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Studies have endeavored to understand the cause for impaired antimicrobial killing by
neutrophils of people with cystic fibrosis (PWCF). The aim of this study was to focus on the
bacterial phagosome. Possible alterations in degranulation of cytoplasmic granules and
changes in pH were assessed. Circulating neutrophils were purified from PWCF (n = 28),
PWCF receiving ivacaftor therapy (n = 10), and healthy controls (n = 28). Degranulation
was assessed by Western blot analysis and flow cytometry. The pH of phagosomes was
determined by use of BCECF-AM-labelled Staphylococcus aureus or SNARF labelled
Candida albicans. The antibacterial effect of all treatments tested was determined by
colony forming units enumeration. Bacterial killing by CF and healthy control neutrophils
were found to differ (p = 0.0006). By use of flow cytometry and subcellular fractionation the
kinetics of intraphagosomal degranulation were found to be significantly altered in CF
phagosomes, as demonstrated by increased primary granule CD63 (p = 0.0001) and
myeloperoxidase (MPO) content (p = 0.03). In contrast, decreased secondary and tertiary
granule CD66b (p = 0.002) and decreased hCAP-18 and MMP-9 (p = 0.02), were
observed. After 8 min phagocytosis the pH in phagosomes of neutrophils of PWCF was
significantly elevated (p = 0.0001), and the percentage of viable bacteria was significantly
increased compared to HC (p = 0.002). Results demonstrate that the recorded alterations
in phagosomal pH generate suboptimal conditions for MPO related peroxidase, and a-
defensin and azurocidine enzymatic killing of Staphylococcus aureus and Pseudomonas
aeruginosa. The pattern of dysregulated MPO degranulation (p = 0.02) and prolonged
phagosomal alkalinization in CF neutrophils were normalized in vivo following treatment
with the ion channel potentiator ivacaftor (p = 0.04). Our results confirm that alterations of
circulating neutrophils from PWCF are corrected by CFTR modulator therapy, and raise a
question related to possible delayed proton channel activity in CF.
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INTRODUCTION

Cystic fibrosis (CF) is an autosomal recessive disease, caused by
mutations in the gene encoding the cystic fibrosis transmembrane
conductance regulator (CFTR) anion channel (1), resulting in
altered chloride ion (Cl-) transport. A lack of CFTR function
affects multiple systems throughout the body, yet is characterized
by structural lung disease with bronchiectasis from a very young
age (2, 3), coupled with a severe dysregulated inflammatory
response (4). Inflammation is further amplified by microbial
infections of the airways, initially Staphylococcus aureus (S.
aureus) in infants, and later Pseudomonas aeruginosa (P.
aeruginosa) (5, 6). Neutrophils are one of the first immune cells
to be recruited to the site of bacterial infection, and deficiency in
function renders patients susceptible to chronic recurrent
infections (7, 8). Studies have demonstrated that neutrophils
account for ~70% of the total cell count in CF bronchial lavage
fluid (9, 10) and free neutrophil elastase (NE) activity is detectable
in airway samples of children with CF as young as 3 months old
(2). Thus, in CF there are apparent contradictory conditions,
whereby recruited neutrophils and infecting microbes co-exist in
the airways. Our interest in CF was further fueled by the availability
of specific therapeutics in CF such as the CFTR potentiator
ivacaftor (VX770). This therapy is available for PWCF with the
Gly551Asp mutation and demonstrated a marked improvement in
patient lung function (11) and decreased sweat Cl- concentration to
the normal range (12).

Within the blood circulation, CFTR is detectable on platelets
(13), monocytes (14), and lymphocytes (15), and is present and
functional on neutrophil membranes (16, 17). Consequently,
neutrophil dysfunction in patients with CF has been investigated
either due to inflammation or a lack of CFTR function. Studies
have revealed alterations in degranulation (18–20), chemotaxis
(21), recruitment (22), oxidant formation (23, 24) and apoptosis
(25, 26). However, research demonstrating that only 25% of
neutrophils generate neutrophil extracellular traps (NETs)
against S. aureus, with the majority of bacterial killing
occurring post phagocytosis (27), is suggestive of suboptimal
CF phagosomal performance.

Upon engulfment of a bacterium, oxygen consumption increases
by up to one hundred-fold, and transfer of electrons across the
membrane of the phagosome by an NADPH oxidase, NOX2,
results in intra-phagosomal superoxide (O−

2 ) production. This
supports oxidative mechanisms of microbial killing, involving
myeloperoxidase (MPO) generation of hypochlorous acid from
hydrogen peroxide in the presence of Cl-. Studies have explored
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killing attributable to oxidative mechanisms in CF neutrophil
phagosomes, revealing impaired chlorination of bacteria (17, 28–
31). In turn, non-oxidative mechanisms of microbial killing involve
cytoplasmic granules that release their content of antimicrobial
peptides and enzymes directly into the phagosome (32). Protease
and peroxidase activity is supported by changes in phagosomal pH,
which is governed by protons and ions that compensate the
electrogenic charge incurred by NOX2 activation (33).

The aim of this study was to shed further light on conditions
prevailing in CF neutrophil phagosomes, with focus on intra-
phagosomal degranulation and pH. Our data demonstrate
prolonged alkalinization of phagosomes and impaired
bactericidal processes, a defect rectified by ivacaftor therapy of
PWCF with the Gly551Asp mutation.
MATERIALS AND METHODS

Chemicals and Reagents
All chemicals and reagents were of the highest purity available
and were purchased from Sigma Aldrich Ireland unless
indicated otherwise.

