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Abstract: Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-
translational modifications (PTMs) have been extensively studied in malignancies due to its relevance
in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase
expression in CRC and its impact in cell function and in several biological pathways associated
with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface
molecules between cells and their environment and in several cases facilitate molecule function.
CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins,
heat shock protein 90 (Hsp90), β1 integrin, carcinoembryonic antigen (CEA), epidermal growth
factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth
factor beta (TGF-β) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing
protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules
in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell–cell
adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness
regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and
gut microbiota composition; all such functions are associated with the prognosis and evolution of the
disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide
processing and to modify glycoconjugate structures in order to control CRC progression and prevent
metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens,
generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric
antigen receptors) T cells.

Keywords: colorectal cancer (CRC); glycosyltransferase; glycosylation; post-translational modification

1. Introduction

Colorectal cancer (CRC) has been categorized worldwide as the third most common
diagnosed cancer and the fourth most usual cause of cancer death [1]. The etiological
heterogeneity, pathogenesis and risk evolution factors of CRC are not well defined [2,3].
Environmental, genetic, epigenetic and post-translational modifications (PTMs), as CRC
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risk factors, have been the focus of several research efforts, with the aim of improving not
only the molecular treatments used in these patients but also biomarker profiles that could
be useful for early diagnosis and a better patient follow-up during and after treatment [4].

Among the post-translational modifications differentially identified in CRC tissues,
mechanisms of glycosylation have been extensively studied. Alterations of glycan biosyn-
thesis associated with abnormal glycosylation patterns of several molecules have been
related with oncogenesis, cell growth, apoptosis inhibition, increased motility, cell mi-
gration, cell adhesion, tumor cell invasiveness and metastasis. Glycans act as interface
molecules between cells and microenvironment and in several cases glycan structures
confer functions to the molecules. Thus, tumorigenesis and metastasis could be narrowly
associated with glycan profile changes in cancer cells [5–8].

In cancer tissues, glycan expression has been found upregulated, downregulated and,
interestingly, glycan structures have been shown to be truncated or modified exhibiting new
structures [5,6]. Thus, the study of alterations in glycosylation profiles of molecules with a
role in cancer progression and metastasis could partially explain molecular mechanisms
underlying malignization and even serve as biomarkers.

Glycosylation of molecules, such as proteins or lipids, takes place in the endoplas-
mic reticulum and Golgi apparatus in a process catalyzed in a non-templated manner
by glycosyltransferases, such as fucosyltransferases, sialyltransferases, and
N-acetylglucosaminyltransferases in association with glycosidases. Proteins can be N-
glycosylated and O-glycosylated and these variations determine, in part, their physical and
functional properties. The considerable weight of lipid glycosylation in biology has also
been demonstrated [9–11]. As the amount and glycosyltransferase profile could be different
depending on the cell type, glycoconjugates can also be dissimilar. In fact, several biological
functions are influenced by glycan biosynthetic pathways and glycosylation processes
determined by the cell conditions [12]. In addition, environmental and genetic conditions
have shown an impact in the glycome, thereby generating phenotypic variations [13]. In
order to design new treatments aimed at specifically modifying the glycome in pathologic
tissues, it is important to extend the understanding of tissue-specific glycosylation [14,15].

Downregulation or upregulation of glycosyltransferase expression, unavailability of
glycosylation cofactors or substrates, changes in glycosyltransferase subcellular localization
and mutations in genes encoding glycosyltransferases have been evidenced in cancer
samples. These features generate aberrant glycosylation signatures that are related with
tumorigenesis, metastasis and even with chemoresistance [16,17].

Accordingly, mutations in glycosyltransferases and glycosylation pathways associated
genes, as well as altered gene expression coding glycosyltransferases have been described
for different CRC cell lines and tumor tissues from several stages [18]. Additionally,
differential glycoproteomics and glycolipid profiles have been identified and analyzed.
Molecules such as annexin A1, mucins, heat shock protein 90, β1 integrin, selectin ligands,
carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like
growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-β) recep-
tors, Fas (CD95), PD-L1, sorbin and SH3 domain-containing protein 1 (SORBS1), decorin,
CD147 and glycosphingolipids show variations in their glycosylation pattern in CRC
tissues when they are compared with healthy tissues. Interestingly, these changes are
associated with the prognosis and evolution of the disease and response to radiation or
chemotherapy agents [10,19,20]. Thus, studies aimed to identify altered glycosyltransferase
gene expression together with glycosylation profile of molecules involved in CRC patho-
genesis may provide a molecular basis for the identification of predictive biomarkers of
treatment effectiveness and new therapeutic targets.

In this review, we intend to summarize the role of glycosyltransferases and glycosyla-
tion profile in CRC pathogenesis and discuss their therapeutic implications.
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2. Glycosyltransferase Gene Expression Profile in Colorectal Cancer

The expression pattern of glycosyltransferase genes plays an important role in the
biology of CRC cells [21].

Among the genes coding for glycosyltransferases, observed in CRC, 16 have been
found upregulated (FUT1, FUT2, FUT3, FUT4, FUT5, FUT6, FUT8, B3GNT3, B3GNT8,
B4GALNT3, C1GALT1, MGAT4B, MGAT5A, OGT, ST6GAL1 and ST6GALNAC1) and 16
have been found downregulated (FUT9, B3GNT1, B3GNT6, GALNT6, GCNT3 MGAT3,
MGAT5B, ST3GAL1, ST3GAL3, ST6GALNAC2, ST6GALNAC3, ST6GALNAC6, ST8SIA1,
ST8SIA3, ST8SIA4 and ST8SIA5) (Table 1) [22–32].

