
RESEARCH ARTICLE Open Access

Automatic segmentation of head and neck
primary tumors on MRI using a multi-view
CNN
Jens P.E. Schouten1, Samantha Noteboom2, Roland M. Martens1, Steven W. Mes3, C. René Leemans3,
Pim de Graaf1 and Martijn D. Steenwijk2,4*

Abstract

Background : Accurate segmentation of head and neck squamous cell cancer (HNSCC) is important for
radiotherapy treatment planning. Manual segmentation of these tumors is time-consuming and vulnerable to
inconsistencies between experts, especially in the complex head and neck region. The aim of this study is to
introduce and evaluate an automatic segmentation pipeline for HNSCC using a multi-view CNN (MV-CNN).

Methods: The dataset included 220 patients with primary HNSCC and availability of T1-weighted, STIR and
optionally contrast-enhanced T1-weighted MR images together with a manual reference segmentation of the
primary tumor by an expert. A T1-weighted standard space of the head and neck region was created to register all
MRI sequences to. An MV-CNN was trained with these three MRI sequences and evaluated in terms of volumetric
and spatial performance in a cross-validation by measuring intra-class correlation (ICC) and dice similarity score
(DSC), respectively.

Results: The average manual segmented primary tumor volume was 11.8±6.70 cm3 with a median [IQR] of 13.9
[3.22-15.9] cm3. The tumor volume measured by MV-CNN was 22.8±21.1 cm3 with a median [IQR] of 16.0 [8.24-31.1]
cm3. Compared to the manual segmentations, the MV-CNN scored an average ICC of 0.64±0.06 and a DSC of 0.49±
0.19. Improved segmentation performance was observed with increasing primary tumor volume: the smallest tumor
volume group (<3 cm3) scored a DSC of 0.26±0.16 and the largest group (>15 cm3) a DSC of 0.63±0.11 (p<0.001).
The automated segmentation tended to overestimate compared to the manual reference, both around the actual
primary tumor and in false positively classified healthy structures and pathologically enlarged lymph nodes.

Conclusion: An automatic segmentation pipeline was evaluated for primary HNSCC on MRI. The MV-CNN
produced reasonable segmentation results, especially on large tumors, but overestimation decreased overall
performance. In further research, the focus should be on decreasing false positives and make it valuable in
treatment planning.

Keywords: Head and neck squamous cell cancer, MRI, Multi-view convolutional neural network, Registration,
Segmentation
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Background
Head and neck squamous cell cancer (HNSCC) accounts
for approximately 3% of cancers world-wide [1]. Head
and neck cancer is typically associated with heavy use of
alcohol or tobacco, however in recent years the human
papillomavirus emerged as a third risk factor in oropha-
ryngeal cancers [2]. Treatment selection is based on the
best tradeoff between cure rate and quality of life, and
consists of surgery, chemotherapy and radiotherapy or a
combination thereof, depending on e.g. the disease stage
[3]. Conservative treatment using concurrent chemo-
therapy and radiotherapy is increasingly applied to pa-
tients with advanced stage HNSCC, with locoregional
control and organ preservation as the main treatment
goals.
Accurate primary tumor delineation is a crucial step in

radiotherapy planning and is performed manually or
semi-automatically by radiation oncologists [4]. This
process is often time consuming and inconsistencies
between experts can have significant influence on pre-
cision of the treatment [5, 6]. Automatic segmenta-
tion of HNSCC using deep learning is currently
mostly investigated with computed tomography (CT)
[7, 8], fluorodeoxyglucose-positron emission tomog-
raphy (18 F-FDG-PET) or combined PET/CT [9, 10]
as an input for delineation of tumors or surrounding
organs-at-risk. However, in head and neck cancer,
MRI is the preferred imaging modality to detect local
tumor extent because of its superior soft-tissue con-
trast without adverse radiation effects [11]. A few
studies with a limited number of patients used single
center MRI data that was obtained within a standard-
ized research protocol to automatically segment
HNSCC [12, 13]. With dice similarity scores (DSC)
between 0.30 and 0.40, their performance is not com-
parable with the segmentation performance when
using PET/CT (DSC above 0.70) and should improve
to make it useful for the clinic. Ideally an HNSCC
segmentation method produces results independent of
anatomical HNSCC location, MRI scanner vendor or
acquisition protocol (2D or 3D). Deep learning
methods are also being developed constantly to im-
prove performance on medical datasets. Multi-view
convolutional neural networks (MV-CNNs) have been
successfully used in a variety of segmentation tasks
on medical datasets, where three identical networks
are trained simultaneously each on a different 2D
plane so that information is included from three
planes without the computational complexity of 3D
patches [14–16].
The aim of this work is to introduce and evaluate a

