

Specification

Retrieve data

Feed

 Treatment

Assignments

Retrieve data

Feed

Patient

Outcomes

Start

Simulation!

Feed

Baseline

characteristics

Retrieve data

Apply

Stopping Rule

Yes

No

Figure 2.1 Central Simulation Loop

We display the central simulation loop in Figure 2.1.

The solid black arrows trace the overall simulation

flow. The dashed blue arrows show how the

specifications are associated with the actions on the

flow. The dotted red and green arrows show

exchange of data between actions and the loop’s

temporary data repository (which is not intended to

represent a CT database). As the simulation starts, a

new patient (or in some cases n patients as a group)

enters the CT. The loop generates this new patient’s

baseline characteristics and then assigns treatments

based on the design, new patient’s baseline

characteristics, and (if applicable) accumulated data

from previous patients. A patient’s outcomes are

generated from his/her baseline characteristics and

treatment assignments. After the loop simulates

outcome data for this new patient, it applies the

stopping rule to decide whether to terminate the

simulation or continue the simulation by enrolling

another new patient. The simulation continues until

the stopping rule concludes that it must terminate.

3. Framework Implementation

3.1 S4 Classes and Methods

R is a language and environment for statistical

computing and graphics. The R language has

functional-programming semantics, whereas it

supports the object-oriented programming (OOP)

style. R has two different OOP systems, known as

S3 and S4. Compared to S3, S4 is more formal,

rigorous and closer to the “traditional” OOP other

languages like Java and Python follow [5]. The main

difference between S4 and “traditional” OOP is that

the method definitions in the S4 system do not reside

in a class definition and methods sharing common

conceptual properties and thus the same name are

stored within the generic function according to their

signature, a named list of classes with the names

corresponding to the formal arguments of the

function. With the promise of making software

trustworthy, clear and extendible, S4 classes and

methods are highly encouraged in the R software

development [5].

 The classes and methods discussed next are the

ones participating in the central simulation loop as

seen in the Figure 2.1, and the ones for evaluation.

For better illustration, we describe methods under the

classes they are closely associated with. We

summarize the key classes along with their

definitions in the Table 3.1.

3.1.1 Class: “DesignSpecifier”

“DesignSpecifier” is a class union with member

classes (a special case of subclasses) representing the

objects of specification for a specific CT design.

These classes contain slots for the design parameters.

For example, a class “APlusBNoDeEscSpecifier”

represents objects of specification for A+B without

dose de-escalation design described in Lin and Shih’s

paper [6], and it contains slots for tier doses, the

initial cohort size (A), the additional cohort size (B)

and several slots (C, D, E) for the dose-limiting

toxicity (DLT) counts that are associated with

stopping and dose assignments for the next group of

patients.

 Two methods are closely associated with the

subclasses of “DesignSpecifier”: “applyStoppingRule”

and “assignTrt”, which both have a subclass of

“DesignSpecifier” and a list representing

accumulated CT data in signature.

“applyStoppingRule” produces a list with three

elements: a Boolean decision on whether to stop the

trial, conclusions if the trial is to stop and the number

of additional patients to enroll as a group if the trial is

to continue. The “assignTrt” method has one

additional argument corresponding to current patient

baseline characteristics and this method generates

treatment assignments for the current patient.

62

3.1.2 Class: “BaseCharModelSpecifier”

“BaseCharModelSpecifier” is a class that represents

objects of model specification for generating a

specific baseline characteristic. It contains slots for

this baseline characteristic name, the names of other

baseline characteristics which are involved with the

generation of this baseline characteristic in the model,

and a string of user-defined R generating function by

which we assume nothing about the model for

generating this baseline characteristic.

 The “generateBaseChar” method has two

arguments corresponding to an instance of

“BaseCharModelSpecifier” and a list of values for

other baseline characteristics that are involved with

the generation. This method generates a single

baseline characteristic for a patient.

3.1.3 Class: “PopModelSpecifier”

“PopModelSpecifier” is a class that represents

objects of a population model specification. It has a

slot to hold a list of “BaseCharModelSpecifier”

objects.

 The “generateBaseChars” method has only one

argument corresponding to an instance of

“PopModelSpecifier”. When generating a new

selected patient’s baseline characteristics, each of the

“BaseCharModelSpecifier” objects is utilized by the

method “generateBaseChar” in turn. We facilitate

expression of the total joint distribution of

characteristics by means of sequential conditional

distributions.

3.1.4 Class: “OutcomeModelSpecifier”

“OutcomeModelSpecifier” is a class union with

member classes representing objects of specification

for a specific outcome model. The member classes

contain slots for outcome model parameters if any

and one auxiliary slot if otherwise (S4 regards a class

with no slots as a virtual class and does not allow for

the instantiation from a virtual class). For example,

class “ToxDoseThresholdModelSpecifier” is one of

the member classes of “OutcomeModelSpecifier”,

which represents objects of specification for the

toxicity dose threshold model. This model can be

described using the following equation:

if

if

T

T

T z
y

t z

where y denotes the outcome, T denotes toxicity

response, t denotes non-toxicity response, z refers to

dose assignment, T is the dose threshold for toxicity

response respectively. No parameters are in this

model.