The upregulation of genes coding for beta 3 and beta 4 glycosyltransferases (B3GNT3,
B3GNT8, C1GALT1 and B4GALNT3), fucosyltransferases (FUT1, FUT2, FUT3, FUT4, FUT5,
FUT6 and FUT8), mannosyl-glycoprotein N-acetylglucosaminyltransferases (MGAT4B
and MGAT5A), O-linked N-acetylglucosaminyltransferases (OGT) and sialyltransferases
(ST6GAL1 and ST6GALNAC1) plays a crucial role in tumor cell proliferation, survival,
induction of stem-like cell properties, epithelial–mesenchymal transition (EMT), metastasis
and resistance to chemotherapy and radiotherapy (Table 1).

On the other hand, the downregulation of glycosyltransferases expression in
CRC cells, such as beta 3-glycosyltransferases (B3GNT1 and B3GNT6), polypeptide
N-acetylgalactosaminyltransferase (GALNT6), glucosaminyl (N-acetyl) transferases/
xylosyltransferases (GCNT3), fucosyltransferases (FUT9), mannosyl-glycoprotein
N-acetylglucosaminyltransferases (MGAT3, MGAT5b) and sialyltransferases (ST3GAL1,
ST3GAL3, ST6GALNAC2, ST6GALNAC3, ST6GALNAC6, ST8SIA1, ST8SIA3, ST8SIA4 and
ST8SIA5) has been also associated with tumor progression, tumor growth, cell proliferation,
adhesion, migration, invasion and chemoresistance to 5-Fluorouracil (5-FU) (Table 1).

Regarding beta 3-glycosyltransferases, the role of β3GnT8 (UDP-GlcNAc:betaGalbeta-
1,3-N-acetylglucosaminyltransferase 8) in CRC cell metastasis could be explained by dec-
orating CD147 with β1,6-branched polylactosamine structures [22,27,33]. CD147, a cell
surface glycoprotein also known as extracellular matrix metalloproteinase inducer (EMM-
PRIN) in its highly glycosylated active form, promotes matrix metalloproteinase (MMP)
production in stromal and tumor cells, generates extracellular matrix degradation and
thereby increases tumor cell migration and invasion [33,34]. Additionally, it has been
evidenced that the overexpression of CD147 in CRC cells promotes cancer stem cell (CSC)
maintenance, EMT, metastasis and low sensitivity to 5-FU through MAPK/ERK signaling
pathway activation [35,36]. Furthermore, other beta-3 glycosyltransferase upregulated in
CRC cells known as C1GALT1 (core 1 β1,3-galactosyltransferase) promotes cell invasion,
stem-like cell phenotype and radioresistance via modifying the O-glycosylation pattern of
FGFR2 (fibroblast growth factor receptor 2) and β1 integrin, respectively (Table 1) [26,37].

The upregulation of mannosyl-glycoprotein N-acetylglucosaminyltransferases, ob-
served in CRC cells has implications in tumor progression and metastasis (Table 1). The
overexpression of N-acetylglucosaminyltransferase V (MGAT5A), evidenced in CRC, pro-
motes cancer cell migration and invasiveness through aberrant glycosylation of TIMP-1
(tissue inhibitor of metalloproteinase-1) [38]. Additionally, MGAT5A activity is involved in
the preservation of angiogenesis in anti-VEGF refractory tumors through the induction of
galectin 1 (Gal 1) binding to endothelial cells [39].

Alterations in the addition of fucose to precursor glycan structures promote cell prolif-
eration, migration, adhesion to extracellular matrix, invasiveness, metastasis, maintenance
of CSCs, TGF-β-induced EMT and multidrug-resistance (MDR) [40–45]. Oligosaccharides
are fucosylated by FUTs in order to synthesize Lewis antigens, which are involved in
cell adhesion to endothelial cells, tumor metastasis, tissue differentiation and inflamma-
tion. The overexpression of FUT3 and FUT5, evidenced in cancer cells, correlates with the
increased presence of Lewis antigens on cancer cell surface that facilitates carcinoma cell–
endothelial cell interactions, tumor cell rolling and metastasis [44]. Cancer cell migration
and invasion are also promoted by TGF-β-induced EMT and are stimulated by fucosyla-
tion of TGF-β receptors. The overexpression of FUT3, FUT6 and FUT8 correlates with the
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enhanced TGF-β downstream signaling and consequently with increased cell invasiveness
and metastasis [42,45]. In addition, alterations in cell surface fucosylated oligosaccharides
are associated with cancer cell multidrug resistance (MDR) not only mediated by EMT
but also stimulated by the positive regulation of drug efflux through ABC transporters via
aberrant activation of PI3K/Akt signaling pathway. Interestingly, increased expression
of FUT4, FUT6 and FUT8 has been associated with upregulation of PI3K/Akt signaling
pathway and high levels of MRP1 (multidrug resistance-related protein 1) [41]. By contrast,
FUT9 activity shows a dual role in CRC progression. At later stages of CRC, downregula-
tion of FUT9 favors cancer cell proliferation and migration. On the other hand, at earlier
stages of CRC development, FUT9 expression promotes CRC cell reprogramming towards
a stem cell-like phenotype contributing to the expansion of CSCs or tumor-initiating cells
(TICs) [46,47].

