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ABSTRACT Enhancers physically interact with transcriptional promoters, looping over distances that can
span multiple regulatory elements. Given that enhancer–promoter (EP) interactions generally occur via
common protein complexes, it is unclear whether EP pairing is predominantly deterministic or proximity
guided. Here, we present cross-organismic evidence suggesting that most EP pairs are compatible, largely
determined by physical proximity rather than specific interactions. By reanalyzing transcriptome datasets,
we find that the transcription of gene neighbors is correlated over distances that scale with genome size.
We experimentally show that nonspecific EP interactions can explain such correlation, and that EP distance
acts as a scaling factor for the transcriptional influence of an enhancer. We propose that enhancer sharing is
commonplace among eukaryotes, and that EP distance is an important layer of information in gene regulation.
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Enhancers mediate the transcriptional regulation of gene expression,
enabling isogenic cells to exhibit remarkable phenotypic diversity
(Davidson and Peter 2015). In complex with transcription factors,
they interact with promoters via chromatin looping (Marsman and
Horsfield 2012), finely regulating transcription in time and space. A
prevailing view is that most enhancers have a mechanism to selectively
loop to a target promoter (van Arensbergen et al. 2014). Examples in
this category usually require specific transcription factor binding at
both enhancer and promoter sites (Davidson and Peter 2015), which
could explain why some enhancers seem to influence different pro-
moters to varying degrees (Gehrig et al. 2009). On the other hand,
EP looping is generally mediated by common protein complexes
(Kagey et al. 2010;Malik and Roeder 2010), conflicting with the specific
molecular interactions required by such a model at a larger scale. Ex-
amples of nonspecific EP pairing also seem to be common (Butler and

Kadonaga 2001). Yet given that this model could result in transcrip-
tional crosstalk, it appears inconsistent with our current paradigm of
gene regulation. The predominant EP pairing scheme, specific or non-
specific, and its determinants are thus unclear. Here, we ask to what
extent are potential EP pairs compatible through a meta-analysis of the
genome-wide transcription of gene neighbors in five species. We pro-
pose that enhancer sharing occurs widely across eukaryotes, test key
aspects of this hypothesis in Caenorhabditis elegans, and analyze its
implications in other genomic phenomena.

MATERIALS AND METHODS

Computational biology
For each analyzed organism, Ensembl (Flicek et al. 2014) protein-coding
genes were grouped by chromosome, sorted by position, and paired
with the 100 nearest neighbors within the same chromosome. A list
of duplicated gene pairs for Homo sapiens and Mus musculus was
obtained from the Duplicated Genes Database (Ouedraogo et al.
2012) (http://dgd.genouest.org). A list of C. elegans genes predicted
to be in operons was obtained from Allen et al. (2011), and gene pairs
present in the same operon were removed from the analysis to pre-
vent cotranscriptional bias. Processed RNA-seq data were obtained
from multiple sources (Gerstein et al. 2010; Attrill et al. 2016; Ellahi
et al. 2015; The ENCODE Project Consortium 2012) and converted to
transcripts per million (TPM) (Li et al. 2010) when necessary. For-
matted datasets are available upon request. Genes detected in, 80%
of experiments were discarded. To compute the Spearman correlation
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coefficient, TPM values were ranked in each RNA-seq experiment
and the pairwise Pearson correlation coefficient was computed on
the ranked values according to the following equation:

r ¼ cov
�
gene1; gene2

�

sgene1sgene2

where gene1 and gene2 are the corresponding ranks of each paired
gene in a given RNA-seq experiment, cov their covariance and s their
SD. The list of gene pairs with intergenic distances and correlation
coefficients was sorted by increasing intergenic distance, and subse-
quently smoothed using a sliding median with window size of
1000 gene pairs. The result was then fitted to an exponential decay
function of the form:

