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INTRODUCTION

On the basis of several recent meta-analyses synthesizing the effects of transcranial direct current
stimulation (tDCS) on sport performance (Lattari et al., 2018; Machado et al., 2018; Holgado
et al., 2019a), Holgado et al. (2019b) concluded that there is insufficient evidence to support an
ergogenic or “brain-doping” effect of tDCS on sport and/or physical performance. The authors
also highlighted that the exact neuro-modulatory mechanisms through which tDCS may improve
human performance remain largely unclear. We describe here more explicitly several important
limitations of the majority of tDCS research to date. We also examine potential mechanisms of
action, and provide recommendations that we believe are needed to more robustly study the
ergogenic effects of tDCS moving forward.

OVERCOMING METHODOLOGICAL “HURDLES” IN tDCS

RESEARCH

Inconsistencies in tDCS effectiveness both within and between studies has been well-documented
(Lattari et al., 2018; Machado et al., 2018; Holgado et al., 2019b) and likely arises from the
combination of multiple issues. Across studies, numerous different devices have been utilized
to administer stimulation, which may vary considerably in the current flow properties that they
produce (Hahn et al., 2013; Zhang and Li, 2015). The characteristics of tDCS intervention,
including the cortical target of interest, electrode size, electrode materials, and the intensity of
current flow, have also varied considerably between studies, and moreover, are often insufficiently
reported (Palm et al., 2014; Kouzani et al., 2016; Machado et al., 2018; Holgado et al., 2019a).
Complicatingmatters further is that across subjects within studies, the same tDCS interventionmay
produce very different electrical fields in the cortex, and have different effects on brain function,
due to inter-subject variation in both anatomy and physiology (Wiethoff et al., 2014; Li et al., 2015;
Sanchez-Kuhn et al., 2018). Together, these challenges highlight the need for standardized reporting
of tDCS, as well as the application of advanced technology to help measure and even “personalize”
current flow.
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Fortunately, recent technological advances offer promise to
help researchers estimate the electric fields induced by tDCS,
customize montages to individual head and brain anatomy,
and examine the effects of tDCS on brain physiology. For
example, Laakso et al. (2016) used a finite element modeling
technique on a standardized brain template to determine the
characteristics of the electrical field generated by tDCS. Such
a technique now offers a data driven approach to developing
tDCS montages that more likely target the cortical region of
interest. Applying such a technique to individual brain MRIs also
promises to help establish dose-response relationships between
tDCS-induced electric fields and potential changes in functional
performance. Beyond this, we believe that researchers should
consider administering tDCS via an array of smaller electrodes,
and in appropriate circumstances using montages created via
modeling-based optimization techniques (Ruffini et al., 2014), to
create more focal and “personalized” targets of tDCS (Madhavan
and Stinear, 2010; Bikson et al., 2012; Li et al., 2015; Opitz et al.,
2015). Together, we believe that the combination of these new
techniques will ultimately help to produce larger, more consistent
effects of tDCS intervention.

SPORT PERFORMANCE IS MORE THAN

STRENGTH AND ENDURANCE

Several published meta-analyses have combined data from
studies on the effects of tDCS on both muscle strength and
endurance (Machado et al., 2018; Holgado et al., 2019a). These
two muscle functions stem from distinct neuro-physiologic
procedures, are likely to be differentially affected by cortical
neuromodulation, and should be considered separately in
such analyses. Furthermore, numerous factors beyond muscle
strength and endurance contribute to sports performance
(Miller and Clapp, 2011; Loprinzi et al., 2013). Such factors
as sensory perception and processing, fatigue, perceived
exertion, multiple aspects of executive function including
dual tasking and response inhibition, and neural recovery
depend upon supraspinal function and appear to be modifiable
via tDCS (Zhou et al., 2014; Wang et al., 2015; Vecchio
et al., 2018; Angius et al., 2019) A better understanding of
the acute and longer-term impact of tDCS on these factors
is needed before definitive neuro-doping claims should
be made.

ONE POTENTIAL MECHANISM OF ACTION

Most studies to date have focused on the effects of tDCS on
functional performance; e.g., tDCS targeting the bilateral motor
cortex has been shown to improved cycling performance in
healthy adults (Angius et al., 2018). Much more work is thus
needed to uncover the neurophysiological mechanisms through
which tDCS may improve such performance. Understanding
this, in turn, will enable the development of neuromodulatory
interventions directly aimed at enhancing such mechanisms.

Several potential mechanisms of action through which
tDCS alters functional performance have been described. Such
efforts have focused on the effects of tDCS on neurochemical

transmitters (e.g., GABA, dopamine, adenosine) (Kuo et al., 2008;
McLaren et al., 2018), as well as neurophysiologic responses
(Labruna et al., 2019). GABA, for example, is one of the most
important inhibitory neurotransmitters in the brain and has been
linked to motor performance (Krause et al., 2013; Kolasinski
et al., 2019). To this end, Kim et al. (2014) demonstrated
that compared to cathodal or sham stimulation, anodal tDCS
targeting the hand area of the left primary motor cortex induced
a reduction in GABA concentration within this brain region.
Excitingly, those who experienced a greater decrease in GABA
concentration exhibited greater improvements in performance
on both motor learning and motor memory tasks.

Additional work is also needed to better understand the links
between tDCS-induced changes in neurophysiology and function
outcomes. Labruna et al. (2019) recently published a promising
study, for example, that used single-pulse transcranial magnetic
stimulation (TMS) over the primary motor cortex to measure
the effects of tDCS on resting motor thresholds (rMT). Results
suggested that following tDCS, participants who exhibited a
greater reduction in rMT tended to improve their performance
more in a motor learning task. Moving forward, more studies
such as these that combine both functional and mechanistic
outcomes will help us better understand and optimize the effects
of tDCS on sport performance.

IS tDCS A “NEURO-DOPING” THREAT?

According to the current World Anti-Doping Code (WADA,
2019), a substance or method should be considered as “doping”
if it meets two of three criteria based upon scientific criteria
and/or experience: (1) it has potential beneficial effects on athletic
performance, (2) it poses potential health risks to athletes,
and (3) it violates the spirit of sport. We believe that tDCS
has strong potential to enhance athletic performance, especially
as advances in technology, modeling, and methodology help
overcome the many challenges of traditional tDCS research. At
the same time, tDCS is widely believed to pose non-significant
risk to participants when recommended procedures are followed
(Brunoni et al., 2011; Bikson et al., 2016; Jackson et al., 2017).
tDCS therefore holds strong promise to improve performance
without posing significant health risks to athletes. As such, we
believe that determination of tDCS as a neuro-doping strategy
will ultimately come down to the challenging ethical question
of whether or not it negatively impacts the spirit of sport and
fair competition.
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