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Abstract 

Single-cell technologies offer a unique opportunity to explore cellular heterogeneity in 

hematopoiesis, reveal malignant hematopoietic cells with clinically significant features and measure 

gene signatures linked to pathological pathways. However, reliable identification of cell types is a 

crucial bottleneck in single-cell analysis. Available databases contain dissimilar nomenclature and 

non-concurrent marker sets, leading to inconsistent annotations and poor interpretability. 

Furthermore, current tools focus mostly on physiological cell types, lacking extensive applicability in 

disease. 

We developed the Cell Marker Accordion, a user-friendly platform for the automatic annotation and 

biological interpretation of single-cell populations based on consistency weighted markers. We 

validated our approach on peripheral blood and bone marrow single-cell datasets, using surface 

markers and expert-based annotation as the ground truth. In all cases, we significantly improved the 

accuracy in identifying cell types with respect to any single source database. 

Moreover, the Cell Marker Accordion can identify disease-critical cells and pathological processes, 

extracting potential biomarkers in a wide variety of contexts in human and murine single-cell 

datasets. It characterizes leukemia stem cell subtypes, including therapy-resistant cells in acute 

myeloid leukemia patients; it identifies malignant plasma cells in multiple myeloma samples; it 

dissects cell type alterations in splicing factor-mutant cells from myelodysplastic syndrome patients; 

it discovers activation of innate immunity pathways in bone marrow from mice treated with METTL3 

inhibitors. 
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The breadth of these applications elevates the Cell Marker Accordion as a flexible, faithful and 

standardized tool  to annotate and interpret hematopoietic populations in single-cell datasets focused 

on the study of hematopoietic development and disease. 

 

Statement of significance 

We developed the Cell Marker Accordion, a user-friendly platform to annotate and interpret single-

cell data in normal and aberrant hematopoiesis. We a) significantly improve in annotation accuracy; 

b) provide detailed information on genes that influence annotation outcomes; c) identify disease-

critical cells, pathological processes and potential expression biomarkers in different contexts. 

 

Introduction  

Single-cell RNA sequencing (scRNA-seq) characterizes the transcriptome of each individual cell in 

large populations. This high-throughput approach is the ideal choice to reveal the heterogeneous 

landscape of normal and aberrant hematopoiesis1,2, composed of cells characterized by differing 

self-renewal capacity, multipotent potential and high plasticity, and involved in infections and other 

diseases controlling immune responses3–5. 

With the enormous opportunities offered by single-cell technologies, a new set of challenges is 

rapidly emerging in data analysis and interpretation. Accurate and reliable annotation of cell types is 

key to derive faithful biological conclusions. In fact, robustness in identifying cell types is an essential 

prerequisite for studying hematologic disorders, to discern disease-critical cells, characterized by 

aberrant cell states responsible for disease progression and therapy resistance6. In addition, 

measuring the single-cell activity of gene signatures, or modules, associated with pathologically 

relevant pathways is fundamental to unravel pathogenic mechanisms in aberrant cells7 as well as to 

discover potential disease biomarkers8. 

Identification of cell populations within single-cell data can be executed manually or automatically9. 

Manual annotation, based on the investigator’s knowledge or derived from published literature is 

generally subjective and often non-reproducible due to lack of standards. Many computational tools 

perform automatic annotation by correlating reference expression data or by transferring labels from 

other single-cell datasets10–14.These approaches require reliable transcriptome profiles of purified 

cells or high-quality annotated single-cell data15. However, such reference datasets are not easily 

available, especially for pathological samples; they can lack the cell populations of interest, and 

might be susceptible to technical specificities such as platform or sequencing strategy16. 

Alternatively, automatic annotation can be achieved by employing predefined sets of cell marker 

genes17–22. The majority of current tools require the user to provide a collection of markers, a process 

prone to bias12,21,23. We show that currently available gene marker databases are extremely 

heterogeneous, contain different marker sets for the same cell type, and use a non-standard 

nomenclature and classification, leading to inconsistent annotation of cell populations in scRNA-seq 

data and poor interpretability of results. Furthermore, current tools and resources focus mostly on 

physiological cell types, limiting the identification of disease-critical cells. 

To address these issues and improve the interpretation of normal and aberrant hematopoietic cell 

types in single-cell data we developed the Cell Marker Accordion, an easily accessible and well-

documented platform constituted by an interactive R Shiny web application requiring no 

programming skills, and an R package to automate the annotation. 
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The Cell Marker Accordion database is built upon multiple published databases of human and mouse 

gene markers for hematopoietic cell types24–30, standard collections of widely used cell sorting 

markers (Abcam and Thermo Fisher Scientific) and literature-based marker genes associated with 

disease critical cells in aberrant hematopoiesis in leukemia and myeloma. The Accordion database 

allows marker genes to be weighted not only by their specificity, but also by their evidence 

consistency scores (ECs), measuring the agreement of different annotation sources. The Cell Marker 

Accordion web interface permits to explore the integrated collection of human and mouse marker 

genes and to easily browse hierarchies of hematopoietic cell types following the Cell Ontology 

structure in order to obtain the desired level of resolution.  