rðdÞ ¼ r0e
2ld þ c

where r0 is the median Spearman correlation coefficient of the closest
neighboring genes, d the intergenic distance, and c the baseline cor-
relation. Themean distance at which a pair of genes remain correlated
was then computed as:

dexp ¼ 1=l

To compute the background correlation, each gene was paired with
20 randomly selected genes from a different chromosome and the 95%
median confidence interval was computed by bootstrapping with
10,000 samples. A list of genes annotated with RNA in situ hybrid-
ization data (Hammonds et al. 2013; Tomancak et al. 2002, 2007) was
obtained from the BerkeleyDrosophilaGenome Project (http://insitu.
fruitfly.org). Insulator Chromatin ImmunoPrecipitation coupled with
microarrays (ChIP-chip) data were obtained from Negre et al. (2010)
(GSE16245); the intersection of replicates was used. HiC data were
obtained from Rao et al. (2014) (GSE63525, GM12878 primary rep-
licate HiCCUPS looplist). Functional protein classification was con-
ducted using Panther (Mi et al. 2016). Genomic manipulations were
conducted using Bedtools v2.24.0 (Quinlan and Hall 2010). Data
analysis was conducted using Python 2.7.9 and the Scipy library
(McKinney 2010). Plots were generated using Matplotlib 1.5
(Hunter 2007).

Molecular biology
C. eleganswas cultured under standard laboratory conditions (Stiernagle
2006). For enhancer additivity experiments, transgenic C. elegans
lines carrying extrachromosomal arrays were generated by injecting
each plasmid at 50 ng/ml into unc-119 mutant animals. The minimal
Dpes-10 promoter (Fire et al. 1990) and nuclear localized GFP
(Lyssenko et al. 2007) were used in all constructs. Minimal regions
of themyo-2 and unc-54 enhancers (Okkema et al. 1993) able to drive
tissue-specific expression were used. The BWM (body wall muscle)
enhancer was obtained from the upstream region of F44B9.2; the
BWM/intestine enhancer was obtained from the upstream region of
rps-1. Animals were imaged at 40 · using a GFP filter on a Zeiss
Axioskop microscope.

For theEPdistance andectopic enhancer experiments,wedefinedan
EP distance of 0 to be the enhancer placed just upstream of the Dpes-10
promoter, which is �350 bp away from the start codon of gfp. To
ensure neutrality yet maintain a similar GC content as noncoding
sequences inC. elegans, we used nonoverlapping AT-rich DNA spacers
obtained from the genome of Escherichia coli. Constructs were inte-
grated in single-copy into chromosome IV via CRISPR-Cas9 using
plasmids provided as gifts by ZhipingWang and Yishi Jin (unpublished

results). Briefly, plasmids containing the following expression cassettes
were coinjected: reporter and hygromycin resistance genes flanked by
homologous arms for recombination-directed repair (10 ng/ml), single-
guide RNA (10 ng/ml), Cas9 (10 ng/ml), and an extrachromosomal
array reporter for expression of either rfp or gfp outside the tissue of
interest (10 ng/ml). Transformants were selected for using hygromycin
at 10 mg/ml, and those not carrying extrachromosomal transgenes,
which lacked gfp or rfp expression outside the tissue of interest, were
subsequently isolated. Animals homozygotic for the insertion were
identified by polymerase chain reaction (PCR) and Sanger sequencing.

