
REVIEW
published: 28 November 2019

doi: 10.3389/fimmu.2019.02795

Frontiers in Immunology | www.frontiersin.org 1 November 2019 | Volume 10 | Article 2795

Edited by:

Silvia Piconese,

Sapienza University of Rome, Italy

Reviewed by:

Marinos Kallikourdis,

Humanitas University, Italy

Soraya Taleb,

INSERM U970 Paris-Centre de

Recherche Cardiovasculaire

(PARCC), France

*Correspondence:

Caraugh J. Albany

caraugh.albany@kcl.ac.uk

Cristiano Scottà

cristiano.scotta@kcl.ac.uk

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 10 September 2019

Accepted: 14 November 2019

Published: 28 November 2019

Citation:

Albany CJ, Trevelin SC, Giganti G,

Lombardi G and Scottà C (2019)

Getting to the Heart of the Matter: The

Role of Regulatory T-Cells (Tregs) in

Cardiovascular Disease (CVD) and

Atherosclerosis.

Front. Immunol. 10:2795.

doi: 10.3389/fimmu.2019.02795

Getting to the Heart of the Matter:
The Role of Regulatory T-Cells
(Tregs) in Cardiovascular Disease
(CVD) and Atherosclerosis
Caraugh J. Albany 1,2*, Silvia C. Trevelin 1, Giulio Giganti 2,3, Giovanna Lombardi 2 and

Cristiano Scottà 2*

1 British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, King’s College London, London,

United Kingdom, 2 Peter Gorer Department of Immunobiology, School of Immunology and Microbiological Sciences, King’s

College London, London, United Kingdom, 3Department of Internal Medicine, University of Milan, Milan, Italy

Cardiovascular diseases (CVD) are the leading cause of mortality worldwide.

Atherosclerosis is directly associated with CVD and is characterized by slow progressing

inflammation which results in the deposition and accumulation of lipids beneath the

endothelial layer in conductance and resistance arteries. Both chronic inflammation

and disease progression have been associated with several risk factors, including but

not limited to smoking, obesity, diabetes, genetic predisposition, hyperlipidemia, and

hypertension. Currently, despite increasing incidence and significant expense on the

healthcare system in both western and developing countries, there is no curative therapy

for atherosclerosis. Instead patients rely on surgical intervention to avoid or revert

vessel occlusion, and pharmacological management of the aforementioned risk factors.

However, neither of these approaches completely resolve the underlying inflammatory

environment which perpetuates the disease, nor do they result in plaque regression. As

such, immunomodulation could provide a novel therapeutic option for atherosclerosis;

shifting the balance from proatherogenic to athero-protective. Indeed, regulatory T-cells

(Tregs), which constitute 5-10% of all CD4+ T lymphocytes in the peripheral blood, have

been shown to be athero-protective and could function as new targets in both CVD and

atherosclerosis. This review aims to give a comprehensive overview about the roles of

Tregs in CVD, focusing on atherosclerosis.
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INTRODUCTION

According to the World Health Organization [https://www.who.int/news-room/fact-sheets/
detail/cardiovascular-diseases-(cvds)], cardiovascular diseases (CVD) are a group of disorders
affecting the heart and blood vessels; which include coronary heart disease (ischemic heart
disease), angina, myocardial infarction, congenital heart diseases (e.g., tetralogy of Fallot, ductus
arteriosus, transposition of great vessels, tricuspid atresia), hypertension, stroke (e.g., ischemic or
hemorrhagic), heart valve diseases (e.g., regurgitation or stenosis), cardiomyopathy (e.g., heart
failure with dilated or hypertrophic cardiomyopathy or with preserved ejection fraction), and
vascular dementia.
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Atherosclerosis is a common cause of CVD and is
characterized by slow progressing inflammation in conductance
and resistance arteries, in which there is an accumulation of
cholesterol-containing low-density lipoprotein (LDL) particles
beneath the endothelial layer (1). These lipid accumulations
often take several decades to become symptomatic. Lesions
associated with the disease can be found in the aorta as early as
the first decade of life. Aging, genetic, and environmental factors
lead to the spread of these lesions, they can be found in sites such
as coronary arteries in the second decade of life, and cerebral
vessels in the third and fourth decades of life (1).

Hypertension and hyperlipidemia are key risk factors for
arteriosclerosis. As a result, statins (HMG CoA reductase
inhibitors) have been widely used in CVD patients (2). Meta-
analysis studies have suggested that for each 1 mmol/L reduction
in LDL levels corresponds to a 22% decreased in the risk of stroke
and coronary heart disease (3). However, data from surveys,
registries, and insurance claims indicate that adverse effects of
statins are common, which discourage patients from continuing
therapy at recommended doses. Additionally, the underlying
chronic inflammation of the blood vessel(s) is not completely
resolved by statins.