 The “generateOutcomes” method has arguments

corresponding to an instance of member class of

“OutcomeModelSpecifier”, current patient’s baseline

characteristics and treatment assignments. It produces

outcomes for a patient.

3.1.5 Class: “EvalSpecifier”

“EvalSpecifier” is a class union with member classes

either directly representing or being the superclasses

of the classes that represent the objects of

specification for a specific evaluation criterion. The

member classes or subclasses of member classes have

slots for the evaluation criterion parameters if any

and one auxiliary slot if otherwise. For example,

“EvalNPatAtTierDose” class represents objects of

specification for evaluating the number of patients at

some tier dose. This class contains one slot for this

tier dose.

 The “evaluateDesign” method utilizes

information from an instance of a member class of

“EvalSpecifier”, simulated data and conclusions from

simulated CT to produce the result from a single

evaluation criterion.

Table 3.1 Class Definition

3.2 Interface: requirements and provisions

Extensibility of our platform requires that a user, with

a novel design, novel model (population or outcome)

or novel evaluation criteria challenge, can develop

new subclasses of the key classes and their associated

methods, assuring that they will work together. The

classes and methods described in the previous section

pass information packets whose exact structure will

vary in different experiments. We describe below two

examples that show the “requirements and provisions”

relationship among classes and methods.

 Example 1: The “applyStoppingRule” method

associated with the “APlusBNoDeEscSpecifier” class

requires toxicity outcomes for the last A or A+B

patients, experiment will be halted with an

63

appropriate error message if the “generateOutcomes”

method fails to provide toxicity outcome.

 Example 2: The “generateOutcomes” method

associated with “ToxDoseThresholdModelSpecifier”

class requires toxicity dose threshold from the

“generateBaseChars” method, error will come out if

the “generateBaseChars” method fails to provide the

toxicity dose threshold.

 Thus, a central component of the open-source

strategy is to document these requirements and

provisions for each class and method, to facilitate and

encourage sharing of innovation.

4. Example

4.1 Objective

In this experiment, we are trying to evaluate the

effect of patient pharmacokinetic heterogeneity on

the performance of the standard Phase I “3+3” design

without dose de-escalation. We represent

pharmacokinetic heterogeneity in terms of bimodality

of the distribution for toxicity dose threshold. The

parameter values in the population model are selected

only for illustration purposes.

4.2 Experiment Set-up

Design: Standard Phase I “3+3” design without dose

de-escalation, with tier doses following the modified

Fibonacci sequence: 3, 6, 10, 13, 15.

Population Model 1 (Unimodal): The one baseline

characteristic produced is a toxicity dose threshold,

which follows a lognormal distribution whose mean

is 13, the 4
th

 dose:
2 2log ~ (log(13), 0.1)T N .

Population Model 2 (Mixture): The previous

population model 1 is mixed with a small

subpopulation at much higher risk of toxicity in the

ratio 0.9 to 0.1. The toxicity dose threshold in this

subpopulation follows a lognormal distribution:
2 2log ~ (log(3), 0.1)T N

Outcome Model: The outcome has one Boolean

component. Dose-limiting toxicity (DLT) occurs if

the dose exceeds the patient’s toxicity threshold.

Evaluation Criteria:

 Number of patients enrolled in the CT

 Number of patients experiencing DLT

 Probability of success in Phase II trial at

recommended dose (RD), where the success is

defined by concluding that the drug is worthy for

further studies in the Phase II trial

The future Phase II trial used to represent a medical

research beneficial outcome refers to a trial using a

two-stage Bryant and Day design [7], where both

toxicity and efficacy outcomes are considered. The

design parameters are [8]: for the first stage, the

sample size is 19 patients, the cut-off values for

efficacy and non-toxicity outcomes are 5 and 11

respectively; for both stages together, the sample size

is 33 patients, the cut-off values for efficacy and non-

toxicity outcomes are 12 and 22 respectively. The

underlying model for dose thresholds for toxicity and

efficacy responses for Phase II patients are assumed

to follow bi-lognormal distribution:

log(13) 1 0.4
(log , log) ~ (,)

log(10) 0.4 4
T E N

We simulate 1000 replications of Phase I trials as

described above under two scenarios where scenario

1 uses unimodal population model and scenario 2

uses mixture population model.

4.3 Results

Table 4.1 Number of Patients Enrolled by Scenarios

Table 4.2 Number of Patients Experiencing DLT by

Scenarios

Table 4.3 RD by Scenarios

Table 4.4 Probability of Success at RD

The above Tables 4.1-4.3 list the distribution of

number of patients enrolled, number of patients

experiencing DLT, and RDs under two scenarios

respectively. RD is set to be zero when lower dose

than starting dose needs to be claimed as RD. The

average number of patients enrolled is 13.7 under

scenario 1, and 14.0 under scenario 2. The average

number of patients experiencing DLT is 2.5 under

scenario 1, and 2.9 under scenario 2. The addition of

a small subpopulation of highly toxicity sensitive

patients causes the Phase I trials to recommend a

lower dose more frequently. Table 4.4 shows the

probability of a successful phase II trial at each RD.