Quantitative PCR was carried out as previously described (Ly et al.
2015) using pmp-3 as a reference gene (Zhang et al. 2012). Briefly,
third-stage larval (L3) worms, when expression from the test enhancers
is maximal according to RNA-seq data, were synchronized at 20� via
egg-laying. Fifteen animals were lysed in 1.5 ml of Lysis Buffer [5 mM
Tris pH 8.0 (MP Biomedicals), 0.5% Triton X-100, 0.5% Tween 20,
0.25mMEDTA(Sigma-Aldrich)]withproteinase-K (Roche) at 1.5mg/ml,
and incubated at 65� for 10 min followed by 85� for 1 min. Reverse
transcription was carried out using the Maxima HMinus cDNA syn-
thesis kit (Thermo Fisher Scientific) by adding 0.3 ml H2O, 0.6 ml 5 ·
enzyme buffer, 0.15 ml 10 mM dNTP mix, 0.15 ml 0.5 mg/ml oligo dT
primer, 0.15 ml enzyme mix, and 0.15 ml DNAse, and incubated for
2 min at 37�, followed by 30 min at 50�, and finally 2 min at 85�. The
cDNA solution was diluted to 15ml and 1ml was used for each qPCR
reaction, so that on average each well contained the amount of RNA
from a single worm. All qPCR reactions were performed with three
technical replicates and at least three biological replicates using the
Roche LightCycler 480 SYBR Green I Master in the LightCycler
480 System. Crossing point-PCR-cycle (Cp) averages were com-
puted for each group of three technical replicates; these values were
then subtracted from the respective average Cp value of the refer-
ence gene.

Data and reagent availability
Strains are available upon request. Relevant DNA sequences, including
spacers, enhancers,primers, sgRNA,andhomologyarmsareavailable in
Supplemental Material, Table S1. Correlation datasets are available in
File S1 and File S2. qPCR data are available in Table S2. Python source
code, and links to all expression datasets used in this study, are available
for download on the following github repository: https://github.com/
WormLabCaltech/QuinteroSternberg2016.git.

RESULTS AND DISCUSSION

Gene neighbors are transcriptionally
correlated genome-wide
We reasoned that widespread EP compatibility should result in tran-
scriptional correlation among gene neighbors. Indeed, gene coexpres-
sion clusters have been extensively reported in eukaryotic genomes (e.g.,
Sémon and Duret 2006; Roy et al. 2002; Lercher et al. 2002, 2003;
Lercher and Hurst 2006; Williams and Hurst 2002; Singer et al. 2005;
Williams and Bowles 2004; Spellman and Rubin 2002; Purmann et al.
2007; Zhan et al. 2006; Boutanae v et al. 2002; Kalmykova et al. 2005;
Caron et al. 2001; Rubin andGreen 2013) in spite of order ofmagnitude
variations in genome size (e.g.,�12 Mb in Saccharomyces cerevisiae vs.
�3 Gb in H. sapiens). An early informative example is the discovery of
chromosomal domains of gene expression in S. cerevisiae (Cohen et al.
2000) that exhibit features that strongly support enhancer-sharing,
mainly distance-dependence in transcriptional correlation that quali-
tatively resemble chromosome contact matrices (e.g., Rao et al. 2014),
and instances in which a single enhancer seems to be responsible for
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the coexpression of adjacent gene pairs. The ubiquity of these features
across eukaryotes would support the idea that EP interactions are
largely determined by physical proximity rather than by specific inter-
actions. Given the accumulation of transcriptome sequencing data, we
decided to investigate the transcriptional correlation of gene neighbors
in representative eukaryotic species as a first step to explore the average
EP pairing scheme.

Wepaired every protein-coding gene of five organisms (S. cerevisiae,
C. elegans,Drosophila melanogaster,M.musculus, andH. sapiens) with
its 100 nearest neighbors within the same chromosome. This yielded

lists of around 600,000 (S. cerevisiae) and 2 million (each of the rest)
gene pairs. We then computed the Spearman correlation coefficient
between paired genes across multiple RNA-seq datasets (Gerstein
et al. 2010; Attrill et al. 2016; Ellahi et al. 2015; The ENCODE Project
Consortium 2012) and the intergenic distance between the start of
the 59 untranslated region of the first gene to the start of the second
gene in each pair.