Several studies have shown that the immune system
is activated in atherosclerosis. Such observations indicate
the possibility that selective suppression of proatherogenic
or activation of athero-protective immune mechanisms may
represent novel approaches for disease treatment. In recent years
regulatory T-cells (Tregs) have emerged as crucial players in
modulating both the innate and adaptive immune responses
(4). Impaired Treg function and decreased frequency has
been associated with the progression of atherosclerosis (5–
7). Furthermore, adoptive transfer of such cells in animal
models for atherosclerosis has been shown to be protective (7).
Therefore, Tregs could be important targets in atherosclerosis
and understanding their functions in this context is fundamental
to driving future therapies.

PATHOGENESIS OF ATHEROSCLEROSIS

The pathogenesis of atherosclerosis is illustrated in Figure 1. The
disease is initiated by the passive diffusion of LDL into the arterial
intima, this occurs preferentially in regions of higher blood
turbulence or parts where the sites of endothelial damage (1, 8).
Following diffusion into the sub-endothelial space, LDL is able
to bind proteoglycans via apolipoprotein B-100 (ApoB100), and
subsequently becomes permanently retained (9). The sequestered
LDL undergoes oxidative modification forming oxLDL which
causes aggregation and increased proteoglycan binding (8).
Oxidation of LDL is mediated by reactive oxygen species (ROS)
produced by smooth muscle cells (SMCs), endothelial cells
(ECs), neutrophils, and macrophages (9, 10). These events are
potentiated by production and release of monocyte chemotactic
protein-1 (MCP-1) and macrophage colony stimulating factor
(m-CSF), which, respectively, attracts circulating monocytes to
the plaque and activates them to release more ROS, nitric oxide
(NO), and pro-inflammatory cytokines, such as TNF-α and IL-1β
(1, 11). In a positive feedback loop, ROS induces expression of
TLRs in ECs, which perpetuates the inflammatory response via

the expression of adhesion molecules, which cause circulating
monocytes and other leukocytes to enter the tissue via trans-
endothelial migration. Monocytes become differentiated into
macrophages (8) which, once present within intima layer of the
arteries, engulf oxLDL (8) through the scavenger receptors SR-A
and CD36 (1). This uptake leads to the formation of foam cells,
which have compromised migratory capacity. Consequently,
these cells accumulate in the intima and die, resulting in the
formation of a plaque with a necrotic core (1).

Growth factors and cytokines released by ECs and
macrophages induce multiple effects including phenotypic
changes within vascular SMCs, from the quiescent “contractile”
phenotype state to the active “synthetic” state, that can migrate
to and proliferate within the intima. The migratory and
proliferative capacities of VSMC’s increase the size of the
atherosclerotic plaque. Some of the emigrated VSMCs become
less differentiated, senescent, or undergo apoptosis, which
contributes to plaque instability and rupture (12). This leads the
formation of a traveling thrombus which can occlude smaller
arteries, resulting in myocardial infarction (MI) or ischemic
stroke (13).

ATHEROSCLEROSIS AND T-CELLS

Both the adaptive and innate arms of the immune system are
involved in the development of atherosclerosis. As demonstrated
in Figure 1, innate responses occur first in a non-antigen-
specific manner (14). However, modified self-molecules such
as oxidized LDL (oxLDL), β2 glycoprotein 1, Lipoprotein A
(LP(a)), heat-shock proteins (HSP), and glycosylated proteins
from the blood vessels extracellular matrix (collagen and
fibrinogen) have been described as antigens, thus activate T-
cell responses during atherosclerosis (9). Furthermore, foreign
antigens including bacteria such as Porphyromonas gingivalis
(15) and Chamydia pneumoniae (16), and viruses such as
enterovirus (17) and cytomegalovirus have also been associated
with atherosclerosis; potentially as causative or bystanders
participants, adding yet another layer of intricacy to fully
understanding the pathophysiology of atherosclerosis.

Antigen presentation by dendritic cells (DCs) during
atherosclerosis is a complex matter. Early research, which
aimed to elucidate the role of DCs in atherosclerosis
relied on CD11c as the identifying cell surface marker.
Functionally, high-phagocytic activity was demonstrated for
CD11c−CD11b+MHCII+ macrophages that efficiently engulfed
lipids, whereas CD11c+MHCII+ DCs present in the aorta
were shown to display strong immune stimulatory capacities;
being pivotal for T-cell activation and inflammation. However,
in recent years it has become apparent that CD11c can also
be expressed by MHCII+ monocytes and macrophages, and
an ontogenetic view of cell lineages has defined DCs as a
hematopoietic lineage distinct from other leukocytes (18). Thus
historic studies addressing the role of CD11c+ (MHCII+) DCs
may have also unintentionally included other cell types, such as
monocytes/macrophages, therefore the term APCmay have been
more appropriate (19).