pipeline for automatic segmentation of the primary
tumor in HNSCC on MRI with MV-CNN. To achieve
this, we developed a registration and segmentation

approach that is able to handle patient movement and a
variety of anatomical tumor locations within the head
and neck region. Segmentation quality was evaluated
both in terms of volumetric and spatial performance.

Materials and methods
Study population
For this retrospective study, data from two previous
studies were combined [17–19]. Cases were included
using the following criteria: (1) primary tumor located in
the oral cavity, oropharynx or hypopharynx; (2) availabil-
ity of T1-weighted, short-T1 inversion recovery (STIR)
and optionally contrast-enhanced T1-weighted (T1gad)
images together with a manual reference segmentation
of the primary tumor on the T1-weighted scans before
therapy; (3) at least a T2 primary tumor according to the
TNM classification (7th -edition) [20]; Following these
criteria, we included 220 cases of which the demographi-
cal, clinical and radiological details are shown in Table 1.
Reference segmentations of primary tumor tissue were
constructed manually on the T1-weighted scans within
the scope of the previous studies. Experts were allowed
to view STIR and optionally the T1gad while delineating
tumor. The dataset is not publically available.

MR imaging
Multiple MRI scanners (Siemens, Philips and GE) were
used for acquisition of the data used in this work. Proto-
cols differed between these scanners and between the
two studies. A 2D STIR (TR/TE/TI=4198-9930/8-134/
150-225ms) of the whole head and neck region was per-
formed after which the area of interest was scanned with
a 2D T1-weighted (TR/TE=350-800/10-18ms) sequence
before and after injection of contrast. In a subset of the
data, this area of interest was also scanned with an add-
itional STIR. Due to the use of different scanners and
acquisition protocols, reconstruction resolution varied
between cases. The (contrast-enhanced) T1-weighted
images typically had voxel dimensions of 0.4 × 0.4 ×
4.4mm, whereas STIR images had dimensions of 0.4 ×
0.4 × 7.7mm.

Preprocessing
Tools from the FMRIB Software Library (FSL; http://fsl.
fmrib.ox.ac.uk) were used to align all subjects and MRI
sequences into an isotropic 1-mm head and neck stand-
ard space (224 × 192 × 117 pixels), which is common
practice in brain lesion studies [21, 22]. Construction of
the head and neck standard space was done by merging
the T1-weighted images in the dataset as follows. The
T1-weighted image of one subject was selected as a glo-
bal reference and interpolated to 1-mm isotropic space.
This selection was done by visual assessment of all im-
ages by an experienced radiologist, selecting a case that
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had a relatively small primary tumor, an average bended
neck and the full FOV occupied. The T1-weighted im-
ages of all other subjects were first rigidly (FSL FLIRT,
default scheme, spline interpolation) and then non-
linearly (FSL FNIRT, default scheme, spline
interpolation) registered to the global reference in order
to form a stack of co-registered T1-weighted head and
neck images. The head and neck standard space was
then constructed by taking the voxel-wise non-zero
average of the stack of T1-weighted images and only in-
cluding the voxels that were in at least 30% of the regis-
tered T1-weighted images.
Then, again, a two-step approach was used to rigidly

register (FSL FLIRT, spline interpolation) the T1-

weighted image of each participant to head and neck
standard space. First, FSL FLIRT was used to obtain an
initial affine transformation matrix between subject
space and the head and neck standard space. In the sec-
ond step FSL FLIRT was initialized by the rigid compo-
nent of the transformation matrix of the first step and
weighting was applied to filter out the background. The
STIR and T1gad of individual subjects were then also
co-registered with the corresponding T1-weighted im-
ages using the same two-step approach, and the trans-
formation matrices were concatenated to transform all
images to head and neck standard space (spline
interpolation).