We observed that neighboring genes tend to be correlated in
transcript abundance genome-wide in all analyzed organisms, and that
this correlation decays exponentially with increasing intergenic distance

Figure 1 Neighboring genes are transcriptionally correlated genome-wide across eukaryotes. (A) Sliding median of correlations between paired
neighbors (blue line) and interquartile range (pale blue) with increasing intergenic distance. Median6 95% C.I. of randomly paired genes is shown
as a horizontal gray line. Fit to an exponential decay function (red line) was used to compute the mean distance at which gene neighbors remain
correlated (dexp; vertical red dashed line). The genome size (G) is displayed for each organism. Distribution of intergenic distances between each
gene and its nearest neighbor (B) and all paired genes (C). The organism analyzed in each case is indicated for each group of three subplots.
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(Figure 1A).We thus fitted the data to an exponential decay function to
estimate the distance at which a pair of genes remain correlated (dexp).
Consistent with the persistence of the correlation pattern across organ-
isms, dexp scaled with genome size, to 1 kb in S. cerevisiae, �10 kb in
C. elegans and D. melanogaster, and �350 kb in M. musculus and
H. sapiens (Figure S1). This trend remained largely the same even after
removing duplicated gene pairs (Figure S2).Most genes had at least one
neighbor closer than dexp in all species (Figure 1B), and the represen-
tation of gene ontology annotations remained unbiased in correlated
gene pairs (Figure S3), indicating that the average gene is correlated in
expression with its nearest neighbors beyond any particular gene class.
In addition, sampled intergenic distances go well beyond dexp (Figure
1C), indicating that 100 gene neighbors are a sufficient number to study
this effect.

To examine the correlation of gene expression in the spatial domain,
we analyzed RNA in situ hybridization data for 6053 genes in D. mel-
anogaster (Tomancak et al. 2002, 2007; Hammonds et al. 2013). We
computed the percentage overlap in tissue expression by dividing the
number of common tissues over the total number of unique tissues in
which genes of any given pair are expressed (Figure S4A). This analysis
revealed that close neighbors have a tendency to be expressed in the
same tissues, and that this overlap also decays exponentially with inter-
genic distance (Figure S4B). However, the correlation extends to a
longer mean distance (dexp = 22 compared to 6 kb), suggesting that
RNA-seq analysis, which included mostly whole-organism transcrip-
tome averages, resulted in a conservative estimate.

Given that pairing every gene with 100 proximal genes provides a
complete set of distance-dependent correlations between gene pairs, we
concluded that gene neighbors have a spatio-temporal correlation in
expression that is highly dependent upon the spacing between them.
Our meta-analysis unifies the findings of previous reports (reviewed in
Michalak 2008) and highlights the distance-dependence of genome-
wide and cross-organismic transcriptional correlations that transcend
localized gene coexpression clusters.

Enhancer sharing explains the transcriptional
correlation of gene neighbors
The pervasive nature of proximal gene coexpression supported the idea
ofwidespreadEPcompatibility.Thisconnectionis, in turn, supportedby
several other observations in the literature: (i) enhancers regulate
transcription by making contact with promoters via chromatin looping
(Marsman and Horsfield 2012), whose incidence also decays exponen-
tially as the distance between contacting sites increases (Ringrose et al.
1999; Rao et al. 2014), with the same pattern as observed here at least in
some documented cases (e.g., H. sapiens, Figure S5); (ii) the average
distance between a large fraction of studied EP interactions scales with
genome size in ranges often consistent with dexp , 1 kb in S. cerevisiae,
(Dobi and Winston 2007), , 10 kb in C. elegans, (Araya et al. 2014),
and 120 kb in H. sapiens (Sanyal et al. 2012); (iii) common protein
complexes such as themediator seem to be widely utilized bridges in EP
looping (Kagey et al. 2010; Malik and Roeder 2010); (iv) a high fre-
quency of chromatin interactions are observed within topologically-
associated domains identified through high-resolution Chromosome
Conformation Capture (Hi-C) (Rao et al. 2014); and (v) studied en-
hancers often do not show promoter specificity (Butler and Kadonaga
2001). This line of reasoning suggests a model where, as opposed to
only having a specific target gene (Figure 2A), the average enhancer has
a range of action in which it can influence any active promoter within
its reach (Figure 2B). A concrete example consistent with this idea is the
upregulation of neighboring genes upon enhancer activation by fibro-
blast growth factor in mammalian cells (Ebisuya et al. 2008). Tran-
scriptome analysis could thus provide indirect evidence of genome and
condition-wide EP looping that is difficult to access through Hi-C (Rao
et al. 2014) due to the low signal-to-noise ratio of short-range
interactions.