APCs travel to draining lymph nodes and present antigens
for recognition by T-cells (14). Such antigen recognition results
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FIGURE 1 | Atherosclerotic disease progression. ROS produced by ECs, SMCs, neutrophils, and macrophages oxidized LDL in the sub-endothelial space. Emigrated

monocytes become macrophages which uptake oxLDL, subsequently forming foam cells, that are unable to migrate to arterial lumen, accumulate in the

sub-endothelial space and die forming a large plaque with a necrotic core. Rupture of this plaque leads to thrombus formation.

in clonal expansion of both CD8+ and CD4+ T-cells. CD4+ T-
cells can secrete cytokines such as IL-17 (20) and IFN-γ (21),
which facilitate the inflammatory process. Furthermore, IL-4
and IL-13 production by CD4+ T-cell activation leads to B-cell
activation, clonal expansion, and subsequent immunoglobulin
production (14). Antibodies appear to play a prominent role in
atherosclerosis, arising due to increased number of immunogenic
neo-epitopes which are typically present in the disease (14).

The atherosclerotic plaque consists of a heterogeneous
population of cells, debris and extracellular matrix components
(1). CD4+ T-cells can be divided in different subsets according
to their capacity to support the type of immune response
and cytokine production. Th1 cells are the most abundant T-
cells and in the context of atherosclerosis, promote disease
progression (1). These cells secrete IFN-γ which promotes
lesion development and destabilization leading to the plaque
rupture (1). Additionally, IFN-γ activates monocytes causing

continuation of the response. Th2 and Th17 cells have also
been found in atherosclerotic lesions but at lower frequencies.
Th2 cells release IL-4, IL-5, IL-13, and support B-cell activation
and antibody production (21). IL-4 induces the expression of
the transcription factors GATA-3 via STAT-6 activation, and
stimulates Th2 cell differentiation leading to upregulation of
IL-5 which inhibits Th1 differentiation and therefore IFN-γ
production (8, 21). As a result of this regulatory role Th2
cells were initially assumed to be beneficial in the setting of
atherosclerosis. However, recent evidence indicates that these
cells may be both helpful and disadvantageous depending on
disease stage and/or lesion site. Th17 cells produce IL-17 which
is a pro-inflammatory mediator. Th17 development is promoted
by TGFβ in the presence of IL-6 and IL-23 (21). Similar to Th2,
Th17 cells have been reported to have both positive and negative
roles in atherosclerosis (21). Th17 cells produce factors such
as IL-6, IFNγ, and granulocyte-macrophage colony-stimulating
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factor (GM-CSF), which are proatherogenic. However, opposing
this proatherogenic role, Th17 cells can also convert into other
cell types such as Tregs; by gaining expression of forkhead box
P3 (FOXP3) and can subsequently exert suppressive effects on
effector Th1 and Th2 cells.

REGULATORY T-CELLS (TREGS)

Tregs have been shown to be present within atherosclerotic
plaques (22). Human Tregs were initially characterized as
CD4+CD25+ T-cells in 2001 by several groups (23–26) based
on the 1995 finding that murine Tregs constitutively express
CD25 (27). These adaptive immune cells comprise 5–10% of all
peripheral CD4+ T-cells (28), and play an indispensable role in
the adaptive immune system being responsible for both immune
homeostasis and maintaining self-tolerance (4).

TREG DEVELOPMENT

Tregs can be sub-divided into two main classes depending
on their developmental origin: thymic Tregs (tTreg) and
peripherally induced Tregs (pTreg). tTregs develop in the
thymus, an environment where tTregs with a high affinity for
self-antigens are positively selected for maturation (29). Once
active, these cells can migrate out of the thymus and into the
peripheral tissues and lymph nodes (28). Conversely, pTregs
develop via antigenic stimulation from conventional CD4+ T-
cells in the periphery.

SUBSETS OF pTregs

There are subsets of Tregs generated in the periphery which have
specific phenotypes and amechanism of actionwhich is cytokine-
dependent: Tr1 and Th3. Unlike tTregs, which arise as a separate
sub-lineage from T-cell precursors in the thymus, Tr1 and Th3
derived from conventional peripheral Th0 cells and interact with
and are susceptible to modulation by dendritic cells (30).