The Cell Marker Accordion R package allows to automatically annotate healthy and aberrant 

populations in single cell datasets, exploiting positive and negative markers from either the built-in 

Accordion database, or any gene signature of interest provided by users. Genes, cell types or 

pathways that mostly influence annotation results can be easily accessed and visualized to allow the 

transparent interpretation of results.  

We benchmarked the Cell Marker Accordion on peripheral blood and bone marrow single-cell 

datasets, using surface markers and expert-based annotation as the ground truth. In all cases, we 

significantly improved the annotation accuracy with respect to any available single-source database. 

Moreover, we show that the Cell Marker Accordion can be used to identify pathological processes 

and disease-critical cells: leukemia stem cell subtypes, including: therapy-resistant cells, in acute 

myeloid leukemia patients31–34; malignant plasma cells in multiple myeloma samples35–37; cell type 

alterations driven by pathologically relevant mutations in myelodysplastic syndromes38,39; activation 

of innate immunity pathways in bone marrow from mice with Mettl3 deletion or treated with METTL3 

inhibitors40,41. 

The Cell Marker Accordion is a user-friendly, flexible and comprehensive tool that improves the 

annotation and interpretation of both physiological and pathological hematopoietic populations with 

single-cell resolution. 

Methods 

Data sources of the Cell Marker Accordion database 

The Cell Marker Accordion database was constructed by considering multiple published marker gene 

databases (CellMarker24, PanglaoDB25, GeneMarkeR26, ASCT+B27, MSigDB28, Azimuth29, 

CellTypist42) and collections of cell sorting markers (Abcam; Thermo Fisher Scientific). First, to have 

a quantitative measure of marker genes overlap between available databases, we computed the 

jaccard similarity. Next, we considered human and mouse marker genes that are associated with 

hematopoietic cell lineages. Both positive and negative markers, when present, were selected.  

 

Next, database integration was performed. Marker genes’ nomenclature was standardized to ensure 

the most recent approved version of gene symbols. HUGO Gene Nomenclature Committee (2022) 

and Mouse Genome Informatics (v. 6.21) resources were employed to standardize human and 

mouse gene names, respectively. The collected databases, as well as the cell sorting markers’ 

repositories, report different cell type labels, which makes information integration unfeasible. For this 

reason, annotations were first standardized by mapping initial cell types label to the Cell Ontology 

http://obofoundry.org/ontology/cl.html)42. Cell hierarchy information was extracted considering the 

“hematopoietic cell” node as the root and all its descendants. Gene markers associated with 

hematologic disease-critical cells were collected through a literature search. All annotation sources 

and references are reported in the Cell Marker Accordion database. The Disease Ontology 
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(https://disease-ontology.org/) was exploited to standardize disease names and IDs. Overall, the 

Cell Marker Accordion includes a comprehensive set of 5878 marker genes associated with 140 

standardized hematopoietic cell types for the analysis of human samples and 2175 marker genes 

associated with 97 cell types for the analysis of mouse samples.  

Definition of integration scores for marker genes in the Cell Marker Accordion database  

To rank and filter marker genes, the specificity and the evidence consensus (EC) score were 

computed for each marker. The specificity ranges from 0 to 1 and reflects how many cell types a 

gene is marker for. It is calculated separately for positive and negative markers in human and mouse 

as: 

Specificity of marker x= 1/Number of cell types  which have gene x as a marker 

A high score indicates that marker x is highly specific for a certain cell type, while low scores are 

associated with markers spread among multiple cell types.  

The EC score evaluates the agreement of different annotation sources and can be used as a 

measure of marker robustness and reliability. It is calculated as follows: 

ECx,y=Number of sources which have gene x as a marker of cell type y  

A high EC score indicates more consensus of marker x among several sources, while low scores 

are associated with markers that are present only in few sources. 

Implementation of the Cell Marker Accordion R package for automatic annotation  

We developed an R package to automatically identify cell type, cell cycle stage and pathway 

activation in single-cell RNA-seq data (https://github.com/TebaldiLab/cellmarkeraccordion). Users 

can annotate clusters or cells exploiting the built-in Cell Marker Accordion database with the 

accordion() function or can provide custom sets of markers using the accordion_custom() function. 

Both functions take as input a Seurat object (versions 4 or 529) and execute the following operations. 

First, if no prior normalization and scaling steps have been performed, the single-cell expression 

matrix is normalized and scaled only on input marker genes. Based on the input,  specificity and EC 

scores are computed, scaled, log transformed and multiplied to obtain a comprehensive weight for 

each marker gene. Next, each scaled gene expression level is multiplied by this weight, obtaining a 

gene weighted expression score for each cell. For each cell type the normalized sum of all associated 

marker genes is calculated by summing, cell by cell, the weighted expression score divided by the 

square root of the weighted sum. This step leads to a ct x n enrichment score matrix, where rows 

represent cell types and columns represent cells. For each individual cell, the highest ct score is 

used to assign the corresponding cell type. The score per cluster is performed by calculating for 

each row the third quartile across cells corresponding to a particular cluster cl. The cell type with the 

maximum score is then assigned to the cluster cl (Supplementary Figure 1).  