Network structure
A multi-view convolutional neural network (MV-CNN)
architecture was implemented with three equal
branches, modelling the axial, coronal and sagittal 2D
plane [14]. Together, these branches combine the infor-
mation of three views with reduced computational com-
plexity compared with 3D patches [23]. A visualization
of the network is displayed in Fig. 1. The input of each
branch is a 32 × 32 patch with three channels represent-
ing the three MRI sequences: T1-weighted, T1gad and
STIR. When a sequence was not available in a subject,
the channel was zeroed. Each branch consists of a con-
volutional (3 × 3 kernel, batch normalization, ReLu acti-
vation), max pooling (2 × 2 kernel), dropout (25%) and
dense layer. The output of each branch is concatenated
before passing through two dense layers (ReLu and soft-
max activation, respectively) to get an output of size
two, representing non-tumor and tumor. To include
larger-scale contextual information, a pyramid structure
was implemented where two inputs (scale 0; 32 × 32 × 3
and scale 1; 64 × 64 × 3) are included for each of the
three views [24]. The latter was first downsampled to
32 × 32 × 3 to fit in the network.

Training procedure
The model was trained on a NVIDIA GeForce GTX
1080 TI graphics processor unit (GPU) with tensorflow-
gpu version 1.9.0, CUDA version 10.1 and Python 3.6.7.
Because approximately 2% of the MRI image voxels
belonged to tumor tissue, we reduced the class imbal-
ance by randomly sampling 50% of all tumor voxels and
1% of all healthy tissue voxels for training. Both the 32 ×
32 and 64 × 64 patch were created around the same se-
lected pixel and the channels in each patch were vari-
ance normalized to include intensities from four
standard deviations from the mean. Only voxels repre-
senting healthy of tumor tissue were used for training or
testing. To prevent border effects, an extra border of 32
zeros was padded around the full image in all three di-
mensions. Five-fold cross-validation was used to evaluate

Table 1 Demographical, clinical and MRI characteristics of the
subjects included in this study

Total cases 220

Demographical data

Age (yrs) 61.9±9.3

Gender M: 148 (67%)

Tumor locations

Oral cavity 52 (24%)

Oropharynx 151 (69%)

Hypopharynx 17 (7%)

Tumor classification*

T2 78 (35%)

T3 45 (21%)

T4 97 (44%)

Lymph node classification**

N0 78 (35%)

N1 42 (19%)

N2 97 (44%)

N3 3 (1%)

MRI Sequences

T1 220 (100%)

T1gad 213 (97%)

STIR 220 (100%)

MR vendors

GE 104 (47%)

Philips 95 (43%)

Siemens 21 (9%)

* Tumor classification was defined according to the TNM criteria (7th edition):
In general, T2 = the tumor is between 2 and 4 cm in the greatest dimension;
T3 = the tumor is larger than 4 cm in the greatest dimension or invading
surrounding structures; T4 = the tumor invades other (critical) tissues. **
Lymph node classification was defined according to the TNM criteria (7th
edition): N0 = no regional lymph-node metastases; N1 = metastases to one or
more ipsilateral lymph nodes with the greatest dimension smaller than 6 cm;
N2 = metastases to contralateral or bilateral lymph nodes with the greatest
dimension smaller than 6 cm; N3 = metastases to one or more lymph nodes
with the greatest dimension larger than 6 cm. Abbreviations: T1gad =
contrast-enhanced T1-weighted; STIR = short-T1 inversion recovery
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performance. Manual quality control ensured the
consistency of the distribution of demographical and
medical characteristics distributions between the folds.
Each model and fold was trained in 25 epochs using a
batch size of 512, Adam optimizer [25] and softdice loss
function. The softdice loss coefficient was calculated
over all voxels within a batch. Using an initial learning
rate of 0.001, the learning rate was lowered by 20% after
every fifth epoch.