Tr1 cells are a population pTregs which are induced by
sustained TCR engagement via chronic antigenic stimulation
in the presence of high levels of IL-10. These cells act to
induce and maintain peripheral tolerance. They do not exhibit
constitutive FOXP3 expression, instead its expression is induced
upon activation. Tr1 cells produce predominantly IL-10, whereas
Th3 (also known as Tr2) predominantly produces TGF-β (30).
Th3 cells differentiate in an antigen-non-specific manner and
are identifiable via their expression of latency-associated peptide
(LAP), IL-4 production and low CD25 expression, moderate
levels of GITR and CTLA-4. Tr1 cells can produce IFN-γ and do
not express detectable levels of GITR and low levels of CTLA-4
and CD25 (30).

Human Tregs consist of a heterogeneous population;
characterized by the expression pattern of a vast range of
cell surface molecules (27). Despite this variation, suppressive
Tregs share the expression of certain “common” surface
molecules such as CD4, CD25, and FOXP3 (31). FOXP3 is
the transcription factor which is considered to be the lineage

defining molecule, it’s essential for both cell maturation and
function (4).

SUPPRESSIVE MECHANISMS

The key role of Tregs is to suppress both the adaptive and
innate immune system. Tregs achieve this via the utilization of
both direct and indirect pathways. In a direct manner, Tregs
themselves elicit an immune response upon a target cell by
for example, the secretion of suppressive cytokines such as IL-
10, TGFβ, and IL-35 (23). In an indirect way by expressing
higher levels of CD25, Tregs compete with T-effector cells
(Teffs) for IL-2, which limits their proliferation. Tregs also
express CD39/CD73 on their surface which produces adenosine
from ATP, and activates adenosine receptors A2 on Teffs,
which has inhibitory properties (23). Figure 2 gives examples
of Treg suppressive mechanisms which are relevant in context
of atherosclerosis.

EVIDENCE IMPLICATING TREGS IN
ATHEROSCLEROSIS

There has been a growing interest about the role about Tregs in
atherosclerosis, with many studies aiming to better understand
their significance. In 2006 using the ApoE−/− mouse model, Ait-
Oufella et al. demonstrated that CD4+CD25+ Treg deficiency
is associated with a significant increase in atherosclerotic lesion
size (5). This indicated for the first time that endogenous
CD4+CD25+ Tregs play a protective role in atherogenesis (5).
Further evidence came the following year, in 2007 Mor et al. (6)
demonstrated that the adoptive transfer of wild type (WT) Tregs
into ApoE−/− mice resulted in a significant reduction in aortic
sinus plaques as compared to the control mice (6). Furthermore,
Tregs from ApoE−/− mice we shown to have decreased in vitro
suppressive ability (6). Then, studies in mice strongly suggest that
defective Tregs may enable disease progression.

In 2013 Kligenberg et al. (7) demonstrated that deletion of
FOXP3+ Tregs results in a 2.1-fold increase in plaque size
in mice. FOXP3 was selectively depleted in the presence of
diphtheria toxin using the DREG system in LDLR−/− mice. This
selective depletion resulted in increase in plasma cholesterol and
VLDL levels and enhanced plasma enzyme activity of lipoprotein
lipase, hepatic lipase, and phospholipid transfer protein (7).
Importantly, in addition to induced changes within the cellular
composition of the atheroma, Treg depletion also resulted in
differences in genes controlling lipid metabolism in the liver
and decreased the liver levels of sortilin, which may contribute
to impairing intracellular cholesterol transport and increase the
plasma levels of VLDL. Such results suggest that under normal
conditions Tregs positivelymodulate VLDL cholesterol levels (7).

In summary, these studies demonstrated a link between
Tregs depletion, decreased suppressive capacity and the
development of atherosclerosis in mice. However, these
studies failed to address key questions surrounding the Tregs
roles in humans: what are the specific functions of Tregs in
atherosclerosis? Why are Tregs defective in both number and
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FIGURE 2 | Suppressive mechanisms of Tregs in atherosclerosis. Tregs can directly produce suppressive cytokines and degradative enzymes such as perforin and

granzyme that leads to apoptosis. Furthermore, Tregs have been observed to have direct effects on APC’s via interaction with via CTLA-4, PD-L1/2, and LAG-3. They

can also skew monocyte class switching, encouraging anti-inflammatory M2 macrophages formation which produced collagen and stabilizes the plaque. They can

also decrease foam cell formation via the down-regulation of CD36 and CD204.
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suppressive function in atherosclerosis? And, most importantly,
are the findings obtained in animal models applicable
to humans?