Study Design
PWCF were recruited from the Beaumont Hospital Cystic
Fibrosis Clinic. Ethical approval was received from the
Beaumont Hospital Ethics Board (REC reference # 14/98) and
informed consent obtained from all study participants. Clinical
demographics of all participants are presented in Table 1. To
assess the effect of ivacaftor on neutrophil function, PWCF with
the genotype Gly551Asp/Phe508del receiving 150 mg ivacaftor
from Vertex Pharmaceuticals twice daily (n = 10, mean age 28.3 ±
8.17, FEV1 53.1 ± 27.27% predicted) were recruited. Healthy
control volunteers were age and sex-matched, had no respiratory
symptoms and were not receiving medication.

Neutrophil Isolation
Neutrophils were isolated as previously described (34). Cells
were resuspended in phosphate buffered saline (PBS) containing
5 mM glucose (PBSG) unless specified otherwise. Purity of
isolated neutrophils was validated by flow cytometric analysis
using a monoclonal antibody against CD16b and was greater
than 96% (35, 36). Neutrophil viability was assessed by Trypan
Blue exclusion or by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide) assay and found to be >98%.
TABLE 1 | Clinical Demographics of patients and healthy controls recruited to this study.

Clinical demographic Parameter Healthy controls CF Genotype single Phe508del copy CF Genotype Phe508del/Phe508del CF ivacaftor therapy

No. of Subjects 28 18 10 10
Age, years (Mean ± SD) 30.06 ± 4.91 29 ± 7.1 28.2 ± 1.0 28.3 ± 8.17
Gender (Female/Male) 19/16 22/28 6/4 4/7
FEV1 (% predicted) (Mean ± SD) 104.33 ± 6.2 61.31 ± 23.07 59.2 ± 5.0% 53.1 ± 27.27
BMI (kg/m2) 23.8 ± 0.72 22.1 ± 2.75 22.04 ± 2.13 20.85 ± 1.72
December 2020 | Volum
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Neutrophil Phagosome Isolation
The major steps in the experimental procedure are as previously
outlined (37). In brief, a neutrophil suspension (1x108 cells in
PBSG) was rapidly stirred in a thermostatically controlled
oxygen electrode chamber (Rank Brothers Ltd) with 2x1010

IgG coated latex particles (0.81 µM in diameter, Difco
Laboratories). Phagocytosis was allowed to proceed for 8 min,
and then stopped in ice cold PBSG. The cells were centrifuged
(500 xg/10min/4°C) and to the pellet of neutrophils 1mM
Diisopropyl phosphorofluoridate (DIFP) was added, whirly
mixed and left on ice for 10 min. Cells were then suspended in
3 ml Break Buffer (10 mM KCl, 3 mM NaCl, 2 mM MgCl2, imM
EDTA, 1 mM ATP, 20 mM Pipes, pH 7.2) containing protease
inhibitors (10 mg/ml leupeptin, TLCK, pepstatin A and
aprotinin) and 11.2% (w/w) sucrose. Cells were transferred to a
cavitation chamber and brought to 400 psi with N2 gas for
20 min to achieve cell lysis and to obtain intact phagosomes. The
homogenate was mixed with 60% (w/w) sucrose, and overlaid
with 33% (w/w) then 11.2% (w/w) sucrose and centrifuged
(20,000 g/30min/4°C) in a Sorvall SS3 centrifuge with swing
out rotor. Phagosomes containing latex particles were harvested
at the interface between the 11.2% (w/w) and 33% (w/w) sucrose,
the concentration of sucrose was determined using a
refractometer (B&S Abbe), and diluted to 11.2% (w/w). The
suspension was then centrifuged (10,000g/10min/4°C) and the
neutrophil phagosome pellet resuspended in PBSG. As an
alternative approach, phagosomes were isolated following
engulfment of 2.8 µm-sized IgG-coated Dynabeads magnetic
beads (Thermo Fisher Scientific).

Flow Cytometry Experiments
Flow cytometry was carried out to evaluate the membrane
expression of CD16b as a measure of cell purity (38).
Neutrophils were first fixed (4% (w/v) paraformaldehyde) and
blocked (2% (w/v) BSA) for 30min at room temperature. After
washing (PBS x 2) neutrophils (1x106) were incubated with 1 µg/
100 µl of mouse monoclonal anti-CD16b (Santa Cruz,
Germany). Control samples were exposed to relevant non-
specific isotype control IgG or secondary labelled antibody
alone (FITC labelled bovine anti-mouse; Santa Cruz
Biotechnology). For measuring degranulation into the
phagosome, purified phagosomes were fixed with 4% (w/v)
paraformaldehyde for 10 min, washed and blocked with 1%
(w/v) BSA for 1 h, followed by incubation with 1µg/100µl mouse
FITC-conjugated anti-CD66b or mouse phycoerythrin (PE)-
conjugated anti-CD63 (BD, Biosciences). Controls included
mouse PE IgG (control for mouse Mab anti-CD63) or mouse
FITC IgM (control for mouse FITC anti-CD66b). For whole cell
plasma membrane or phagosome membrane levels of HVCN1,
samples were fixed, blocked and probed with a rabbit anti-
HVCN1 antibody (Sigma, SAB3500536) for 1 h followed by
incubation with an anti-rabbit FITC labelled IgG secondary
antibody (Abcam, ab6717) and analyzed by flow cytometry.
FITC Goat anti-Rabbit IgG served as a control. Samples were
analyzed on a FACScalibur flow cytometer (Becton Dickinson,
San Jose, CA, USA). At least 10,000 events were acquired and the
Frontiers in Immunology | www.frontiersin.org 3
mean fluorescence intensity (MFI) for each experiment was
determined using BD CellQuest Pro software or FlowJo® software.