Given our specified Phase II design and dose

thresholds distribution for the patients in the Phase II

trials, the dose of 6 is associated with the highest

probability of a successful Phase II trial.

Summarizing across the trials, the average

probabilities of success in phase II trial for the two

scenarios are 13% under scenario 1, and 16% under

scenario 2. We do not observe any obvious different

64

results between two scenarios based on the specified

evaluation criteria in this example. Therefore, this

example doesn’t provide evidence that patient

pharmacokinetic heterogeneity affect the

performance of the standard Phase I “3+3” design

without dose de-escalation.

5. Discussion

The framework presented here covers most CT

designs. There are some exceptions. Our framework

cannot cover CTs where treatment assignments may

occur more than once to a patient, for example, in

studies with re-randomization of a subset depending

on intermediate clinical outcomes. As for the other

components, there are no obvious limitations beyond

the willingness of contributors to construct subclasses

reflecting the models and criteria they prefer.

 CT designs should consider both the potential

risks/benefits for the patients on the trial and the

potential scientific/medical value of the knowledge to

be gained. In our example, we assessed the scientific

or medical value (
SU) by the probability of success

of a subsequent Phase II trial at the RD produced

from the Phase I trial. Since a Phase I trial is often a

first-in-human trial, the ethical concerns are critical.

Operating characteristics which reflect the effects on

the enrolled patients focus primarily on tabulations of

adverse events [9, 10]. We could and probably should

consider the balance among various societal and

patient utilities and disutilities. This simulation

experiment platform provides a way to do that. For

example, if the patient has two possible outcomes, T

(toxicity) and t (non-toxicity), the patient utility can

be represented by:

1

()
i

n t

P i

i h T

U u h

where ()iu h is the utility for the outcome
ih . Total

utility is measured by the sum of patient utility,

societal utility and total sampling cost:

Tot P P S S C CU U U nu

where
Cu is the cost per patient, and the ’s are

multipliers which convert among the different kinds

of utilities.

 Commercial simulation platforms for evaluating

CT designs are out of reach for many academic

centers conducting clinical research. Academic

centers also have innovative CT methodology

researchers facing an extremely varied array of

design challenges. To disseminate the innovation,

expand design capabilities and enhance efficiency, an

open source solution is urged.

 Future development of this system will include

publishing it as an open-source R package, setting up

an archive site for users to contribute new subclasses

and corresponding methods (new designs, population

models, outcome models, and criteria), a user-

friendly GUI, user evaluation by CT designers.

Complex factorial evaluations will be

computationally time-consuming. Parallelization for

these demanding tasks is possible, for example,

several R packages provide support for parallel

processing [11].

References

1. Santen G, van Zwet E, Danhof M, Della Pasqua O.

From Trial and Error to Trial Simulation. Part 1: The

Importance of Model-Based Drug Development for

Antidepressant Drugs. Clin Pharmacol Ther.

2009;86(3):248-54.

2. Hale M, Gillespie W, Gupta S, Tuk B, Holford N.

Clinical Trial Simulation as a Tool for Increased

Drug Development Efficiency. Applied Clinical

Trials. 1996;5:35-40.

3. Holford NHG, Kimko HC, Monteleone JPR, Peck

CC. Simulation of Clinical Trials. Annual Review of

Pharmacology and Toxicology. 2000;40:209-34.

4. Lockwood P, Ewy W, Hermann D, Holford N.

Application of clinical trial simulation to compare

proof-of-concept study designs for drugs with a slow

onset of effect; an example in Alzheimer's disease.

Pharm Res. 2006;23(9):2050-9.

5. Chambers JM. Software for Data Analysis. New

York: Springer Science+Business Media, LLC; 2008.

6. Lin Y, Shih WJ. Statistical Properties of the

Traditional Algorithm-Based Designs for Phase I

Cancer Clinical Trials. Biostatistics. 2001;2:203-15.

7. Bryant J, Day R. Incorporating Toxicity

Considerations Into the Design of Two-Stage Phase

II Clinical Trials. Biometrics. 1995;51(4):1372-83.

8. Bryant J, Day RS. Available from:

http://www.upci.upmc.edu/bf/resources.cfm.

9. Reiner E, Paoletti X, O'Quigley J. Operating

Characteristics of the Standard Phase I Clinical Trial

Design. Computational Statistics & Data Analysis.

1999;30:303-15.

10. Ahn C. An Evaluation of Phase I Cancer Clinical

Trial Designs. Statistics in Medicine. 1998;17:1537-

49.

11. Eddelbuettel D. High-Performance and Parallel

Computing with R Available from: http://cran.r-

project.org/web/views/HighPerformanceComputing.h

tml.

65

http://www.upci.upmc.edu/bf/resources.cfm
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html