THE FUNCTION OF TREGS IN
ATHEROSCLEROSIS

Subsequent studies began to address the role of Tregs within
atherosclerotic pathophysiology. Tregs suppress proatherogenic
Th1 effector T-cells (Figure 2). Studies in mice demonstrated
the ability of Tregs to reduce the proliferation of Th1 and
decrease IFNγ production via IL-10 synthesis (32). This finding
has been mirrored in human CVD; compared to healthy
control, patients suffering from CVD (stable angina, unstable
angina, and acute MI) have a reduced CD4+CD25+FOXP3+

population whilst simultaneously exhibiting an increased Th1
population in circulation (33). Furthermore, another study
showed the presence of increased numbers of Th17 cells and
a lower proportion of Tregs present in patients with unstable
carotid artery legions (34), suggesting Tregs could suppress
proatherogenic Th17 effector T-cells. The existence of these
correlations suggests the existence of a shifted balance between
anti-inflammatory Tregs and pro-inflammatory Th17/Th1 in
patients with atherosclerosis, favoring the latter subsets.

Tregs have also been demonstrated to act directly on
monocytes inhibiting their cytokine secretion, differentiation,
and antigen-presenting function. Following co-culture with
Tregs, monocytes exhibit classical features of M2 macrophages
such as increased CD206 (mannose scavenger receptor)
and CD163 (hemoglobin scavenger receptor) expression.
Simultaneously, macrophages co-incubated in vitro with Tregs
exhibited a reduced capacity to respond to pro-inflammatory
LPS as demonstrated by both decreased production of IL-6
and TNF-α and decreased NF-kB activation (Figure 2) (35).
Furthermore, our group has recently reported that ex vivo
expanded Tregs are very efficient at skewing monocytes toward
a M2 tolerogenic phenotype. Of note, monocytes co-cultured
with expanded Tregs showed a reduced capacity to increase
detrimental IL-17 producing T-cells as compared to freshly
isolated Tregs (36). This mechanism resulted from the decreased
CD86 expression by Treg-conditioned monocytes. In addition
to suppressing effector T-cells and favoring M2 macrophage
development Tregs have been previously shown to decrease foam
cell formation via downregulating both SRA and CD36 (37).

Tregs also exert effects on APCs by inhibiting antigen
presentation. Tregs can inhibit APC function by the expression
of cell surface molecules such as CTLA-4 and PD-L1/2.
CTLA-4 expressed by Tregs, binds to and trans-internalize
CD80/CD86 from APCs, diminishing the ability of APCs to
co-stimulate T-cells (38). Increased mRNA levels of CTLA-
4 have been associated with increased Tregs and decreased
atherosclerosis (39, 40). Signaling via the co-inhibitory PD-
1 (on Tregs) and PD-L1/2 (on APCs) also inhibits their
activation. Mice globally deficient in either PD-1 or PD-L1/2
show aggravated atherosclerosis mediated by increased effector
T-cell responses (41).

In addition to their effects on other leukocytes,Meng et al. (42)
demonstrated ApoE−/− mice adoptively transferred with Tregs
had increased plaque stability, reducing the risk of plaque rupture
by inducing collagen synthesis by M2 macrophages (42). Tregs
have also been shown to suppress EC activation and cholesterol
metabolism. pTregs suppress both TNFα and IL-1β mediated E
and P-selectin expression by ECs (43).

Tr1 AND Th3 IN ATHEROSCLEROSIS

The role of Tr1 or Th3 cells in atherosclerosis and therefore their
therapeutic potential is currently unclear. To date two studies
using distinct mice models have evaluated the role of Tr1 in the
pathogenesis of atherosclerosis.

Although no improvement in disease progression was
observed following adoptive transfer of the in vitro expanded
Tr1, ApoE-deficient mice immunized with OVA/CFA or mice
treated with intranasal HSP60 (44) showed a marked reduction
in atherosclerotic plaques size following Tr1 cell infusion (45).
Furthermore, a recent study showed the frequency of Tr1 cells,
IL-10 and LAG-3 expression by Tr1 cells was lower in patients
with coronary artery disease as compared to healthy controls
(46). However, there were no observed differences in suppression
of Teffs proliferation after incubation with Tregs from patients
or healthy subjects (46). Therefore, new studies are urged to
better elucidate the role of these subsets of Tregs in CVD
and atherosclerosis.

IMMUNOMETABOLISM OF TREGS IN THE
CONTEXT OF ATHEROSCLEROSIS

Immunometabolism is an emerging field that investigates the
interplay between immunological and metabolic processes.
In addition to their exogenous antigen providing role,
the contributions of microorganisms to atherogenesis are
now beginning to be elucidated. Several factors including
environment, diet, medication, genetics, and pathology affect
the dynamic composition of the microbiota. Microorganisms
produce various metabolites and nutrients such as vitamins and
short-chain fatty acids (SCFA) which in turn can influence Treg
generation, function, and trafficking (47). Such metabolites can
be either systematically disseminated within the bloodstream for
example endotoxin LPS; high levels of which is associated with
cardiometabolic disorders and inflammation (48), conversely,
they can remain in-suit at the site of production acting
locally (48).