Phagosome pH Measurements
The pH of phagosomes of HC and CF neutrophils
containing 2′,7′-Bis(2-carboxyethyl)-5 (6)- carboxyfluorescein
acetoxymethyl ester (BCECF-AM, 5 mM, Life Technologies,
Thermo Fisher) labelled S. aureus were assessed. Pasteurized
S. aureus (1x109 c.f.u) were pre-loaded with BCECF-AM dye
(10 µM) for 30min before removal of excess dye and opsonization
with 1% (w/v) human IgG for 30 min. Neutrophils (2 x 107)
suspended in PBSG pH 7.4 were rapidly stirred in a 37°C
thermostatically controlled oxygen electrode chamber. BCECF-
AM labelled S. aureus (1 x 108 c.f.u.) was added and aliquots
removed at indicted time points up to 16 min. The intracellular
pH measurements with BCECF were made by determining the
pH-dependent ratio of emission intensity (detected at 535 nm)
with the dye excited at 490 nm versus the emission intensity at
440 nm and correlated to pH values using an established pH
standard curve (range pH 6–8).

As an alternative approach, fluorescence labelling of bacteria
was also performed using the membrane-permeable pH
indicator Carboxy SNARF-1 acetoxymethyl ester, acetate
(Molecular Probes, Eugene, Oregon), which demonstrates a
pKa of ~7.5, thus is useful for measuring pH changes between
pH 7 and pH 8. Pasteurized Candida albicans (C. albicans) (1 x
108) was preloaded with 50 µM Carboxy SNARF-1 in PBS for
30 min, before removal of excess dye. Purified neutrophils (2 X
107) suspended in PBSG pH 7.4 were placed in the oxygen
electrode chamber and 1 x108 c.f.u. C. albicans added. Reaction
aliquots were removed at indicated time points and analyzed in
triplicate in a 96 well plate. The fluorescence emission was
monitored at 580 and 640 nm using a Spectra Max M3 plate
reader and correlated to pH values using an established pH
standard curve in SNARF-1 Buffer (115 mM C6H11KO7, 15 mM
NaCl, 5 mMMgCl2, 5 mM EGTA, 6 mMHEPES, 0.2 mM CaCl2,
1.3 mM Na3PO4, and 3 mM Na2HPO4) (range pH 6–8).

SDS-Polyacrylamide Gel Electrophoresis
and Western Blotting
Electrophoresis of samples was conducted according to
Laemmli’s method (39). Denatured protein samples (20 ml)
were resolved on 10 or 12.5% (w/v) resolving gel and 4% (w/v)
stacking gel. SeeBlue Plus2 Prestained molecular mass markers
(4 µl; Invitrogen) were loaded on each gel for determination of
molecular weight. Gels were run in an ATTO AE6450
electrophoresis tank (ATTO Corporation, Tokyo, Japan) and
electrophoresis was carried out for 60–90 min at 150V.

Following electrophoresis, proteins were transferred onto
PVDF membrane at 150 mA for 60 min using a semidry
blotting apparatus. Following transfer, membranes were
blocked with 5% (w/v) non-fat powdered milk in PBS
containing 0.1% (v/v) Tween-20 (PBST) for 1 h at room
temperature. For immunological detection of the degranulated
proteins in purified phagosomes, blots were incubated overnight
at 4°C in blocking buffer containing either 1µg/ml rabbit anti-
December 2020 | Volume 11 | Article 600033
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MPO (Novus Biologicals), rabbit anti-hCAP18 (Invitrogen) or
goat anti-MMP9 (R&D Systems) antibody, respectively. Anti-
human-IgG antibody served as a loading control. Relative
secondary antibodies were all horseradish peroxidase (HRP)
linked anti-goat or anti-rabbit (Cell Signalling Technology).
Immunoreactivity was detected using Immobilon™ Western
Chemiluminescent HRP- substrate (Millipore) solution using
the G:BOX SynGene or ChemiDoc systems (Synoptics, UK; Bio-
Rad, UK). Densitometry analysis was carried out using the
GeneSnap or ImageLab programmes (Synoptics; Bio-Rad).
Neutrophil Phagocytosis and
Killing Assays
Phagocytosis assays were carried out as previously described with
minor changes (40). In control experiments to evaluate equal
phagocytosis of bacteria by HC and CF neutrophils, S. aureus
(2 x 108 bacteria) was resuspended in 1 ml of labelling buffer (50
mM Na2CO3, 100 mM NaCl, pH 9) containing 0.5 mg/ml of
FITC and were incubated for 20 min at room temperature,
pelleted by centrifugation (20,000xg for 10 min) and then
washed x3 in 1 ml of PBS. FITC labelled bacteria were serum
opsonized for 30 min and then washed with PBS. FITC labelled
bacteria (1 x 108 serum opsonized) and neutrophils were mixed
at 37°C in a rapidly stirring oxygenated chamber at a 5:1 ratio.
Aliquots were removed at 8 min and placed in 0.4% (v/v) Trypan
Blue in PBS to quench extracellular and membrane adhered
FITC labelled bacteria. Cells were then analyzed by flow
cytometry for phagocytosed fluorescent bacteria as previously
described (40). In a subset of experiments neutrophil
phagocytosis in the presence of 100 µM ZnCl2 was assessed
and found to be >97%.