By default, the gene impact score is calculated as the third-quantile of the distribution of the gene 

score for each cell type. The cell type impact score is calculated by default as the third-quantile of 

the distribution of the cell type score for each cluster.  

 

The Cell Marker Accordion Shiny app 

The R Shiny tool is available at https://rdds.it/CellMarkerAccordion/. The Shiny app incorporates 

reactive programming allowing users to access the Cell Marker Accordion database and to retrieve 

marker genes that are specific for their selected cell types. Furthermore, when users choose genes 

of interest on the marker gene tab, the tool interactively retrieves the standardized cell types 

associated with the selected genes. 
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Validation of the Cell Marker Accordion 

To validate the Cell Marker Accordion, we exploited four different single-cell and multi-omics 

datasets listed in Supplementary Table 1 (see Supplementary Methods). For this benchmark, 

ScType43 was selected among currently available marker-based automatic annotation tools such as 

SCINA23, clustifyR12, scCATCH18, scSorter21. The choice of scType is based on its possibility to use 

both positive and negative markers, and its improved performance, in terms of both annotation 

accuracy and running time, with respect to the other tools (tested on the Zheng et al., 201744 dataset). 

To measure performance accuracy we used the F1-score which is the harmonic mean of precision 

and sensitivity. 

MDS single cell dataset 

Bone marrow samples from MDS patients (Supplementary Table 2) were processed as previously 

reported in Biancon et al., 202244. Briefly, viable (7-AADneg) CD34pos cells were sorted by the Yale 

Flow Cytometry facility on the FACSAria instrument (BD Biosciences) and subsequently processed 

for scRNA-seq library preparation by the Yale Center for Genome Analysis using Chromium Next 

GEM Single Cell 5’ kit v2 (10x Genomics). A total of 64915 sequenced cells were used for 

downstream analysis, with an average of 71828 reads per cell and 3476 genes per cell. Cell-variant 

assignment, based on U2AF1 S34F mutation calling in the 21:43104346-43104346 locus, was 

performed with VarTrix v1.1.19 (https://github.com/10XGenomics/vartrix). Single cell expression 

data analysis was performed as described in supplementary methods. 

 

Results 

Widespread heterogeneity across annotation sources leads to inconsistent cell type 

annotation 

To unravel information discrepancies across currently available gene marker databases, we 

automatically annotated a published scRNA-seq dataset of human bone marrow45, extracting marker 

genes from CellMarker24 and Panglao DB25, two of the most comprehensive databases for cell type 

markers (Figure 1A). Cell type annotation was inconsistent between the two sources, showing 

divergent cell types (for example, “platelet” with CellMarker and “natural killer cell” with PanglaoDB) 

or using different nomenclature (for example “Red blood cell (erythrocyte)” and “erythroid progenitor 

cell”). The maximum Jaccard similarity index between cell types is  0.23,  unfolding very high 

discrepancies in terms of marker genes shared among these resources (Figure 1B).   

To extend this initial observation, we systematically explored the heterogeneity of seven available 

marker genes databases over common cell types. The comparison showed a low consistency 

between databases, with an average Jaccard similarity of 0.04 and a maximum of 0.12 (Figure 1C), 

highlighting how the annotation of single-cell populations is affected by selecting a specific marker 

gene database. These results show that different marker genes databases inevitably lead to 

inconsistent interpretations of the biological meaning of single-cell data and pinpoint the existence 

of an open issue with profound consequences for data mining. 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2024.03.08.584053doi: bioRxiv preprint 

https://github.com/10XGenomics/vartrix
https://doi.org/10.1101/2024.03.08.584053
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

 

Figure 1. Heterogeneity in annotation sources leads to inconsistent single-cell annotations. 

(A) Cell types identification by automatic annotation with ScType in the Oetjen et al., 201845 bone 

marrow dataset, using markers from CellMarker (left) and PanglaoDB (right) as input. (B) Overlap 

between marker genes from  CellMarker (y-axis) and PanglaoDB (x-axis). The dot color represents 

the Jaccard similarity index and the dot size indicates the number of common markers in each cell 

type pair. (C) Comparison of cell type markers in published databases. The dot color and size 

indicate the Jaccard similarity index between each database pair, calculated as the average of 

common cell types.  

 

The Cell Marker Accordion: a user-friendly platform for the annotation and interpretation  of 

single-cell populations 

To address the need of robust and reproducible identification of hematopoietic cell types in single-

cell datasets, we developed the Cell Marker Accordion, comprising a gene marker database, an R 

shiny web app and an R package for automatically annotating and interpreting single-cell 

populations.  