Butyrate is a SCFA produced by the fermentation of dietary
fiber and is highly enriched in the colon (49). SCFAs are known
to promote Tregs differentiation via several mechanisms; of
particular note via their action as histone deacetylase (HDAC)
inhibitors they are able to maintain the acetylation of the
FOXP3 promoter at CNS1 and CNS3 which confers increased
expression (47). Specifically, in the setting of atherosclerosis,
it was demonstrated that gut-colonization of germ-free ApoE
mice with strains of bacteria which differed in butyrate
production; could affect the progression of atherosclerosis. Data
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indicated the presence of bacterial genus Roseburia, which is
associated with high butyrate production, inversely correlated
with atherosclerotic lesion size (49). However, this study failed
to find significant differences between Treg populations in either
the spleen or para-aortic lymph nodes from mice colonized with
the two different communities (49). Further investigation will be
required to fully understand the contribution of such factors to
human atherosclerosis.

It is not only SCFA which have been associated with
atherosclerosis; evidence suggests that certain vitamin intake is
beneficial in preventing CVD. Vitamin A, C, E, and K deficiencies
are all associated with increased CVD (50). Dietary sources of
vitamin A aremainly retinol and retinyl esters from animal origin
or, from plant sources provitamin A carotenoids which comprise
numerous isomers of β-carotene (51). Vitamin A is metabolized
into all-trans retinonic acid (RA); which is important for Treg
development in the gut (52). Results in ApoE−/− mice show
that a vitamin A deficient diet resulted in an increase in both
plasma cholesterol concentration and atherosclerotic lesion size
as compared to healthy controls (51). Furthermore, dietary
fortification with β-carotene protected against both elevated
plasma cholesterol and increased lesion size in mice fed a vitamin
A-deficient diet (51). The mechanisms by which β-carotene
protected against these adverse outcomes was unclear. However,
results in atherosclerotic patients who received 25,000 IU retinyl
palmitate per day for 4 months showed an increased expression
of FOXP3 in phytohemagglutinin-activated cells as compared
to both healthy controls and patients receiving placebo (53),
supporting the existence of a link between dietary habits, Tregs,
and atherosclerosis.

THE EFFECT OF STATINS ON HUMAN
TREGS

Tregs act to prevent atherosclerosis in a range of manners.
Although currently no Treg therapies for atherosclerosis exist,
some existing treatments have beneficial effects on Tregs.
Statins are one of the most widely prescribed treatments for
atherosclerosis due to their capacity to reduce cholesterol
biosynthesis, it has been reported that these drugs can have other
athero-protective effects.

Both atorvastatin and paravastatin attenuate T-cell activation,
proliferation, inhibit the secretion of the pro-inflammatory
cytokines and enhance secretion of anti-inflammatory cytokines
(54). These statins inhibit IFN-γ production, which reduces
Th1 activation (54), they also bind to lymphocyte function
associated antigen-I (LFA-1) preventing leukocyte adhesion to
ECs (54). Both mechanisms could be attributed to the indirect
effect statins on Tregs (54). Indeed, both paravastatin and
atorvastatin increases Treg numbers, which contributes to down-
modulation of IFN-γ producing Th1 cells and reduction on EC
activation. Atorvostatin treatment of human cells resulted in
increased numbers of CD4+CD25+FOXP3+ Tregs in vitro, in
addition to enhancing FOXP3+ expression (54). Similar results
were reported with the used of pravastatin, which increased the
number of CD4+CD25+ cells in humans. Moreover, simvastatin
potentiates ex vivo Treg expansion.

Therefore, the benefits of statins can be partially attributed
to their effects on Tregs. However, no direct analyses of the
statins on Treg function and gene expression has been made,
nor have how statins affect sub-populations of Tregs in humans
been investigated.

THE BIDIRECTIONAL RELATIONSHIP
BETWEEN TREGS AND RISK FACTORS

Further to the Treg beneficial effects in atherosclerosis, disease
risk factors, such as hyperlipidemia and hypertension, also
affect Treg numbers and functions. Indeed, hypercholesterolemia
changes plasma membrane dynamics of leukocytes, which
supports the proliferation of activated T-cells as well as the
size and function of the Treg cell population (55). ApoE−/−

mice have reduced numbers of thymic Tregs and express lower
levels of CD25 concomitant with an increase in effector T-cell
numbers. Moreover, Tregs from these hyperlipidemic mice are
less effective at suppressing Teffs in vitro as compared to their
WT counterparts (56).