Intraphagosomal killing was carried out as previously
described (41). In brief, neutrophils (2 x 107 cells) from PWCF
or healthy controls were incubated at 37°C in PBSG in a stirring
oxygenated chamber and serum-opsonized S. aureus (1 x 108

c.f.u.) added. In a subset of reactions, neutrophils were
suspended in PBSG in the presence or absence of ZnCl2 (100
µm) for 10 min at room temperature prior to the addition of
serum-opsonized S. aureus. For direct enzyme mediated killing,
bacteria were exposed to either NE (100 nM), MPO (10 mg/ml),
a-defensin (2.5 mg/ml) or azurocidin (10 mg/ml) at 37°C. For all
experiments, 100 ml aliquots were removed at indicated time
points. Serial dilutions of the bacteria or bacteria/neutrophil
suspensions were plated in triplicate on Luria-Bertani (LB)
agar plates and incubated at 37°C. Viable bacterial c.f.u. were
counted the following day. Control experiments included
bacteria exposed to ZnCl2, with no effect observed. Bacterial
viability was expressed as a percentage of bacterial counts at time
0 min, the latter representing 100% viability.
Statistical Analysis
Results are expressed as mean ± standard error of the mean
(SEM) of n separate biological replicates as stated in the figure
legends. Statistical analysis was performed with GraphPad Prism
(version 4.03 for Windows). For statistical comparison of small
Frontiers in Immunology | www.frontiersin.org 4
datasets (n < 6) Student’s t test was performed to determine P
values (42). For larger datasets the D’Agostino and Pearson
omnibus normality test was carried out to determine whether
data was normally distributed. When normally distributed,
groups were compared by Student’s t test, otherwise by the
nonparametric Mann-Whitney U test. For comparison of three
or more groups one-way ANOVA was performed. P values were
considered statistically significant with P <0.05. Differential
expression of proteins identified by proteomic analysis was
defined as greater than 1.5-fold change in expression with
P <0.05 or 1.2-fold with P <00.1.
RESULTS

Impaired Phagosomal Killing by CF
Neutrophils
Flow cytometry with fluorescent labelled serum opsonized
bacteria confirmed equal phagocytosis of S. aureus by HC and
CF neutrophils (Figure 1A). Intraphagosomal killing of S. aureus
by neutrophils is a rapid process (34), and in the current study
HC neutrophils successfully killed 68% of bacteria within 4 min
(Figure 1B). The pattern of killing by neutrophils of PWCF
homozygous for the common Phe508del mutation differed. The
percentage of viable S. aureus post 8 min phagocytosis by CF
neutrophils was 42%. At the same time point, HC neutrophils
reduced bacterial viability to 23% (p = 0.002). As the kinetics of
killing by CF and HC cells differed up to 30 min (p = 0.0006), a
period of time coinciding with degranulation of cytoplasmic
granules and changes in phagosomal pH (43, 44), alterations in
these key processes in CF phagosomes was assessed.
Dysregulated Degranulation of
Antimicrobial Enzymes in CF Neutrophil
Phagosomes Is Corrected by CFTR
Potentiator Therapy
Disproportionate extracellular release of cytoplasmic granules
into surrounding media in which CF neutrophils are bathed
occurs in response to soluble stimuli (20, 45), however, the
kinetics of intraphagosomal degranulation was undetermined.
By flow cytometry of purified phagosomes following engulfment
of IgG opsonized Dynabeads, degranulation of primary or
secondary/tertiary granules was assessed measuring levels of
phagosomal membrane CD63 or CD66b (46), respectively
(Figure 2). Upregulation of CD63 to the phagosomal
membrane was greatly increased in neutrophils of PWCF
homozygous for the Phe508del mutation compared to HC cells
(p = 0.001, p = 0.0001, and p = 0.0002, after 5, 10, or 20 min,
respectively) (Figure 2A). In contrast, the level of CD66b was
significantly decreased on CF phagosomal membranes compared
to HC samples across the time course (p = 0.002) and at 8 min
(p = 0.04) (Figure 2B).