We built the Accordion database by integrating multiple marker genes database and cell sorting 

markers sources, distinguishing positive from negative markers (Figure 2A). Label standardization 

was performed by mapping the initial nomenclature to the Cell Ontology terms. Next, via database 
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integration we obtained a comprehensive set of hematopoietic cell type specific marker genes for 

both human and mouse. Importantly, in the Accordion database marker genes are weighted by their 

specificity, indicating whether a gene is a marker for different cell types, and by their evidence 

consistency score, measuring the agreement of different annotation sources (see Methods). 

The user-friendly and interactive Accordion Shiny web interface permits to easily retrieve lists of 

marker genes associated with input cell types and vice versa, starting from a list of candidate genes 

to obtain the matching cell types (Figure 2B right). Hierarchies of hematopoietic cell types can be 

easily browsed following the Cell Ontology structure in order to obtain the desired level of resolution 

in the markers. Users can upload their custom sets of genes to either update the repository or obtain 

the closest associated cell type, with no need for programming skills.  

Finally, the Accordion R package allows to automatically annotate healthy and disease-critical cell 

populations based on the built-in Accordion gene marker database, weighting the markers according 

to their evidence consistency and specificity score (Figure 2B left). The automatic annotation can 

be easily integrated in a Seurat analysis workflow29, requiring as input only the count matrix or a 

Seurat object. Built-in lists of positive and negative cell cycle markers can be used to assign the 

appropriate cell cycle phase to each cell, or to evaluate quiescence. Any annotation procedure can 

be easily enhanced by including custom gene lists associated with cell types, specific pathways or 

signatures of interest. Importantly, the Cell Marker Accordion implements novel options to explore 

annotation results by inspecting the top marker genes that most significantly determined the ranking 

of the candidate cell type for each cell, or for each cluster of cells. The distribution of all cell types 

competing for the same annotation can be evaluated by inspecting their position along the cell 

ontology tree (Supplementary Figure 2). 
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Figure 2. The Cell Marker Accordion: a user-friendly platform for annotating and interpreting 

single-cell populations. (A) Workflow for building the Cell Marker Accordion database. The 

resulting number of cell types and the number of markers for both human and mouse are reported. 

(B) Overview of the main functionalities of the Cell Marker Accordion R package and Shiny app.  

The Cell Marker Accordion improves the annotation of hematopoietic cell types in complex 

single-cell multiomics 

To validate the Cell Marker Accordion, we undertook a benchmark study to compare its annotation 

performance against other databases in multiple published single-cell studies, with an increasing 

degree of complexity and number of annotation challenges (Figure 3).  

First, we exploited a dataset acquired from fluorescent antibody sorted (FACS) blood cells based on 

15 cell surface markers, resulting in 10 different populations separately profiled via single-cell RNA-

seq44 with 94655 total cells (Figure 3A). Next, we selected two human bone marrow datasets, 

obtained via similar multi-omics methods (CITE-seq and Abseq), that simultaneously captured RNA 

and protein expressions46,47. In the first case, 25 barcoded antibodies were used to quantify surface 

proteins and identify 14 different cell types, in 77534 total cells (Figure 3B). The second bone 

marrow dataset comprised 13159 cells, classified into 24 different cell types according to the 

expression of 97 barcoded antibodies (Figure 3C). In these three datasets we considered surface 

markers as the ground truth to evaluate and compare annotation results. Additionally, we included a 

multi-study single-cell RNA-seq dataset with ~500,000 cells, obtained from 25 diverse cell types of 

the human immune system (Figure 3D). For our purpose, we considered a subset of the dataset 

and analyzed 149204 cells, for which a manually expert-based cell types annotation was provided 

and used as the ground truth (https://www.ebi.ac.uk/gxa/sc/experiments/E-HCAD-4). 

To test the accuracy of the Cell Marker Accordion we compared its cell type assignment and 

annotation against those obtained with marker genes from individual sources 24–30,  . Performance of 

each annotation was assessed using two metrics: the percentage of cells correctly annotated with 

respect to the ground truth, and the corresponding F1 scores (see Methods). Notably, in all cases 

the Cell Marker Accordion significantly showed improved accuracy, with an average increase of 

approximately 10% in the number of correctly identified cells and in F1 scores with respect to any of 

the single sources marker sets (Figure 3, right panels, Supplementary Figure 3 for the results in 

each cell type). Together, these benchmarking results highlight the Cell Marker Accordion’s utility as 

a novel tool to obtain a more robust, consistent and highly interpretable annotation of hematopoietic 

populations in single-cell data.  
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Figure 3. The Cell Marker Accordion improves the annotation of hematopoietic cell types in 

complex single-cell multiomics. (A-D) Annotation with the Cell Marker Accordion of single-cell 

datasets with increasing complexity (left column) and performance comparison with other annotation 

resources, including databases and collections of sorting markers (right column) (A) Dataset of 

PBMC FACS sorted cells separately profiled with single-cell RNA-seq. 15 surface antibodies were 
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used to sort 10 different cell types, used as the ground truth. The Accordion Annotation Performance, 

measured as the percentage of cells corresponding to the ground truth and corresponding F1 score 

(dot size), is compared against other resources (B) Human bone marrow dataset obtained with CITE-

seq multi-modal approach (25 barcoded antibodies were used to quantify surface proteins and 

identify 14 different cell types, considered as the ground truth). (C) Human bone marrow dataset 

obtained with Ab-seq multi-modal approach (97 barcoded antibodies were used to quantify surface 

proteins and identify 24 different cell types, considered as the ground truth). (D) Single-cell RNA-seq 

dataset of human cells from bone marrow and umbilical cord blood. Expert-based manual annotation 

identified 25 different cell types, considered as the ground truth.  