The link between hypertension and the adaptive immune
system has long been established. There is strong evidence in
literature indicating that innervation of the lymphoid organs
provide a pathway for direct modulation of blood pressure (57).
Additionally, athymic and Rag1 deficient mice do not have
increases in blood pressure after treatment with Angiotensin
II or deoxycorticosterone acetate (DOCA) as compared to
controls (58). The role of Tregs specifically was shown in a
hypertensive rat model; Treg depletion resulted in higher blood
pressure values and aggravation of cardiac hypertrophy (57).
Furthermore, adoptive transfer of FOXP3+ Tregs protected
against AngII induced hypertension (57). Accordingly, a recent
study developed in our laboratory confirmed such finding and
revealed Nox2 deficient Tregs are more potent in inhibiting
blood pressure increases and heart fibrosis as compared to WT
Tregs (59).

Extensive studies evaluating human Tregs in the context
of hypertension are yet to be undertaken. Only one study
published in 2018 exists, in which authors reported the down-
regulation of Helios+ Tregs in hypertensive patients as compared
to their normotensive counterparts (60). Additionally, CD4+ T-
cells from hypertensive patients have lower FOXP3 mRNA levels
than cells from healthy controls (60). This data might suggest
that the hypertensive microenvironment can negatively impact
Tregs populations.

Studies using Tregs in setting of both hypertension and
hyperlipidemia indicate that, despite Tregs being athero-
protective, they are decreased in frequency and functionality
in patients suffering from these conditions, which favors the
progression to CVD.

IS TREG THERAPY A POSSIBILITY FOR
ATHEROSCLEROSIS?

As a result of extensive evidence indicating the beneficial role of
Tregs in atherosclerosis, there is an increasing interest regarding
the potential use of these cells for immunomodulation. The
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use of exogenously expanded and functional Tregs may prove
useful in combatting both the defective cell functionality and
decreased frequency observed in atherosclerosis. Such therapy
has previously been shown to be effective with no significant
adverse effect in other diseases including transplantation (61),
graph vs. host (61), and autoimmunity in the setting of
diabetes melitus (62). The lack of adverse effects is largely
attributed to the use of the recipient own cells preventing
the elicitation of a detrimental auto-immune response or
organ-rejection (61).

Despite such positive observations, prior to the use of
exogenously expanded Tregs for treatment of human CVD and
atherosclerosis further investigation is needed. A recent study
demonstrated that Tregs frommice which had undergone a non-
reperfused myocardial infarction exhibited defective capacity to
suppress in vitro Teff proliferation (63). Such finding highlight
that the expansion of the global autologous Treg population may
not be an appropriate method to use to halt progression of such
diseases. Instead a more tailored approach may be needed; in
this regard, our group have published some studies those suggest
the use of engineered Tregs, those exhibits a higher suppressive
ability (59, 64, 65).

CLINICAL TRIALS

Despite increasing interest in the role of Tregs in atherosclerosis,
only a few clinical trials have begun to investigate
their significance.

In 2010, a randomized interventional clinical trial by Del Core
at Creighton University (NCT01183962) was initiated with the
goal of evaluating the potentially beneficial role of oral vitamin
D supplementation in patients aged 30–80 with a history of CVD
in order to prevent detrimental cardiovascular events. Patients
were divided into two groups, one receiving a daily oral dose
of 3,000 IU of vitamin D, the other receiving no treatment. The
primary endpoint was the analysis of Treg suppressive function,
which was expected to improve, independently of cell number.
Unfortunately, this study was terminated due to slow enrollment
and funding difficulties.

In 2016, Prof. Didier Ducloux at Center Hospitalier
de Besançon started the ORLY-Est trial (NCT02843867),
an observational prospective study based on the
immuno-monitoring of renal transplanted patients for
atherosclerotic complications occurring 5 or 10 years’
post-operatively. The hypothesis was that by evaluating the
percentage of Tregs a prediction could be made about the
likelihood of atherosclerotic complications occurring. A value
under the median would be associated with a higher incidence of
atherosclerotic complications by 5%. This observational study is
expected to lead to a second trial (ORLY-IS) to test the effect of
Treg expansion on the incidence of detrimental atherosclerotic
events after transplantation.

In 2017, the group led by Johann Motsch at University
Hospital Heidelberg, designed the LeukoCAPE-2 trial
(NCT03105427), an observational case-only study to evaluate
the use of Tregs to predict the cardiovascular risk in patients

with known CVD undergoing major non-cardiological surgery,
and those post cardiovascular surgery. Overall, 233 patients
were enrolled, and blood was drawn at pre-defined time
points up to 3 days post-operatively. Clinical follow up for
cardiovascular events was carried for 30 days post-surgery. The
primary outcome was the occurrence of cardiac death and/or
MI and/or mL and/or myocardial injury after non-cardiac
surgery (MINS) and/or embolic stroke and/or thrombotic
stroke. To date, the trial is completed, but results are not
yet published.