To confirm disturbed degranulation, an alternative approach
was taken whereby neutrophil phagosmes containing IgG coated
latex particles were purified by sucrose density ultracentrifugation
December 2020 | Volume 11 | Article 600033
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and the phagosomal content of granule proteins quantified by
immunoblotting (Figure 3A). Equivalent immunoband intensity
in response to anti human-IgG antibody in HC and CF samples,
confirmed equal levels of phagocytosis. Levels of intraphagosomal
MPO from primary granules was significantly increased (p = 0.03)
after 8 min phagocytosis (Figures 3A, B), but in contrast, levels of
hCAP-18 from secondary (p = 0.02) (Figures 3A, C) and MMP-9
from tertiary granules (p = 0.02) (Figures 3A, D) were
significantly decreased in CF phagosomes compared to HC
samples. Further experiments evaluated the effect of CFTR
potentiator therapy on intraphagosomal degranulation. Results
revealed that the level of MPO in neutrophil phagosomes of
PWCF with the Gly551Asp mutation, who were receiving
ivacaftor, were increased almost on par to HC cells (Figures
3A, B). Moreover, statistical analysis revealed that CF phagosomes
of neutrophils donated by PWCF receiving CFTR potentiator
ivacaftor therapy illustrated phagosomal levels of hCAP-18 and
MMP-9 similar to control cells, and increased compared to
homozygous DF508 patients post 8 min phagocytosis (p = 0.01
and p = 0.04, respectively) (Figures 3C, D).

Collectively, these results indicate changes in phagosomal
granule content of neutrophils from individuals with CF, which
could contribute significantly to impaired antimicrobial activity.
However, phagosomal pH also plays a significant role in protease
activity and microbial killing, and was therefore explored next.

Increased Alkalinity of Neutrophil
Phagosomes in CF
Upon phagocytosis of microbial pathogens, NOX2 activity
results in membrane depolarization. Compensatory ion
movement into the phagosome, including proton (47) and K+

influx (34) impact upon the pH (44). Reduced cytosolic pH has
previously been recorded in resting (48) and activated CF
neutrophils (19) but phagosomal pH was not explored.
Frontiers in Immunology | www.frontiersin.org 5
Phagosomes of HC neutrophils containing BCECF-AM-
labelled S. aureus demonstrated significant alkalinisation with a
mean maximum pH 7.78 recorded after 2 min phagocytosis
(range 7.71–8.02) (Figure 4A). This rise in pH was rapid and was
followed by a fall in pH to 7.3 (range 6.9–7.8) at 8 min.

This increase in pH is as previously described, albeit at a lower
level (44, 47). By contrast, the pH in phagosomes of neutrophils
of PWCF homozygous for the Phe508del mutation at 8 min post
phagocytosis was significantly elevated to a mean value of 8.0
(range 7.3–8.95) (p = 0.0001).

As fluorescein saturates at approximately pH 8, and may
become bleached within the phagosme (43), SNARF labelled C.
albicans was alternatively used to determine the phagosomal pH
(47). Changes in pH were tracked immediately upon engulfment
and up to 8 and 16 min post phagocytosis (Figure 4B). In HC
neutrophils the mean maximum pH of 7.6 (range 7.43–7.74) was
obtained at 2 min post phagocytosis and was maintained up to
4 min. Moreover, an elevation in pH in phagosomes of neutrophils
of PWCF homozygous for the Phe508del mutation was observed
where the mean maximum pH post-phagocytosis was 7.71 (range
7.56–7.9). This elevated pH in CF phagosomes was maintained
over 8 min. By two-way ANOVA with Šıd́ák post hoc test a
significant increase above that of the HC phagocytic pH values was
recorded across the time course (p = 0.03). Of note, at the 16 min
phagocytosis time point, no difference in pH was observed.
Moreover, the alkalinization observed in phagosomes of
Phe508del CF neutrophils was in contrast to that recorded in
neutrophil phagosomes of PWCF with the Gly551Asp mutation
who were receiving ivacaftor. Statistical analysis revealed that CF
neutrophil phagosomes donated by PWCF on ivacaftor therapy
illustrated mean maximum pH levels of 7.64 at 4 min (range
7.46–7.73), which was significantly decreased compared to
homozygous Phe508del patients samples (p = 0.04) (Figure 4C),
and similar to HC values (Figure 4B).
A B

FIGURE 1 | Impaired microbicidal activity of neutrophils from PWCF. (A) Phagocytosis of FITC labelled S. aureus was assessed by flow cytometry and expressed as
mean fluorescence intensity (MFI). Healthy control (HC) and neutrophils of PWCF (Phe508del single copy) demonstrated equal levels of phagocytosis (n = 6 donors
per group, paired t test). (B) Killing of S. aureus (0.5 x 107 CFU/ml) by HC neutrophils was compared to CF cells donated by PWCF homozygous for the Phe508del
mutation Killing rates between HC and CF neutrophils were significantly different (p = 0.0006) and reduced at each time point (n = 7 subjects per group, linear mixed
effects model with post-hoc Holm-Šıd́ák test).
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Collectively, these results indicate changes in the phagosome
of neutrophils from individuals with CF, with the impact of
altered pH on bactericidal processes next explored.

Prolonged Alkinalization of CF
Phagosomes Impacts on pH
Dependent Anti-Microbial Killing
Ensuing experiments investigated the impact of altered
phagosomal pH. In Hvcn1-/- mice, or ZnCl2 treated cells, the
vacuolar pH becomes extremely alkaline (47). Although CF
neutrophil plasma membranes expressed significantly higher
levels of HVCN1 compared to HC samples (p = 0.03), possibly
due to the primed state of circulating CF cells, phagosomal
membrane levels were found to be similar between the two cell
types (Figures 5A, B, respectively). Thus, inhibition of this
channel by inclusion of ZnCl2 was performed so as to
understand the impact of elevated pH on phagosomal
microbial killing. By use of SNARF labeled C. albicans, and
inhibition of HVCN1 by 100 µM ZnCl2, the phagosome was
Frontiers in Immunology | www.frontiersin.org 6
alkalinized, with a mean pH of 7.75 (range 7.57–8.2) observed at
2 min (Figure 6A). The elevation observed in pH following
inhibition of HVCN1, was in line with phagosomes of
neutrophils of PWCF homozygous for the Phe508del mutation,
where the mean maximum pH post-phagocytosis was 7.71
(range 7.56–7.9) (Figure 4B).