Because of its compact genome, rapid development, and availability
of tissue-specific enhancers (Corsi et al. 2015), we decided to use C.
elegans to test the validity of a nonspecific EP pairing model. We first
postulated that unrelated enhancers should generally be compatible,

Figure 2 Enhancer sharing explains the
transcriptional correlation of gene neigh-
bors. Two possible models for EP relation-
ship: (A) Enhancers have specific target
genes and (B) enhancers have a range of
action in which they influence genes by
physical proximity. Tissue-specific en-
hancers (C) are generally compatible.
Pharynx and body wall muscle (D) and
pharynx, body wall muscle, and intestine
(E) enhancers driving nuclear gfp expres-
sion. mRNA levels of gfp with increasing
EP distance for lines with myo-2 (filled cir-
cles) (F) and unc-54 (hollow circles) (G)
enhancers. (H) Genomic context of the in-
tegration site. The inserted construct is
shown over a dashed black line and in-
cludes a hygromycin resistance gene
(hyg-R) regulated by a ribosomal enhancer
(rps-0) and promoter in addition to the re-
porter (gfp) regulated by either the myo-2
or unc-54 enhancers; the native genes
dpy-13 and col-34 flank the insertion site.

Relative mRNA levels of dpy-13 (I) and col-34 (J) in wild-type and lines with and without the 2 kb spacer (� two tailed P-value , 0.05, Mann-
Whitney U-test). The difference in crossing point-PCR-cycle (DCp) with the reference gene pmp-3 and the corresponding median for each group
of biological replicates is shown for every qPCR experiment. EP, enhancer–promoter; mRNA, messenger RNA; PCR, polymerase chain reaction;
qPCR, quantitative PCR.
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showing qualitative additivity when placed upstream of a single pro-
moter. We thus paired the well-characterized myo-2 pharyngeal en-
hancer with a BWM and a BWM plus intestine enhancer, placed them
upstream of a minimal promoter and a gfp reporter, and examined
expression in transgenic animals. In both cases, we observed fluores-
cence in the corresponding tissues (Figure 2, C–E). This observation is
consistent with typical enhancer studies in artificial constructs (Dupuy
et al. 2004) and agrees with some EP compatibility studies (Butler and
Kadonaga 2001).

Given that both chromatin looping and expression correlation decay
exponentially, we reasoned that transcription of a given gene should also
decay exponentially with increasing EP distance if the observed corre-
lation is to be explained by enhancer sharing. To test this hypothesis, we
first built a series of genetic constructs with increasing neutral EP
distances (0, 1, 1.5, and 2 kb) for two different enhancers, myo-2 and
unc-54 (�400 and 300 bp, respectively). We then integrated each con-
struct in single-copy into the genome of C. elegans and used quantita-
tive PCR to: (i) measure the influence of EP distance on the reporter
gene in native chromatin and (ii) analyze the impact of the perturbation
on the two genes that natively flank the site of transgene insertion (dpy-
13 and col-34, Figure 2H), which we reasoned should be affected in two
counteracting ways. First, the ectopic enhancers should promote their
expression. Second, the increased EP distance caused by the addition of
spacers should reduce their expression by scaling down the influence of
both ectopic and native enhancers (the latter of unknown identity and
location) to the opposite side of the spacer.