Sialylation is also a process related to CRC. Modifications in the expression of sia-
lyltransferases are associated with cancer cell survival, proliferation, migration, invasion,
metastasis, induction of stem-like cell properties, chemotherapy resistance, increased sialyl-
Tn antigen expression, inflammation-driven carcinogenesis and resistance to 5-FU. In this
respect, overexpression of ST6GAL1 and ST6GALNAC1 has a role in cancer cell stemness,
cell survival, metastasis and chemoresistance [22,48–51]. ST6GALNAC1 induces stem-like
cell properties via activation of AKT pathway, while ST6GAL1 has been evidenced to
induce the expression of stem cell transcription factors Sox9 and Slug, thereby promoting
cancer cell stemness. In addition, stem-like cell phenotype confers metastatic properties as
well as resistance to drugs [48,50]. Furthermore, sialylation of Fas, catalyzed by ST6GAL1,
inhibits Fas receptor internalization and, thus, avoids Fas-mediated apoptosis [51]. On
the other hand, downregulation of ST6GALNAC2, observed in CRC tissue, stimulates
metastatic processes (Table 1). ST6GALNAC2 hampers the interaction of soluble galectin-3
with the O-glycan profile on the cell surface through the modification of O-glycans. Thus,
ST6GALNAC2 suppresses the retention of tumor cells at secondary sites and avoids metas-
tasis. Consequently, downregulation of ST6GalNAc2 generates unmodified O-glycans
expressed at the cell surfaces that interacts with Galectin-3 and facilitates the development
of metastasis [52]. In addition, the downregulation of ST8SIA4, evidenced in CRC and other
cancer cells, has been associated with increased cell proliferation, migration and invasion
(Table 1) [22,53]. It has been described that ST8SIA4 gene expression is downregulated
by mir-146a and miR-146b, which are overexpressed in thyroid carcinoma [53]. Similarly,
epigenetic mechanisms such as DNA methylation and histone modification regulate gly-
cosyltransferase gene expression [54]. In cancer cells, alterations of miRNAs expression
profile and epigenetic mechanisms are involved in the regulation of glycosyltransferase
gene expression, and glycosylation in turn participates in the epigenetic modulation of
histones and transcription factors; thus, glycosylation could be considered an integral part
of the epigenetic code [54].

Accordingly, changes in glycosyltransferase gene expression evidenced in carcino-
genesis show consequences in glycosyltransferase joint activity and, therefore, in the cell
glyco-code. Some of these alterations affect several molecular functions related with
tumorigenesis, metastasis and cancer progression.
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Table 1. Upregulated and downregulated glycosyltransferase genes in CRC.

A. Upregulated glycosyltransferase genes in CRC. Cellular effects induced by the upregulation of genes encoding
glycosyltransferases are described.

Glycosyltransferases Gene Effects on Cancer Cells References

Beta 3-glycosyltransferases B3GNT3 Cell migration.
Cell invasion.

Maintenance of CSCs.

Ashkani 2016 [22].
Barkeer 2018 [55].

B3GNT8 Cell migration.
Cell invasion.

Resistance to 5-FU.

Ashkani 2016 [22].
Ishida 2005 [27].

Ni 2014 [33].
Shen 2014 [56].

C1GALT1 Induction of stem-like cell properties.
Cell survival.

Cell migration.
Cell invasion.

Radioresistance.

Hung 2014 [26].
Zhang 2018 [37].

Beta 4-glycosyltransferases B4GALNT3 Cell migration.
Cell invasion.

Maintenance of CSCs.

Che 2014 [23].

Fucosyltransferases FUT1 Cell proliferation.
Cell migration.
Cell invasion.

Metastasis.
EMT.

Maintenance of CSCs.

Ashkani 2016 [22].
Lai 2019 [43].

Petretti 2000 [57].

FUT2 Cell proliferation.
Cell adhesion to extracellular matrix.

Cell migration.
Cell invasion.

Metastasis.
EMT.

Maintenance of CSCs.

Ashkani 2016 [22].
Lai 2019 [43].

FUT3 TGF-β-induced EMT.
Cell adhesion to endothelium.

Cell migration.

Ashkani 2016 [22].
Meng 2017 [58].
Padró 2011 [44].

Hirakawa 2014 [42].
FUT4 MDR. Ashkani 2016 [22].

Cheng 2013 [41].
Petretti 2000 [57].

FUT5 Cell adhesion to endothelium.
Cell migration.

Ashkani 2016 [22].
Padró 2011 [44].

FUT6 TGF-β-induced EMT.
MDR.

Tumor progression.
Metastasis.

Ashkani 2016 [22].
Cheng 2013 [41].

Hirakawa 2014 [42].
Sethi 2014 [31].

FUT8 Tumor progression.
Cell migration.
Cell invasion.

Metastasis.
TGF-β-induced EMT.

Tumor immune evasion.
EGF-mediated cellular growth.

Sethi 2014 [31].
Tu 2017 [45].

Bastian 2021 [40].
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Table 1. Cont.

Mannosyl-glycoprotein
N-acetylglucosaminyl

transferases

MGAT4B Tumor progression.
Metastasis.

Ashkani 2016 [22].

MGAT5A Tumor progression.
Metastasis.

Cell invasion.
↓ Anti-VEGF effectivity.

Increase CCSC population.

Murata 2000 [29].
Guo 2014 [59].
Kim 2008 [38].
Croci 2014 [39].

Petretti 2000 [57].