Subsequent killing assays demonstrated that inhibition of
HVCN1 by inclusion of ZnCl2 significantly decreased
intraphagosomal killing of S. aureus by HC neutrophils
(Figure 6B). The kinetics of killing by ZnCl2 treated and
untreated cells differed across the entire time course up to
30 min (p = 0.02). The percentage of viable S. aureus post
8 min phagocytosis by untreated neutrophils was 30%, and in
contrast at the same time point, ZnCl2 treated cells reduced
bacterial viability to 45%, a killing ability similar to CF
neutrophils recorded in Figure 1B.

As the highest mean maximum pH recorded in HC
neutrophil phagosomes at 8 min post phagocytosis using
BCECF-AM was 7.3, and in CF phagosomes at the same time
A

B

FIGURE 2 | Dysregulated movement of granular proteins to phagosomes of neutrophils from PWCF. (A, B) Phagosomes were isolated following phagocytosis of
IgG opsonized latex particles. Phagosomal membrane levels of CD63 (A) or CD66b (B) were quantified by flow cytometry and expressed as mean fluorescence
intensity (MFI). Compared to HC, CF phagosomes (Phe508del single copy) displayed significantly increased levels of CD63 (n = 3 subjects per group, two-way
ANOVA with post-hoc Šıd́ák test) and significantly reduced levels of CD66b (n = 8 subjects per group, two-way ANOVA with post-hoc Šıd́ák test). Data represent
mean percentage change in fluorescence from time zero.
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point was pH 8.0, we compared the killing ability of neutrophil
antimicrobial components over this pH range (Figure 7). This
set of experiments investigated the impact of altered pH on
bacterial killing employing the archetypal CF infecting microbes
P. aeruginosa and S. aureus. Results revealed a significant
decrease in P. aeruginosa viability, but not S. aureus viability,
when incubated with NE. After 8 min NE incubation, maximal
killing of P. aeruginosa occurred at pH 8.0 (p = 0.01) (Figure
7A). Results also revealed a significant decrease in P. aeruginosa
and S. aureus viability when incubated with MPO at pH 7.0
compared to pH 8.0 (p = 0.0001 and p = 0.005, respectively), with
~5 and 50% bacterial survival recorded after 8 min at pH 7.0,
respectively (Figure 7B). Although a-defensins demonstrated
little effect against S. aureus at any pH, purified HNP1-4
successfully reduced P. aeruginosa survival by 36% at pH 7.5, a
level significantly increased compared to pH 8.0 (p = 0.003)
(Figure 7C). Moreover, a significant decrease in P. aeruginosa
and S. aureus viability was recorded after 8 min incubation with
azurocidine at pH 7.5 compared to pH 8.0 (p = 0.001 and p =
0.008, respectively) (Figure 7D). Overall, these results indicate
that increased phagosomal pH is supportive of serine protease
NE bacterial killing, but leads to reduced bacterial killing by
Frontiers in Immunology | www.frontiersin.org 7
major components of neutrophil primary granules including
a-defensins and azurocidine, but most noticeably MPO.
DISCUSSION

Studies indicating functional and signaling changes in CF
neutrophils, that could impact clinical prognosis and lung
disease severity, has gained much interest. In the present study,
we report significant prolonged alkalinization of CF neutrophil
phagosomes, engendering inadequate microbial killing
conditions by MPO, a-defensins and azurocidine. In PWCF,
ivacaftor treatment corrects the recorded dysregulated levels of
degranulation and functions to normalize phagosomal pH to
that of healthy controls.

A lack of CFTR function or presence in myeloid cells can lead to
a pro-inflammatory response of both circulating and airway
neutrophils, with significant overproduction of neutrophil
chemoattractants (49). Confusion as to why recruited neutrophils
fail to kill invading microbes continues, with the bacterium
Burkholderia cenocepacia and Mycobacterium abscessus causing
severe lung infections in patients with CF. Signaling mechanisms
A

B

DC

FIGURE 3 | Altered levels of granular proteins in phagosomes of neutrophils from PWCF. (A) Purified phagosomes were lysed and levels of MPO, hCAP-18, or
MMP-9, markers of primary, secondary, and tertiary granule degranulation respectively, were assessed by Western blotting. Compared to phagosomes of HC or
PWCF with the Gly551Asp genotype receiving ivacaftor therapy (CF+Iva), CF phagosomes (Phe508del single copy) contained significantly increased levels of MPO
(B), and decreased levels of hCAP-18 (C) and MMP-9 (D). Levels of MPO, hCAP-18 and MMP-9 were not significantly different between HC and CF+Iva (n = 6 or 7
subjects per group, mixed effects model with Tukeys’ post hoc test). The opsonin IgG was found equally expressed between the different phagosome types and
was therefore used as evidence of equal phagocytosis and as a loading control. Band intensity for MPO, hCAP-18, and MMP-9 was quantified by densitometry
[expressed as densitometry units (DU)] and normalized to IgG.
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A