 

The Cell Marker Accordion identifies disease-critical cells in aberrant hematopoiesis 

Blood cancers, like many other types of tumors, are populated by disease-critical cells, characterized 

by altered states and aberrant gene expression and play a central role in disease progression and 

treatment response31. The persistence of a selective subset of malignant cells has been considered 

the underlying cause of the high relapse rates commonly observed in patients with hematologic 

malignancies48–50. Identifying and characterizing disease-critical cells in cancer patients is pivotal to 

improve diagnosis towards interceptive medicine8, to understand pathogenesis and therapy 

resistance mechanisms, and to develop novel therapies able to specifically target and eradicate 

cancer initiating cells while minimizing adverse effects on healthy cells. To expand the Cell Marker 

Accordion to the analysis of hematologic cancers, in addition to the “healthy” collection we discussed 

so far, we created a “disease” section. We collected and integrated marker genes associated with 

disease-critical cells found in the most common blood cancer types (Figure 4A). To obtain a 

standardized and consistent vocabulary of cancer types we mapped disease terms to the Disease 

Ontology (https://disease-ontology.org/).  

Notably, we collected more than 50 markers associated with acute myeloid leukemia (AML), which 

is one of the most common types of acute leukemia in adults51. A major challenge in the treatment 

of acute myeloid leukemia is the survival of a few therapy-resistant cells. These cells, known as 

leukemia stem or initiating cells (LSCs or LICs), which are one of the the key factors contributing to 

disease progression and relapse31,48,52,53. To show the potential of the Cell Marker Accordion in 

identifying disease-critical cells in human blood cancers, we analyzed a published scRNA-seq 

dataset of CD34+ bone marrow cells from 5 healthy controls and 14 acute myeloid leukemia 

patients54. First, healthy cell types were annotated (Figure 4B). Next, by exploiting the leukemia 

stem cell marker genes, the Cell Marker Accordion was able to assign a LSC score for each cell in 

healthy donors and AML patients (Figure 4C). Notably, we observed an accumulation of malignant 

cells, especially in progenitor and monocyte populations (Figure 4C). Our accuracy is proven by the 

fact that we obtained an overall significant increase in the  LSC score in AML patients with respect 

to healthy controls. (Figure 4D). To extend our analysis to the context of therapies, we took 

advantage of another published scRNA-seq dataset of human bone marrow, with sequential samples 

at diagnosis and  relapse from patients treated with the BCL-2 inhibitor venetoclax31,55. As for the 

previous dataset, we first annotated healthy cell types (Figure 4E). LSCs were identified at diagnosis 

and relapse and consistent with published results, we found cells with high LSC scores in the 

progenitor and monocyte populations at diagnosis (Figure 4F). Comparing the LSC  score 

distribution between diagnosis and relapse, we observed a significant overall increase of malignant 

stem cells at diagnosis compared to relapse (Figure 4G). However the progenitor population at 

relapse doesn’t contribute to the LSC score, implying that venetoclax-based treatment is able to 

target and eradicate most of the LSC with progenitor features. Instead, LSCs with monocytic 

phenotype persist after therapy, confirming, as previously proposed, that the mechanism of 
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resistance to venetoclax resides in a monocytic LSC population. These results suggest that the 

presence of malignant stem cell heterogeneity play a significant role in treatment response and 

disease progression31,55. To further characterize the properties of leukemia stem cells in AML 

patients, we extracted the core genes that define these malignant cells and drive their identification 

by the Cell Marker Accordion. We indeed were able to extract altered gene signatures associated 

with LSCs specific to either the progenitor and monocyte populations.(Figure 4H). 

We further showed the potential of the Cell Marker Accordion in identifying disease-critical cells by 

for myeloma plasma cells in single-cell datasets from patients with multiple myeloma (MM) 

(Supplementary Figure 4). We exploited a published scRNA-seq dataset of bone marrow from 11 

healthy controls and 12 multiple myeloma patients56. After annotation of healthy cell types, 

(Supplementary Figure 4A) we identified malignant plasma cells (Supplementary Figure 4B), with 

a significantly higher score in MM patients (Supplementary Figure 4C). These cells were clustered 

in patient-specific groups, suggesting distinct clonotypes (Supplementary Figure 4D-E). Also in this 

case, we were able to extract genes with the highest impact in defining myeloma plasma cells 

(Supplementary Figure 4F). 