O-linked
N-acetylglucosaminyl

transferases

OGT Cell proliferation.
Cell migration.
Cell invasion.

Xu 2019 [32].

Sialyltransferases ST6GAL1 Cell migration
Cell invasion.
Cell survival.

Induction of stem-like cell properties.
Chemotherapy resistance.

Ashkani 2016 [22].
Schultz 2016 [50].

Swindall 2011 [51].
Park 2012 [49].
Sethi 2014 [31].

ST6GALNAC1 ↑Sialyl-Tn expression.
Maintenance of CSCs.

Resistance to 5-FU.

Ashkani 2016 [22].
Marcos 2004 [60].
Ogawa 2017 [48].

B. Downregulated glycosyltransferase genes in CRC. Cellular effects induced by the downregulation of genes encoding
glycosyltransferases are described.

Glycosyltransferases Gene Effects on Cancer cells References

Beta 3-glycosyltransferases B3GNT1 Ashkani 2016 [22].
B3GNT6 Cell migration.

Cell invasion.
Metastasis.

EMT.

Iwai 2005 [28].
Gupta 2020 [61].

Polypeptide
N-acetylgalactosaminyl

transferases

GALNT6 Poor differentiation.
Cell migration.
Cell invasion.

Chemoresistance to
5-FU.

↑Tn-antigen expression.

Noda 2018 [30].

Glucosaminyl
(N-acetyl)transferases/

xylosyltransferases

GCNT3 Cell proliferation.
Cell adhesion.
Cell migration.
Cell invasion.
Cell survival.

Tumor growth.
Chemoresistance to

5-FU.

Huang 2006 [25].
González-Vallinas 2015 [24].

Fernández 2018 [16].

Fucosyltransferases FUT9 Cell migration.
Metastasis.

Ashkani 2016 [22].
Auslander 2017 [46].

Mannosyl-glycoprotein
N-acetylglucosaminyl

transferases

MGAT3 Tumor progression.
Metastasis.

Ashkani 2016 [22].

MGAT5b Tumor progression.
Metastasis.

Ashkani 2016 [22].
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Table 1. Cont.

Sialyltransferases ST3GAL1 Ashkani 2016 [22].
ST3GAL3 Tumor progression.

Metastasis.
Ashkani 2016 [22].

Sethi 2014 [31].
ST6GALNAC2 Metastasis. Ashkani 2016 [22].

Murugaesu 2014 [52].
Ferrer 2014 [62].

ST6GALNAC3 Tumor progression. Ashkani 2016 [22].
Haldrup 2018 [63].

ST6GALNAC6 Inflammation-driven carcinogenesis. Ashkani 2016 [22].
Huang 2020 [64].

ST8SIA1 Ashkani 2016 [22].
ST8SIA3 Ashkani 2016 [22].
ST8SIA4 Cell proliferation.

Cell migration.
Cell invasion.

Ashkani 2016 [22].
Ma 2017 [53].

ST8SIA5 Ashkani 2016 [22].

TGF-β: Transforming growth factor β. EMT: Epithelial–Mesenchymal Transition. MDR: Tumor Multidrug Resistance. CCSC: Colon Cancer
Stem Cells. CSCs: Cancer Stem Cells. EGF: Epidermal Growth Factor. 5-FU: 5-fluorouracil. Tn-antigen: Cancer associated truncated glycan.

3. Glycosylated Molecules in Colorectal Cancer

Glycosylation is associated with several biological processes. Alterations in glyco-
syltransferase levels and glycosylation patterns have been evidenced in inflammatory
conditions, tumorigenesis and metastasis [5–8,65,66]. In tumor cells, the increased dys-
regulation in glycosylation patterns induced, in part, by changes in cancer cell glucose
metabolism favors their growth and metastasis [7,67,68].

Glycosylation of proteins generates changes on their biophysical properties, function,
distribution and retention in the plasma membrane and modulates cell behavior, cellular
interactions, specific ligand–receptor interactions and immune recognition [5,69–71]. In
CRC tissues, highly glycosylated membrane proteins, such as annexin A1, have been iden-
tified (Table 2). Annexin A1 shows increased levels of GlcNAcylation in CRC compared to
healthy tissues [20]. Annexin A1 is a calcium-dependent phospholipid-binding protein that
interacts mainly with intracellular phospholipidic components such as phosphatidylserine
and has been associated with several biological processes involved in oncogenesis, such as
vesicle aggregation, membrane aggregation, exocytosis, endocytosis, actin polymerization,
mitosis, cell membrane repair, apoptosis and cell differentiation. In addition, other annexin
A1 functions include protection against myocardial ischemia-reperfusion injury; and the
regulation of inflammatory processes, such as leukocyte migration and activation, as well
as the activity of phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2) and inducible nitric
oxide synthase (iNOS) [72,73]. The increased GlcNAcylation described in annexin A1 from
CRC tissues is defined as the addition of N-acetylglucosamine (GlcNAc) moieties to ser-
ine/threonine residues of the protein catalyzed by O-GlcNAc transferases (OGT) [74]. The
importance of O-GlcNAcylation in several cellular events and even in tumorigenesis could
be explained, in part, by its role in gene expression. In this regard, O-GlcNAcylation has
been associated with transcription factor stability and functions. Thus, O-GlcNAcylation
of transcription factors is necessary for T and B lymphocyte activation. Likewise, OGT
cooperates with the regulation of epigenetic mechanisms, such as histone modification and
DNA methylation that have been found dysregulated in cancer cells [74,75]. Furthermore,
O-GlcNAc modifications have roles in glucose metabolism, cell differentiation, cell–cell
adhesion, mitosis, Ca2+ signaling and the regulation of other ion channels among other
cellular processes [76]. Thus, glycosylation of annexin A1 could have a role in CRC etiology
and progression in addition to being a consequence of the carcinogenesis process.