We found that transcriptional levels of the reporter gene indeed fall
rapidlywith increasingEPdistancewithboth enhancers (Figure 2, F and
G); this occurred at a rate that seems congruent or faster than the
genome-wide correlation decay, likely because of the dramatic separa-
tion of every regulatory element at once, as opposed to gradual sepa-
ration from individual enhancers in a native environment; this
dramatic effect suggests complex interactions between multiple EP
loops that are disrupted with the insertion of DNA sequences devoid
of regulatory elements. Transcription was still well detected even when
the enhancers were placed 2 kb away, supporting the hypothesis that EP
distance is a scaling factor on the enhancer’s influence. Expression of

dpy-13 and col-34was reduced with the introduction of the 2 kb spacer
when compared to transgenic lines without it (Figure 2, I and J). On the
other hand, spacer-free lines were comparable to wild-type, suggesting
that the incorporation of ectopic enhancers compensated for the EP
distance increase caused by the addition of the genetic construct itself.
These observations seem to fit the corollaries of our model, even amid
the complexity of a native regulatory environment. However, the dis-
tance over which we see an effect on col-34 falls outside our dexp
estimate forC. elegans (8 kb). Its expression is impacted by the presence
of the 2 kb spacer outside of the interval between the myo-2/unc-54
enhancer, suggesting that enhancers.12 kb away can still influence its
expression. As evidenced with the discrepancy inD.melanogasterwhen
using in situ or RNA-seq data, this observation suggests that dexp is only
a rough estimate of the average enhancer rage of action; this is useful to
gain insight into genome-wide mechanisms but not for precise indi-
vidual predictions.

Chromatin modifications have been shown to have a significant
impact on enhancer function (Calo andWysocka 2013) and thus likely
influence EP pairing. Thus, chromatin features and enhancer sharing
might be mutually inclusive rather than stand-alone explanations for
the observed correlation domains. From this perspective, transcription-
ally correlated genes would have similar chromatin states, facilitated by
their physical proximity, that make them accessible to enhancer action.

The existence of multiple, independent, but similar enhancers is an
alternative possible explanation. However, since we are looking at
genome-wide averages, this wouldmean that most gene neighbors have
a functionally redundant set of independent enhancers that function
through distinct molecular interactions. Although possible, this is a
rather intricate explanation.

In agreement with the enhancer sharing hypothesis, it can be argued
that the scaling of correlation domains is a result of the ability to connect
EP loopsover longerdistances in larger genomes.Yet, in spiteofhavinga
compact genome, D. melanogaster is able to form many long-range EP
interactions (.50 kb) (Ghavi-Helm et al. 2014), which is considerably
different to the range of its estimated dexp (6–22 kb). Additionally, these
long-range interactions appear to be particularly specific, with en-
hancers selectively activating their target promoters (Ghavi-Helm

Figure 3 EPdistance causes gene orientation-
dependent correlation and provides reg-
ulatory independence to gene neighbors.
Distribution of intergenic distances ,
10 kb of gene pairs in D. melanogaster
by configuration (�5–18,000 gene pairs
for each group) (A) and flanking insulator
binding sites identified through ChIP-chip
(Negre et al. 2010) (�5–15,000 pairs for
each group) (D). The corresponding distri-
bution of correlations is shown for the
same gene pairs (B, E) and pairs with con-
trolled distributions of intergenic distances
between 30 and 40 kb (�7–14,000 pairs for
gene orientation groups, �10–18,000 for
insulator groups) (C and F). CHIp-chip,
Chromatin ImmunoPrecipitation coupled
with microarrays; EP, enhancer–promoter.
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et al. 2014; Kwon et al. 2009). It is, thus, possible that in compact
genomes, long-range EP interactionswould need to be specific, whereas
nearby interactions would tend to fall in the nonspecific pairing
scheme, ultimately resulting in the observed correlation domain size.