In 2019, the group led by Prof. Hongwei at Beijing
Friendship Hospital started an observational, prospective trial
(NCT03939338) which aims to evaluate whether the combination
of both Treg frequency and cardiac magnetic resonance imaging
(CMR) can be used to predict the severity of reperfusion injury
following MI. The study is expected to be complete by 2021.

IMMUNOLOGICAL TARGETS WITHIN
ATHEROSCLEROSIS

Several studies using animal models have investigated the
potential of producing preventative vaccines for atherosclerosis.
Analysis of mRNA from ApoE−/− mice indicates T-cells within
atherosclerotic lesions show the preferential expression of a
limited number of TCR-variable gene segments suggesting
that a limited set of antigens are responsible for the specific
T-cell response present in atherosclerosis (66). Most of the
identified antigens present in atherosclerosis are generated via
the modification of self-molecules; previous studies in mice have
investigated the potential of some of these antigens as candidate
for the production of vaccines.

OxLDL has been investigated as a candidate antigen, the
generation of mucosal tolerance against oxLDL was achieved
via its oral administration in LDLR−/− mice prior to the
onset of atherosclerosis. Oral administration attenuated both the
initiation and progression of the disease. Furthermore, increased
numbers of Tregs specific for oxLDL were observed in both the
spleen and lymph nodes following immunization (39). ApoB100
is the peptide component of LDL and is displayed on the surface
of APCs via MHCII molecules following proteolytic processing
(9). Continuous sub-cutaneous infusion of ApoB100 derived
peptides in ApoE−/− mice resulted in reduced atherosclerotic
plaque development, in addition to inhibiting the progression
of previously established disease and promoting features of
plaques healing such as increased collagen content, and decreased
T-cell infiltration (67). Evidence indicates that the mucosal
administration of the ApoB100 antigen induces antigen-specific
tolerance through the generation of several Treg subsets which
could be responsible for the observed athero-protective effects.

HSPs have also been found to act as antigens in atherosclerosis
(40). HSP60-specific T-cells are mainly Th1 and thus have
a proatherogenic phenotype and produce cytokines such
as IFNγ and IL-12. Studies using LDLR−/− mice have
shown that induction of oral tolerance to HSP60 results in
attenuated atherosclerosis which is attributed to an increased
CD4+CD25+FOXP3+ Tregs population in both lymphoid
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organs and the atherosclerotic lesion. This is accompanied by
an increase in HSP60-specific TGFβ and IL-10 production in the
mesenteric lymph node cells (40).

These findings in mice indicate several potentially good
candidate antigens for the generation of a targeted vaccine. In
addition to the aforementioned antigens, there are many others
associated with atherosclerosis including collagen, fibrinogen,
advance glycation-end products (AGE), (LP(a)), lipoprotein-
lipase (LPL), and microbial antigens (9) which have not been
explored in the context of targeted therapeutics, and so their
potential in the generation of either a preventative vaccine
or potentially antigen-specific Tregs for uses as therapeutic
treatment in atherosclerosis remains unknown.

DISCUSSION

Despite the increasing global burden of patients with
atherosclerosis, a curative therapy is still to be found. Symptom
and lifestyle management can act to slow the disease progression
but ultimately it will not be totally halted due to its association
with aging and vessels inflammation.

Tregs have been closely associated with atherosclerosis in
both animal models and humans, with their presence and
their mechanisms of action shown to be atheroprotective.
Despite this evidence, there has been little investigation into
the potential of Treg therapy. The few trials focusing on CVD
patients and Tregs have tended to monitor Treg number,
function and subtype for potential use as biomarkers for
disease severity. One trial did try to utilize Vitamin D
to enhance endogenous Treg populations, however this is

far from mimetic a cellular therapy involving infusion of

exogenously expanded autologous Tregs. As a result, many
questions remain surrounding the potential use of Tregs
in atherosclerosis and other chronic inflammatory diseases
involving the cardiovascular system.

The production of antigen-specific Tregs is an attractive
option. Indeed, such technologies are being utilized in pre-
clinical models of transplantation (64, 68). However, the
suppressive efficiency, stability and migratory capacity of
genetically engineered Tregs need further evaluation before they
can be used in the clinic.

In summary, Tregs present very promising targets with a
great deal of potential. However, as a new and emerging field,
it is important to carefully find a safe and efficient method
for such a cellular therapy. Once achieved, Treg therapy could
potentially become a viable treatment option in the battle against
atherosclerosis and CVD.
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