These results provide robust evidence about the potential of the Cell Marker Accordion to  identify 

malignant cells with deviant states with respect to their physiological counterparts and to investigate 

disease mechanisms by extracting altered gene signatures in the quest for biomarker discovery.  
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Figure 4. The Cell Marker Accordion identifies leukemia stem cell subtypes in acute myeloid 

leukemia patients. (A) Workflow for building the Cell Marker Accordion Disease database. The 

resulting number of disease-critical cells markers associated with different hematologic malignancies 

are reported. (B) Accordion annotation of human bone marrow cells from healthy donors (HD) and 

acute myeloid leukemia (AML) patients54. (C) Identification of leukemia stem cells (LSCs) with the 

Accordion Disease. Cells are colored according to the LSC score in HD and AML patients. (D) 

Distribution of LSC score in the HDs and AML patients. A significant increase is observed in AML 

patients with respect to HDs. (E) Accordion annotation of human bone marrow cells from healthy 

donors (HD) at diagnosis and relapse time point57. (F) Identification of leukemia stem cells (LSCs) 

with the Accordion Disease. Cells are colored according to the LSC score in AML patients at 

diagnosis and relapse time points. (G) Distribution of LSC score in the AML patient at diagnosis and 

after venetoclax treatment. A significant increase is observed at diagnosis with respect to the relapse 

time point. (H) Comparison of marker genes with the highest impact in defining leukemia stem cells 

in the two leukemia datasets, among progenitor cells and monocytes respectively.  

 

The Cell Marker Accordion identifies altered cell type composition in patients with splicing 

factor mutant myelodysplastic syndromes 

Mutations in splicing factor (SF) genes are prevalent in approximately 50% of patients with 

Myelodysplasia (MDS) and Acute Myeloid Leukemia (AML)58–60. These mutations, especially the 

U2AF1 mutations, are linked to a high risk of AML transformation and to decreased survival rates61–

67. To explore the molecular mechanisms and biological implications that drive the clonal advantage 

of SF mutant cells over their wildtype counterparts, we conducted single-cell RNA sequencing on 

CD34+ cells from MDS patients, either without SF mutations (n=5) or with the U2AF1 S34F mutation 

(n=3). From a total of 62496 high quality cells (see Methods), we performed cell type identification 

with the Cell Marker Accordion (Figure 5A). The majority of resulting cell types were related to blood 

progenitor cells, in line with the CD34+ cell sorting. To investigate the impact of the U2AF1 S34F 

splicing factor mutation, we compared cell type composition between U2AF1 WT and mutant patients 

(Figure 5B). Interestingly, we observed an increase in hematopoietic multipotent progenitors, 

common lymphoid progenitors, monocytes and plasmacytoid dendritic cells, with, in parallel, a 

decrease in granulocyte-monocyte progenitors, megakaryocyte-erythroid progenitors, 

megakaryocyte progenitors, mast cells and erythroid lineage cells (Figure 5B). These results are 

consistent with the lineage-specific alterations induced by U2AF1 S34F, with impaired erythroid and 

granulomonocytic differentiation39,68. Moreover, these results suggest that the U2AF1 S34F mutation 

drives a monocytic phenotype associated with poor clinical outcomes57. 

By single-cell mutation calling on reads mapping to the U2AF1 locus (see Methods), we classified 

each cell from U2AF1 S34F patient samples as either WT or S34F (Figure 5C). Notably, we 

observed that different cell types were characterized by various degrees of mutant cells, ranging 

from 5% to 32% (Figure 5D). This data confirm a myelo-monocytic shift with reduction in 

megakaryocyte and erythroid lineage priming within hematopoietic stem and progenitor cells from 

patients with S34F mutant MDS (Figure 5C); accumulation of mutant cells within the megakaryocytic 

and erythroid lineage suggests a differentiation defect conferred specifically by the S34F mutation 

(Figure 5D).  

Overall, these results demonstrate that the Cell Marker Accordion can be effectively used to identify 

and dissect cell-type variations driven by pathologically relevant mutations.  
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Figure 5. The Cell Marker Accordion identifies cell type alterations in splicing factor mutant 

cells from patients with myelodysplastic syndromes. (A) Accordion cell types annotation of MDS 

patients with and without U2AF1 S34F mutation. (B) Changes in the abundance of hematopoietic 

cell types among conditions. Orange bars represent patients with U2AF1 S34F mutations and gray 

bars represent patients without splicing factor mutations. (C) Color-code representation of U2AF1 

WT and S34F cells in S34F mutant patients. (D) Fraction of mutant (dark orange) and WT cells (light 

orange) in each cell type. The width of the bar is proportional to the average number of cells in each 

population. The dashed line represents the average number of mutant cells across all cell types in 

U2AF1 S34F patients. 