B

C

FIGURE 4 | Prolonged alkalinity of CF phagocytic vacuoles. (A) Phagosomal pH was assessed using the pH sensitive fluorescent probe BCECF-AM. Significantly
increased phagosomal pH was measured in CF neutrophils compared to HC post phagocytosis of probe labelled S. aureus (n = 3 subjects per group, two-way
ANOVA with Šıd́ák post hoc test). (B) Time course of phagosomal pH changes assessed using SNARF labelled C. albicans, phagocytosed by neutrophils of HC, or
Phe508del homozygous CF neutrophils. Phagosomes of Phe508del CF neutrophils demonstrated significantly increased pH (n = 3 subjects per group, mixed effects
model with Tukeys’ post hoc test). (C) Time course of phagosomal pH changes assessed using SNARF labelled C. albicans, phagocytosed by neutrophils of
Phe508del homozygous CF neutrophils (as per data presented in panel B) or neutrophils from Gly551Asp PWCF receiving ivacaftor therapy (CF+Iva). Phagosomes
of Phe508del CF neutrophils demonstrated significantly increased pH (n = 3 subjects per group, mixed effects model with Tukeys’ post hoc test).
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between opsonins and neutrophil receptors required for bacterial
phagocytosis can be affected within the CF airways, as high protease
activity (50, 51) can cleave CXCR1 (52), Fcg receptors and iC3b (53,
54). However, similar rates of phagocytosis by purified HC and CF
blood neutrophils has been reported (31) and also observed in the
current study. Although small, a significant reduction was observed
in the intraphagosomal killing ability of CF neutrophils against S.
aureus. Previous studies have also demonstrated impaired CF
neutrophil killing of P. aeruginosa (17), Burkholderia cenocepacia
and Haemophilus influenzae (55), which may allow the bacteria to
establish an initial foothold in the lung of PWCF.
Frontiers in Immunology | www.frontiersin.org 9
Studies investigating mechanisms that may lead to altered
activity of CF neutrophils have demonstrated increased
intracellular concentrations of calcium (55, 56), which correlate
with significantly reduced oxidase activity and impaired
formation of antimicrobial extracellular traps (55). Impaired
microbial killing is also linked to diminished MPO mediated
phagosomal HOCl production and chlorination of phagocytosed
bacteria (17, 29). Two Cl- ion channels (ClCs), ClC-3 and CFTR,
are associated with transport of Cl- within the neutrophil and the
phagosome (17, 57). Moreover, the influx of protons to the
phagosomal lumen by V-ATPase has been demonstrated to
facilitate transport of Cl- ions by ClCs including CFTR (58).
The apparent intrinsic defect in PWCF was further supported by
data demonstrating that bacterial glutathione sulfonamide
formation, a HOCl product, is reduced in CF neutrophils (31).
In the current study we observed increased primary granule
degranulation and MPO accumulation in the CF phagosome, yet
decreased bacterial killing, supporting the concept of unsuitable
conditions in the CF phagosome for optimal MPO peroxidase
activity. The exact mechanism leading to increased primary
granule release by CF cells most likely involves increased Rac2
activation (59). Moreover, impaired GTP-Rab27a activation in
CF blood neutrophils has been shown to decrease secondary and
tertiary granule degranulation to the outside of the cell in
response to soluble stimuli (20). Of interest, by proteomic
analysis of CF neutrophil plasma membranes, dysregulated
degranulation has been observed in neutrophils donated by
patients during a CF exacerbation and in the same individuals
when stable (20), thus suggestive of an intrinsic impairment. In
the present study, differences in the degranulation pattern of
these two granule types into the CF phagosome may also
contribute to impaired bacterial killing, particularly as hCAP-
18 possesses antimicrobial activity against both S. aureus and
P. aeruginosa (60).

Confirmation of the importance of MPO as part of the
neutrophil’s armory to fight infection was confirmed by use of
MPO knockout mice, in which killing of Candida albicans was
defective (61). Evidence with S. aureus points to the anti-
microbial process being strongly dependent on MPO (62).
Acidification of phagosomes has been proposed to play a key
role in the microbicidal function of phagocytes. Indeed MPO
peroxidase activity is most optimal at acid pH, and as far back as
the 1970’s it was shown that the process of 36Cl- incorporation to
an insoluble fraction decreased as the pH was elevated from 4 to
7.4 (63, 64). Subsequently however, in 1982 Segal and co-workers
employed pH indicator fluorescein conjugated to S. aureus and
following phagocytosis, measured early pH changes within the
phagosome (44). Results indicated a transient increase in pH to
7.8–8.0 within the first 2 min, which was followed by a slow fall
to 6.0–6.5 after 2 h. A further study using similar fluorometric
techniques later confirmed these observations (43). The pattern
of pH within phagosomes was clearly different in neutrophils of
patients with chronic granulomatous disease, that lack NOX2
activity, or with control neutrophils in anaerobic conditions
where the pH fell rapidly from 7.4 to 6.6 within the first two
minutes (44). Accordingly, abnormal acidification can be averted
A

B

FIGURE 5 | Equal expression of the H+ proton channel HVCN1 on
phagocytic membranes of neutrophils of HC and PWCF. Neutrophil
membrane levels of HVCN1 were quantified by flow cytometry and expressed
as mean fluorescence intensity (MFI). (A) CF neutrophils demonstrated
increased plasma membrane HCVN1 expression compared to HC samples
(n = 23 and n = 9, respectively, paired t test). (B) Phagosomes were isolated
following 8 min phagocytosis of IgG opsonized latex particles. CF
phagosomes demonstrated equal levels of HVCN1 compared to HC (n = 7
per group, paired t test, p = 0.65).
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in vitro by the use of lysosomotropic weak bases or the vacuolar‐
type H+ pump inhibitor concanamycin A (65).