Another protein found differentially GlcNAcylated in CRC tissues is heat shock
protein 90 (HSP90β) (Table 2) [20]. HSP90β is a chaperone protein that interacts with
enzymes, transcription factors, co-chaperones, structural proteins and oncoproteins among
others molecules implicated in a plethora of cellular events [77]. In tumorigenesis, HSP90β
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has been associated with cell viability [78]; HSP90β post-translational modifications (PTMs),
such as phosphorylation, acetylation and S-nitrosylation have been implicated in cancer
cell immortalization via modulation of telomerase activity [79]. Additionally, it has been
shown that HSP90 O-GlcNAcylation affects proteasome activity and, likewise, HSP90
glycation alters HSP90 activity and could be related with cancer progression [80].

Glycosylation of mucins has been extensively studied in cancer tissues. In this regard,
MUC1 is highly glycosylated in CRC tissues and the O-glycosylation pattern of MUC2
is altered (Table 2) [19,81]. Mucin expression in intestinal epithelium is modulated by
different factors, such as gut microbiota, dietary components, epigenetic mechanisms and
translational processes. Since mucins are one of the most important components of the
gastrointestinal associated immune system, alterations in mucin expression or in their
structure and functional properties due to changes in N-glycosylation and O-glycosylation
patterns among other PTMs have shown a role in immune dysregulation, loss of mucosal
barrier integrity, increased risk of inflammatory or infectious diseases and changes in
cell adhesive properties that alter the interaction between cells and their microenviron-
ment [82]. In this regard, the CRC risk increases in patients affected by inflammatory bowel
diseases (IBD), which are characterized by a marked dysbiosis, anomalous immunological
response against gut microbiota, epigenetic dysregulation and alterations in the expres-
sion of enzymes associated with PTMs [83]. Thus, mucins’ contribution to IBD and CRC
pathogenesis has been studied by several research efforts. MUC1 is one of the mucins
that is more strongly implicated. Physiologically, decreased MUC1 expression in colon
mucosa stimulates CD4+ T cell polarization to the Th17 phenotype and in turn Th17 cells
produce cytokines that stimulate MUC1 expression, thus limiting the inflammation con-
dition. According to these findings, alterations in MUC1 structure, such as glycosylation,
can abrogate its immunoregulatory functions and ensues in chronic inflammatory condi-
tions [84]. In addition, MUC1 contributes to metastasis generation by facilitating cell–cell
and cell–extracellular matrix interactions due to its capacity to bind several molecules
associated with migration and extravasation found the presence of both at the cell surface
and in the cytoplasmic compartment. Thus, MUC1 can stimulate metastatic progression
not only by promoting cell–cell adhesion but also by activating intracellular signaling
pathways [85]. Interestingly, mucin oligosaccharides are a source of nourishment for
microbiota and participates in the maintenance of colonic flora balance and distribution.
Therefore, alterations in mucin glycans can generate dysbiosis and consequently abrogate
gut immune balance and intestinal mucosal integrity [83]. In addition, a dense and diverse
O-glycosylation pattern of mucins, such as MUC2 described as the main gel-forming mucin,
is a key protective factor against colitis and CRC through the supply of health nourishment
for the gut microbiota, maintenance of mucus bacterial adhesion capacity and protection
from digestive proteases [19,86]. Thereby, mucin glycosylation patterns are critical not
only for mucin structure but also for its stability, functionality and protection. There-
fore, aberrant mucin glycosylation has strong implications in IBD and CRC pathogenesis
and progression.

Adhesion molecules, such as selectin, integrin and their respective ligands, have
an essential role in tumor cell endothelial adhesion, migration and organ invasion [87].
Changes in the expression level and glycosylation pattern of adhesion molecules have
been related with tumor progression, poor prognosis and metastasis. In this regard, the
hypersialylation of β1 integrin evidenced in CRC cells (Table 1) facilitates β1 integrin
binding to its ligands, collagen I and laminin and interestingly promotes intracytoplasmic
association of β1 integrin with talin, stimulating cell adhesion, motility and migration [88].
Studies focused on selectins have been performed with respect to the ability of circulating
tumor cells to spread to distant organs and lymph nodes. In CRC, the overexpression of E-
selectin ligands, specifically the sialyl LewisX (sLeX) determinants that mediate cell rolling,
have been described. Thus, metastasis is closely associated with an altered glycosylation
profile [89].
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Regarding the immune response, alterations of the glycosylation profile of mucins
or other molecules affect tumor cells interactions with human lectin receptors on antigen
presenting cells (APCs), such as MGL (macrophage galactose-type lectin), DC-SIGN (den-
dritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) and galectin-3.
In CRC tissues, aberrant glycosylation of MUC1 and other CRC antigens, such as carci-
noembryonic antigen (CEA), can alter the mammalian lectin receptor interactions with
tumor cells and could participate in immune modulation and immune
evasion (Table 2) [81]. In addition, glycosylation pattern of T cells and their ligands,
determine thymus homing of T cell precursors, T cell migration, endothelial adhesion and
T cell interaction with MHCII on APC. Additionally, N-glycosylation of T cell receptor
(TCR) and T cell co-receptor regulates T cell activation through stabilization of immunolog-
ical synapses and inhibition of proteases degradation. Moreover, CD4+ T cell polarization
is modulated, in part, by the expression and function of glycosyltransferases [90].