 

The Cell Marker Accordion identifies activation of innate immunity pathways in mouse bone 

marrow 

N6-methyladenosine (m6A) is the most abundant eukaryotic internal mRNA modification and exerts 

significant influence in RNA biology69–71. This modification plays important roles in normal 

hematopoiesis and alterations in m6A metabolism are  strongly associated with acute myeloid 
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leukemia pathogenesis, characterized by the overexpression of the m6A methyltransferase 

METTL372,73. For this reason, pharmacological inhibition of METTL3 has been proposed as a 

therapeutic strategy to treat leukemias74. 

To characterize the effect of m6A modulation on hematopoietic populations, we applied the Cell 

Marker Accordion to two murine single-cell datasets obtained from the bone marrow of Mettl3 

conditional knockout mice75 (Figure 6 A-D) and from mice upon pharmacological inhibition of 

METTL3 with STM245776 (Figure 6 E-H). We performed cell type annotation and compared cell type 

compositions (Figure 6B and 6F). Interestingly, in both datasets, we observed an increase in 

hematopoietic stem cells and megakaryocyte progenitors, together with a decrease in erythroid 

progenitors upon Mettl3 deletion or inhibition (Figure 6C and 6G). These observations are in line 

with  the original publications and with  results obtained in previous studies40. Next, we performed 

cell cycle annotation based on lists of cell-type phase-specific positive and negative markers (Figure 

6B and 6F, right panels). With this procedure, we were able to detect cycling changes in specific 

hematopoietic cell types, in particular an increase of G0 cells among hematopoietic stem cells and 

megakaryocyte progenitors (Figure 6D and 6H).  

Two recent studies by us and others turned the spotlight on aberrant activation of innate immune 

pathways as a consequence of response to the deletion of the m6A methyltransferase Mettl3 or 

pharmacological inhibition, mediated by the formation of aberrant endogenous double stranded 

RNAs40,41. To explore the impact of the knockout and the inhibition of Mettl3 on immunity in single 

cell datasets, the Cell Marker Accordion computed an “innate immune response” score based on the 

activation of genes associated with this signature (Supplementary File 1). Notably, both in the case 

of Mettl3 KO and drug-induced Mettl3 inhibition, we obtained a significant increase in innate immune 

response score with respect to the control condition (Figure 6I). In addition, by extracting genes that 

mostly influence the immune response score, we found a subset that exhibits consistent activation 

in both murine models, as well as sets of genes that are specifically activated in response to either 

the knockout or the pharmacological inhibition of Mettl3 in murine hematopoietic stem and progenitor 

cells (Figure 6L).  

Overall, these results demonstrate that the Cell Marker Accordion can be effectively used to 

characterize pathologically relevant pathways in disease or pharmacological treatment models.  
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Figure 6. The Cell Marker Accordion identifies activation of innate immunity pathways in 

mice bone marrow. (A) Schematic diagram of the single-cell experimental design of Cheng et al., 

201975 dataset, comparing bone marrow from Mettl3 KO and WT mice. (B) Accordion cell types 

annotation of WT and KO mice and identification of cell cycle phase, based on lists of phase-

specific markers. (C) Changes in the abundance of specific hematopoietic cell types upon Mettl3 

KO. The increase in hematopoietic stem cells and megakaryocytes, with the parallel decrease of 

erythroid progenitors, is consistent with literature. (D) Cell type specific variations in cell cycle 

between WT and Mettl3 KO bone marrows. (E) Schematic diagram of the Mettl3 inhibition 

experimental design of Sturgess et al., 202376 dataset. (F) Accordion cell types annotation of mice 

treated with STM2457 METTL3 inhibitor and vehicle treated mice and identification of cell cycle 

phase. (G) Changes in the abundance of specific cell types between STM2457 and vehicle mice, 

consistent with changes observed in panel C. (H) Cell type specific variations of cell cycle between 

STM2457 and vehicle mice. (I) Significant increase of the “innate immune response” signature in 

Mettl3 KO and STM2457 treated cells, consistent with innate immunity activation observed in Gao 

et al., 202040. (L) Genes involved in “innate immune response” pathways and showing the highest 

impact score in Mettl3 KO or STM2457 treated cells.  

 

Discussion 

Accurate identification of cell types and states within heterogeneous and complex tissues is a 

prerequisite for comprehensive exploration and interpretation of single-cell data to provide biological 

insights, yet it is a challenging step in the single-cell analysis workflow10.  

Here we present the Cell Marker Accordion, a user-friendly platform encompassing an interactive R 

Shiny web application and an R package designed to automatically identify and interpret single-cell 

populations in both physiological and pathological conditions. With respect to the majority of existing 

computational methods17–22, the Cell Marker Accordion not only provides the users with an accurate 

annotation of hematopoietic cell types, but it is also able to detect disease-critical cells and pinpoint 

altered pathways in aberrant conditions, including cell cycle and quiescence analysis. The Cell 

Marker Accordion combines both positive and negative markers, providing a more specific and 

unambiguous annotation. Hematopoietic cell types can be easily browsed following the Cell Ontology 

hierarchy, to obtain the desired level of resolution. With respect to existing tools, the Accordion 

weights markers not only on their specificity but also on their consistency among resources, allowing 

a more robust cell type identification. Moreover, the Accordion allows the inclusion of customized 

annotations, by incorporating any weighted signature of interest. The biological interpretation of 

results is straightforward and especially transparent since the Accordion provides detailed 

information and graphics on genes, cell types or pathways that exert the most significant influence 

on annotation outcomes.  