During the described initial rise in pH, MPO can act as a
catalase rather than a peroxidase (66), a role that may dominate
under the prolonged alkaline conditions observed in the CF
phagosome thus leading to impaired bacterial killing. Eight
minutes post phagocytosis we recorded a difference in the
phagosomal pH between HC and CF neutrophils, a time
corresponding to 80% bacterial killing by HC cells, and twice
the number of bacteria surviving in CF neutrophils. The
prolonged rise in pH at ~8.0 would provide an optimal milieu
for the granule proteases NE and cathepsin G, which are active at
this pH (67) but would be less supportive of azurocidine and a-
defensin, as demonstrated here and by others (68, 69).

In alveolar macrophages it has been proposed that CFTR
contributes to alterations in lysosomal pH, as lysosomes from
CFTR-null macrophages failed to acidify (70). However, further
studies have indicated that phagolysosomal acidification in
macrophages may not be dependent on CFTR channel activity
(71, 72). The difference in phagosomal pH in Hvcn1-/-
Frontiers in Immunology | www.frontiersin.org 10
neutrophils, or those in which the proton channel has been
inhibited by inclusion of ZnCl2 in the current study, provides
evidence that HVCN1 compensates the electrogenic charge
incurred upon NOX2 activation (47). Moreover, it has been
shown that killing of S. aureus by Hvcn1-/- bone marrow cells is
impaired (33) and related to this, in the current study S. aureus
killing ability of CF neutrophils or control neutrophils treated
with ZnCl2, were significantly decreased. Collectively, these
results were suggestive of altered HVCN1 expression on
membranes of CF neutrophils. However, excessive alkalinization
of phagosomes of CF cells is most likely not due to alterations in
the expression of HVCN1, as equal levels of the proton channel
were detected on healthy control and CF neutrophil membranes.
Delayed proton channel activity may be one cause for the observed
altered pH, however, a recent study supports an interesting and
possible alternative explanation for the alter phagosomal pH
observed in CF (73). Critical illness is often characterized by
immune dysregulation and systemic complement activation, and
C5a exposure prior to neutrophil-bacterial interactions was shown
to lead to impairment of phagosomal acidification (73). In CF
A

B

FIGURE 6 | Altered pH negatively impacts killing of phagocytosed bacteria. (A) Time course of phagosomal pH changes assessed using SNARF labelled C.
albicans phagocytosed by neutrophils of HC ± ZnCl2 (100 µM). Phagosomes of ZnCl2 treated HC neutrophils demonstrated significantly increased pH (n = 3
subjects per group, mixed effects model with Tukeys’ post hoc test). (B) Time course of S. aureus killing (0.5 x 107 c.f.u./ml) by HC neutrophils treated with 100 µM
ZnCl2 is significantly reduced compared to untreated cells (n = 8 biological repeats, two-way ANOVA with post-hoc Šıd́ák test).
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respiratory fluids, levels of C5a correlate negatively with FEV1%
predicted (74), but the influence of C5a on neutrophil phagosomal
pH within the CF airways may not be relevant as serine protease
cleavage of C5aR can inactivate C5a-induced signaling ability (75).
Perhaps more relevant is the possible interaction between blood
neutrophils and systemic C5a levels, prior to neutrophil migration
to the CF airways and bacterial interaction. This is a noteworthy
concept that requires further investigation.

CFTR potentiators and correctors can restore much of the
function of the majority of CFTR variants. Therapy leads to
improved airflow and normalized airway surface liquid composition,
resulting in reduced inflammation and minimized airway
remodelling. Interestingly, our study found a significant difference
in phagosomal conditions of neutrophils of PWCF with the
Gly551Asp mutation receiving ivacaftor therapy compared to
PWCF with different mutations. In this regard, we observed
normalized pH and corrected degranulation pattern of neutrophils
from patients who were receiving ivacaftor for the preceding two
years compared to corrector treatment naïve individuals. As ivacaftor
was shown to improve CFTR function, but also reduce levels of
circulating inflammation (56), the current study has not established
whether the observed differences in CF phagosomes is due to CFTR
dysfunction or the underlying inflammatory burden, and this is a
limitation of the study. Nevertheless, as approval for CF modulator
therapies continues to be granted to younger cohorts whowill receive
these treatments before the onset of structural and inflammatory
changes in their airways (76), dysregulated neutrophil function may
be less a problem in the future. In such cohorts, it is possible that the
Frontiers in Immunology | www.frontiersin.org 11
impaired neutrophil processes reported in this study including
altered pH may not emerge, as airway inflammatory burden will
not manifest to the same extent.
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