Additionally, in CRC, CEA shows high levels of Lewis antigens such as Lewis X
and Lewis Y. These carbohydrates mediate the binding of CEA with DC-SIGN which is
expressed mainly on immature dendritic cells. The interaction of tumor cells with immature
dendritic cells through DC-SIGN could be related with immune tolerance due to the fact
that immature dendritic cells are not effective in priming naive T cells. Thus, recruitment of
immature dendritic cells by DC-SIGN through Lewis antigens decorating CEA can arrest
dendritic cell differentiation towards a mature phenotype, thereby contributing to tumor
cell immune evasion (Table 2) [81,91].

Aberrant glycosylation of the epidermal growth factor receptor (EGFR) has been
widely studied in CRC cells (Table 2). N-linked glycosylation of EGFR is required for its traf-
ficking to the plasma membrane and it is necessary for its role in tumor
growth [92]. In addition, the EGFR glycosylation pattern in CRC cells is modified by
β1,4-N-acetylgalactosaminyltransferase III (B4GALNT3) that has been found overexpressed
in advanced CRC stages and has been related with poor prognosis (Table 1). PTMs cat-
alyzed by B4GALNT3 confer stability to EGFR and avoids its degradation, contributes with
EGFR signaling pathways that mediate the maintenance of stemness and consequently
generates cancer cell growth, survival and attenuated differentiation (Table 2) [23].

Furthermore, insulin-like growth factor-binding protein 3 (IGFBP3) has shown an
altered glycosylation pattern in serum and tumor cell membrane samples isolated from
CRC patients. In CRC, IGFBP3 has been found decorated with high amounts of α2,6
Sialic acid and low levels of Fuc and GlcNAc moieties [93]. The main function of IGFBP3
is to protect and transport the insulin-like growth factors (IGFs), in circulation, thereby
regulating IGFs activity and availability. IGFs play a role in cell proliferation, survival,
differentiation and migration. In addition, IGFBP3 has shown biological associations
with cell growth inhibitors and molecules involved in tumorigenesis such as retinoic acid,
retinoid X receptor (RXR), retinoic acid receptor (RAR), nuclear factor kappa B (NF-kB),
transforming growth factor beta (TGF-β), tumor necrosis factor-alpha (TNFα), glucose-
regulated protein 78 (GRP78), butyrate (histone deacetylase inhibitor), dietary supplements
with anti-inflammatory and anti-cancer properties, caveolin-1 and interestingly with the
tumor suppressor gene p53 [94–98]. In addition, the glycosylation pattern of IGFBP3 is
crucial for IGFBP3 affinity, its selective binding with its ligands and for IGFBP3 stability,
half-life, function and activity. Thus, low expression of IGFBP3 has been related with
cancer development and resistance to radiotherapy and chemotherapy and interestingly
alterations in the glycosylation pattern of IGFBP3 can modify several molecular events and
intracellular pathways related with tumorigenesis [93–95,99].
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Table 2. Summary of molecules identified to be glycosylated in colorectal cancer samples. Glycosylation and associated
biological effects on cancer cells have been collected.

Target Molecules Glycosylation Effects on Cancer Cells References

Annexin A1 GlcNAcylation
Mitosis.

Apoptosis.
Cell differentiation.

Li et al. [20].
Yang et al. [74].

HSP90 GlcNAcylation Cell viability.
Cancer progression.

Li et al. [20].
Zou et al. [78].

Overath et al. [80].

Carcinoembryonic antigen
(CEA)

↑ Fucose
↑ Mannose

↑ Thomsen–Friedenreich antigen
↓ N-acetylgalactosamine
↓ N-acetylglucosamine

↓ Galactose

Immune tolerance.
CRC tumorigenesis.
CRC progression.

Zhao et al. [101].
van Gisbergen et al. [91].

IGFBP3
↑Sialylation (α2,3)
↓Fucosylation
↓GlcNAcylation

Cell proliferation.
Cell survival.

Cell differentiation.
Cell migration.

Zámorová et al. [93].

Decorin O-glycosylation.

CRC development and
progression.
Metastasis.

Cell-cell adhesion.
Cell migration.

Wei et al. [102].

SORBS1 O-glycosylation.

CRC development and
progression.
Metastasis.

Cell-cell adhesion.

Wei et al. [102].

EGFR
Sialylation (Loss of α2,6 sialylation)

Modification of N- with
LacdiNAc structures.

Cell proliferation.
Tumor growth.

Cancer cell survival.
Attenuated cancer cell

differentiation.
Chemoresistance.

Li et al. [92].
Che et al. [23].
Park et al. [49].

TGF-β receptors Fucosylation EMT.
Metastasis. Hirakawa et al. [42].

MucinsMUC1
MUC2 O-glycosylation

Alteration of the
interactions of

mammalian lectin
receptors with tumor

cells.
Immune dysregulation.
Loss of mucosal barrier

integrity.
Gut dysbiosis.

Pothuraju et al. [82].
Peixoto et al. [69].

Brockhausen et al. [103].
Venkitachalam et al. [17].

Kawashima et al. [19].
Arike et al. [86].

Podoplanin O-glycosylation Cell migration.
Cell invasion. Liu et al. [104].

β1 integrin α2-6 sialylation

Cell adhesion.
Cell motility.