EP distance insulates neighboring genes
Wenextwishedtodetermine theextent towhichenhancer sharingcould
explainothergenomicphenomena.Previous reportshave suggested that
divergent, parallel, and convergent gene pairs tend to have distinct
correlation profiles (e.g., Chen and Stein 2006). To explore this hypoth-
esis, we compared the distribution of intergenic distances of gene pairs
oriented in parallel, divergent, and convergent orientations (Figure 3A
and Figure S6). As expected, divergent gene pairs tend to be closest,
followed by parallel, and finally convergent genes. We then confirmed
that each group appears to have different distributions of correlations
(Figure 3B and Figure S6). To consider the influence of EP distance, we
sampled gene pairs from each orientation controlling for intergenic
size. This resulted in distributions of correlations that exactly overlap
(Figure 3C and Figure S6), an observation that is supported by previous
reports in specific cases (Ghanbarian and Hurst 2015; Cohen et al.
2000). We thus conclude that the apparent influence of gene orienta-
tion in the transcriptional relationship of neighboring gene pairs is
consistent with the enhancer sharing hypothesis. In this scenario, the
effect of gene orientation can be simply explained by the different EP
distance distributions for each configuration.

From the regulatoryperspective, EPdistance provides independence
to most gene pairs, as the vast majority have an intergenic distance that
puts them in the baseline correlation regime (Figure 1C). To study the
enhancer-blocking influence of insulators (Bushey et al. 2009) genome-
wide, we analyzed each group of genes flanked by insulator binding
sites, which were previously determined using ChIP-chip for six known
insulators in D. melanogaster: BEAF-32, CP190, CTCF, GAF,
Mod(mdg4), and Su(Hw) (Negre et al. 2010). We observed that gene
neighbors closer than 10 kb bound by each of the insulators tend to be
less correlated in gene expression than gene pairs not bound by them
(Figure 3E), supporting their role in genome-wide insulation and agree-
ing with the observation that insulators tend to separate differentially
expressed genes (Negre et al. 2010; Xie et al. 2007). Nevertheless, the
same groups of gene pairs also tend to have much larger intergenic
distances than genes that are not flanked by insulator binding sites
(Figure 3D). After controlling for the distribution of intergenic dis-
tances, we found very similar correlation distributions between insula-
tor and not insulator flanked gene pairs (Figure 3F). This finding agrees
with previous reports suggesting that insulators do not block enhancers
everywhere they bind, but rather act only on very specific genomic
contexts (Schwartz et al. 2012; Liu et al. 2015; Ong and Corces 2014);
it also reconciles the lack of known insulator orthologs in C. elegans
(Heger et al. 2009) in the context of local enhancer-blocking. In com-
bination, these studies strongly suggest that EP distance is the general
source of transcriptional independence for close gene neighbors.

Previous EP compatibility studies have suggested that EP specificity
is widespread (Gehrig et al. 2009), while others have suggested that it is
restricted to a smaller subset of enhancers (Butler and Kadonaga 2001).
Although our results support the latter, views arising from these studies
might not be mutually exclusive, as it is likely that enhancers have
specificity to promoter classes (Danino et al. 2015), whose limited
number could result in general EP compatibility.

The implications from considering our observations are broadly
applicable to gene regulation. Position effects, in which transgene
expression levels are influenced by the insertion site (Gierman et al.
2007), are naturally expected from enhancer sharing. Chromosomal

translocations and mutations involving regulatory elements likely im-
pact genetic contexts rather than individual genes. Furthermore, en-
hancer sharing and distance-based scaling of enhancer influence
potentially provides an additional layer of information in gene regula-
tion, as the transcriptional output of a given gene would be the result of
scaled contributions from multiple shared enhancers. Such a feature
could, by itself, be under selective pressure, leading to a roughly con-
stant size of the correlation domain in number of genes regardless of
absolute physical distance, as observed in this study. Our analysis pro-
vides a clarifying perspective of gene regulation consistent with both
mechanistic and genome-wide studies.
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