We validated the accuracy of the Cell Marker Accordion on peripheral blood and bone marrow cell 

populations considering surface markers and expert-based annotations as the reference44,46,47. 

Across all these datasets, the Cell Marker Accordion notably enhanced the precision in identifying 

cell types compared to any single-source database available17–22. With the increase of sample 

complexity and number of antibodies in the panel, we noticed that the overall classification 

performance decreased. This can be attributed to the use of single-cell measurements as the ground 

truth in the benchmark: data are affected by overall noise, and certain sub-populations, defined by a 

limited number of surface markers with low transcript expression levels, are generally challenging to 

detect. Nevertheless, our approach and output can be leveraged to address technical imprecisions, 
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possible label inaccuracies or hidden heterogeneity in cell clusters, for example by checking the 

consistency of all cell types competing for the same annotation along the Cell Ontology hierarchy. 

Accurate identification of cell types is a fundamental requirement for investigating hematologic 

disorders. Blood cancers are populated by disease-critical cells, characterized by aberrant gene 

expression, which play a central role in disease progression and treatment response31. Current tools 

focus mostly on physiological cell types or attempt to distinguish malignant vs non-malignant cells 

through SNV calling43,77, lacking specific characterization of abnormal cell states by expression. To 

fill this gap, the Cell Marker Accordion includes weighted collections of marker genes associated 

with disease-critical cells in the most common blood cancer types, mostly linked to acute myeloid 

leukemia (AML), multiple myeloma (MM) and lymphoma. In AML and MM patients, the persistence 

of therapy-resistant leukemia stem cells and malignant plasma cells respectively, inevitably 

increases the risk of relapse and reduces overall treatment effectiveness31,48,52,53. By exploiting 

scRNA-seq datasets from AML and MM patients, we showed that the Cell Marker Accordion 

effectively identifies aberrant cell types and extracts altered gene signatures. Identifying and 

characterizing disease-critical cells is pivotal for improving diagnosis and interceptive medicine8, for 

understanding pathogenesis and therapy resistance mechanisms, for identifying biomarkers and for 

developing effective therapies minimizing adverse effects on healthy cells. 

Besides the identification of disease-critical cells, the Cell Marker Accordion can be applied to the 

study and characterization of pathological processes. We demonstrated this in the context of 

myelodysplastic syndromes (MDS), where mutations in splicing factors (SF) genes such as U2AF1 

are prevalent in approximately 50% of patients58–60 and linked to decreased survival rates61–67. By 

applying the Cell Marker Accordion to single-cell data that we generated from bone marrow of a 

small cohort of MDS patients, we revealed skewing in the hematopoietic lineages in patients with 

U2AF1 S34F mutation. In particular, we observed impaired erythroid and granulomonocytic 

differentiation39,68, pointing out the impact of pathologically relevant splicing factor mutation on 

ineffective hematopoiesis and clonal advantage. This approach could be extended by tracking 

additional MDS mutations to determine their effect at various stages in differentiation.  

Finally, we used the Cell Marker Accordion to dissect the effects of m6A RNA modification69–71 and 

modulation of the METTL3 methyltransferase on hematopoiesis in murine models. Alterations in 

m6A have been strongly associated with acute myeloid leukemia pathogenesis72,73, and 

pharmacological inhibition of METTL3 has been proposed as a therapeutic strategy74. The Cell 

Marker Accordion identified cell cycle changes and activation of immune response pathways in 

specific hematopoietic cell types, consistent with the formation of aberrant endogenous dsRNAs 

upon METTL3 depletion40,41. We extracted gene signatures activated in response to either the 

knockout or drug-mediated inhibition of METTL3 or both to demonstrate that the Cell Marker 

Accordion can be utilized to characterize pathologically relevant pathways in disease or 

pharmacological treatment models.  

Fast-forward advances in single-cell techniques are expected to provide increasingly accurate and 

comprehensive measurements of single-cell populations. The Cell Marker Accordion is designed to 

accommodate updates and new sources of information, aiming for a more precise and refined cell 

type identification in diverse contexts and across different types of data. Possible extensions of the 

Cell Marker Accordion include single-cell approaches profiling chromatin accessibility78 and spatially 

resolved data, by sequencing or imaging approaches. In this context, the Accordion could be used 

to identify immune cells in spatially resolved data obtained from tissue slices, such as lymph nodes 

or bone marrow, to dissect architectural heterogeneity and disease microenvironment79,80.  
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In conclusion, the Cell Marker Accordion is a user-friendly and flexible tool that can be exploited to 

improve the annotation and interpretation of hematopoietic populations in single-cell datasets 

focused on the study of disease. 
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