Cell migration.
Tumor cell survival.

Seales et al. [88].
Zhuo et al. [105].

Fas (CD95) α2-6 sialylation Anti-apoptotic effect. Swindall et al. [51].

PD-L1 N-glycosylation Immune response
evasion. Ruan et al. [106].
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Table 2. Cont.

Target Molecules Glycosylation Effects on Cancer Cells References

CD147 Modification with Beta1,6-branched
polylactosamine structures.

Cell migration.
Cell invasion.
Metastasis.

Ni et al. [33].

Glycosphingolipids

↑ Fucosylation
↑ Sialylation

↓ Glycans acetylation
↓ Glycans sulfation

Cell proliferation.
Cell migration.

Chemoresistance.
EMT.

Metastasis.
Reduced apoptosis.

Poor cell differentiation.

Holst et al. [10].
Misonou et al. [100].

Cumin et al. [9].
Gb3: Distler et al. [107].
Gb4: Park et al. [108].

GCS: Haynes et al. [109].
NEU3: Yamaguchi et al. [110].

GD1a and GM1: Kwak et al. [111].
α-GalCer: Yoshioka et al. [112].

GM3: Chung et al. [113].

EMT: Epithelial–Mesenchymal Transition.

In CRC tissues, altered glycosylation patterns of glycosphingolipids have been de-
scribed (Table 1) [10]. Glycosphingolipids are plasma membrane molecules that consist of
glycan structures linked to sphingosine and closely related lipids. They are implicated in
several events related with membrane integrity and cellular interactions. In cancer cells,
they are involved in cell proliferation, cell migration, chemoresistance, EMT, metastasis, re-
duced apoptosis and poor cell differentiation [9,10]. Interestingly, CRC tissues have shown
an increased fucosylation and sialylation accompanied by low acetylation and sulfation
of glycosphingolipid glycans (Table 2) [10,100]. Thus, PTMs affecting glycosphingolipid
glycan profile in tumor tissues could be implicated in CRC progression and metastasis.

4. Implications of Glycosylation and Glycosyltransferases in Colorectal Cancer Therapy

As previously mentioned, CRC is considered one of the most lethal cancer with a
high global prevalence [114]. Current treatments include surgical interventions in order to
remove primary tumors and to avoid metastasis either before or after chemotherapy or ra-
diotherapy [115–118]. Despite these treatments, metastasis is a common occurrence in most
cases because of the late diagnoses and the problems in surgical elimination [2,119–121].
For these reasons, chemotherapy is a good option to reduce death related to CRC.

Chemotherapy agents are varied and there are regimens including only one agent
or a combination of effective drugs that affect one or several targets [121]. Indeed,
the most frequently used treatment in present times is a combination of 5-fluorouracil
(5-FU)/leucovorin (LV, folinic acid) with oxalipatin or irinitecan (camptothecin-11, CPT-11).
Other agents include monoclonal antibodies such as cetuximab or bevacizumab targeting
EGFR or the vascular endothelial growth factor (VEGF), respectively [122].

Modulation of glycosyltransferase expression by drugs has been studied for CRC.
The expression of GCNT3 gene, which encodes the enzyme mucin-type core 2 1,6-N-
acetylglucosaminyltransferase (C2GnT-M), has been found downregulated in bad prog-
nosis CRC tissues (Table 1). In this regard, Gonzalez-Vallinas et al. have shown that the
expression of GCNT3 is induced by chemotherapeutic drugs, such as pyrimidine analogue
5-FU, proteasome inhibitor bortezomib or the mitotic inhibitor paclitaxel and these effects
correlate with suppression of cell viability in cancer cells [24].

Regarding tumor cell epitopes, it has been described that the altered glycosylation
generates neo-antigens that become targets for tumor-specific T cells [90]. Thereby, CRC
associated glycosylation can be involved in tumor immune evasion and immune regulation.
Based on these findings, immunotherapy challenges, such as those that include the design
and generation of engineered CAR (Chimeric antigen receptors) T cells using differentially
glycosylated molecules as targets, have ensued (Figure 1) [123]. In addition, innovative
immunotherapies focused on enhancing T cell activity through modification of T cell
N-glycosylation could avoid the differentiation of naive CD4+ T cells into regulatory or



Int. J. Mol. Sci. 2021, 22, 5822 12 of 20

exhaustion phenotypes that favor tumor immune evasion and it is usually observed in
precancerous conditions and in tumor microenvironment (Figure 1) [124–128].
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Figure 1. Glycan-based therapeutic approaches for colorectal cancer. Details of therapy strategies based on modifications of
glycan and glycosyltransferase expression includes: (1–4) Glycosyltransferases as a target for therapeutic miRNAs and
glycosyltransferase inhibitors in order to reduce metastasis and block cell cycle. (5–7) Strategies based on glycan profile
modifications to stimulate the immune system. (8) Implementation of modified glycan structures to increase cytotoxic
action of chemotherapy agents.

According to CRC, O-GlcNAcylation has been shown to be elevated in CRC due
to the Warburg effect and it has been recognized as an axis for the development and
progression of metastasis [129]. CRC cells replace their aerobic glucose metabolism, even in
the presence of relatively normal levels of oxygen, by anaerobic glucose metabolism which
leads to a significant increase in glucose absorption in a process known as the Warburg
effect [130]. Thus, the Warburg effect provide cancer cells with an incredible adaptive
advantage compared to normal cells since glucose and glutamine are basic for cellular
growth [131,132]. This process is also associated with a high risk of metastasis in CRC
patients who have an excessive caloric intake [133] or diabetes comorbidity [134]. In this
regard, various miRNAs have been shown to regulate the expression of O-GlcNAcylation
transferases (OGT) [135,136]. Among these, miR-424 downregulates the expression of OGT
and other glycosyltransferases, such as MGAT4A, with a resultant arrest of the cell cycle
(Figure 1) [137]. In addition, OGT and histone methyltransferase (EZH2) are regulated
by miR-101. The evidenced decrease in miR-101 in CRC tissues induces an increase in
O-GlcNAcylation of Ser75 that stabilizes EZH2. OGT and EZH2 activity produces a
decrease of miR-101 expression, thereby generating a negative feedback loop that promotes
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metastasis (Figure 1) [138]. Thus, OGT and O-GlcNAcylation patterns are interesting
therapeutic targets for metastatic CRC [139].

As previously stated, alterations in glycosylation patterns, mediated by the modified
glycosyltransferase expression, are involved in CRC malignant transformation [11,140].
Therefore, glycoconjugates and the molecules involved in their synthesis are interesting tar-
gets for new therapeutic approaches. In this context, Jian-Jun Qu et al. evaluated the effect
of miR-4262 in CRC cell lines and human tissues and observed a significant decrease of
miR-4262 levels when compared with control samples. Additionally, upregulation of miR-
4262 expression decreased GALNT4 expression. GALNT4 catalyzes the O-glycosylation of
threonine residues 44 and 57 in P-selectin glycoprotein ligand-1 (PSGL-1). Thr57 glycosyla-
tion is necessary for PSGL-1/P-selectin interaction, which stimulates tumor growth, tumor
cell propagation into the bloodstream and metastasis. Accordingly, the administration
of miR-4262 could reduce tumor growth and metastasis through the downregulation of
GALNT4 expression (Figure 1) [141–144].

It has been shown that BGJ398, an OGT inhibitor, can significantly inhibit the activity
of core 1 O-Glycan T-Synthase (C1GALT1) that catalyzes the transfer of Gal from UDP-Gal
to GalNAc-alpha-1-Ser/Thr of cell surface proteins, such as the fibroblast growth factor
receptor 2 (FGFR2), resulting in a significant decrease in the invasive capacity of CRC cells
(Figure 1). These data suggest that FGF/FGFR2 signaling pathway is part of the phenotypic
changes modulated by C1GALT1 and could be a therapy for CRC (Figure 1) [26].

Regarding tumor immune evasion, it has been described that KYA1797K, a β-catenin
inhibitor, stimulates the immune response through the regulation of glycosyltransferase
expression. The β-catenin and dolichyl-diphosphooligosaccharide-protein glycosyltrans-
ferase subunit STT3 (STT3) are overexpressed in CRC. The expression of STT3 is upreg-
ulated by β-catenin. Furthermore, upregulation of both proteins correlates with CRC’s
worsened prognosis. In this regard, KYA1797K mediates suppression of β-catenin expres-
sion with the subsequent downregulation of STT3. STT3 downregulation decreases the
stability and the immunosuppressive activity of programmed death receptor 1 (PD-L1)
through the inhibition of PD-L1 glycosylation and consequently increases the population
of CD8+ T cells and the expression of granzyme B. Therefore, the inhibition of PD-L1 gly-
cosylation reduces the immune evasion through blocking Wnt/β-catenin/STT3 signaling
pathway in CRC cells (Figure 1) [106].

The use of glycans as target molecules for immunotherapy has been extensively stud-
ied in cancer cells. Glycan-based cancer vaccines are used to decorate tumors with glycan
structures, such as Lewis antigens, in order to enhance the presentation of tumor anti-
gens by APCs, including dendritic cells internalization and antigen presentation, thereby
improving tumor-specific T cell activation (Figure 1) [90]. Additionally, therapeutic ap-
proaches using engineered CAR-T cells with specificity for glycan epitopes differentially
expressed in cancer cells have also been described (Figure 1) [123].

Drug resistance has been associated with aberrant glycosylation profiles.
Hamaguchi et al. used glycosylation inhibitors in order to study the relationship between
N-glycosylation and drug resistance. Specifically, they observed an effect of swainsonine,
an α-mannosidase 2 inhibitor which blocks Golgi oligosaccharide processing, generating
altered N-glycan structures that affect 5-FU mechanisms of resistance in CRC cell lines [145].
In the same way, other authors have shown that swainsonine administration improves
tumor cell sensitivity towards the apoptotic effect of cisplatin, which results in avoiding
drug resistance. These data suggest that inhibition of N-glycosylation could facilitate the
cytotoxic action of chemotherapy agents [146].

All these considerations highlight aberrant glycosylation as a crucial issue in CRC
treatment and point out some potential targets to improve and design specific therapies.

5. Conclusions

Glycosylation is a regulatory mechanism implicated in a number of physiological
and pathological processes. The mechanisms of glycosylation are related with several
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biological events such as membrane integrity, cellular interactions and cell proliferation. In
cancer cells, glycosylation has been related to cell migration, chemoresistance, epithelial-
to-mesenchymal transition, metastasis, reduced apoptosis, tumor growth and poor cell
differentiation. In CRC, alterations in glycoprotein profiles, such as increased sialylation
or branched glycan structures and overexpression of fucosylation, have been extensively
found. Thereby, characterization and analysis of glycoconjugates have great potential to
improve early diagnosis and therapy designs based on new therapeutic targets.
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