Evaluation
To obtain full segmentation of the test images, the trained
network was applied to all voxels within the mask. After
interference the intra-class correlation coefficient (ICC;
single measure and absolute agreement [26]) and the Dice
Similarity Coefficient (DSC) were calculated to evaluate
volumetric and spatial performance. DSC was also com-
pared between subgroups based on tumor classification
and location. Because the T-stage in the TNM-
classification both includes information on tumor size and
invasiveness of the tumor into surrounding tissues, we
created four similar sized groups based on tumor volume
to compare DSC between these subgroups.

Statistical analysis
Statistical differences in spatial performance were
assessed using Python SciPy package comparing sub-
groups in tumor classification, location and volume
(Wilcoxon rank-sum test). P-values < 0.05 were consid-
ered statistically significant.

Results
The average reference volume was 11.8±6.70 cm3 with a
median [IQR] of 13.9 [3.22-15.9] cm3. The average MV-
CNN tumor volume was 22.8±21.1cm3 with a median

[IQR] of 16.0 [8.24-31.1]. Average volumetric perform-
ance of MV-CNN was ICC=0.64±0.06 and average
spatial performance was DSC=0.49±0.19 (Table 2). Fig-
ure 2 illustrates four typical segmentation results, of
which 2 A and 2B show a good and reasonable result.
Figure 2C and 2D illustrate the effect on the spatial per-
formance of the MV-CNN of false positive classifica-
tions, both in healthy tissue structures (Fig. 2C) as well
as in pathologically enlarged lymph nodes (Fig. 2D).
MV-CNN showed a structural overestimation of the pre-
dicted tumor volume (Fig. 3A). Although misclassifica-
tions of the automatic segmentation often occurred in
pathologically enlarged lymph nodes, there was no dif-
ference found in model performance between cases from
different lymph node subgroups in the TNM classifica-
tion (Table 2). There is also no difference in the per-
formance between the T3 and T4 subgroups in the
TNM classification, only the T2 subgroup scored a lower
spatial performance compared with the other subgroups
(both p<0.001).

Tumor size dependency
Due to the fact that the TNM classification is not only
based on tumor size but also on invasiveness in sur-
rounding structures, the spatial performance was mea-
sured additionally between four groups of tumor
volumes: patients with tumor volume <3 cm3 (V1), tu-
mors between 3 and 7 cm3 (V2), tumors between 7 and
15 cm3 (V3) and tumors >15 cm3 (V4). It was found that
the spatial performance of the MV-CNN increased sig-
nificantly with larger tumor volumes (V3 vs. V4 p=0.037,
all others p<0.001), which is also visible in Fig. 3B where
these volume groups are plotted against the DSC scores.
The smallest tumor volume group scored a DSC of

Fig. 1 The MV-CNN architecture used in the current study. On the left side, the schematic overview with the pyramid structure (scale 0 and scale
1). Each branch of the MV-CNN has the same structure, which is shown on the right, consisting of convolutional (with batch normalization (BN)
and ReLu activation), max pooling, dropout and dense layers. The outputs of the branches are concatenated and with two dense layers reduces
to the output of size two, representing non-tumor and tumor
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0.26±0.16 and the largest tumor volume group a DSC of
0.63±0.11.
The oral cavity tumors showed a lower spatial perform-

ance than the other two tumor locations (oropharynx and
hypopharynx; both p<0.001). This could be explained by
the lower tumor volumes of included oral cavity tumors
(6.4±8.3 cm3) in comparison to oropharyngeal (p<0.001)
and hypopharyngeal (p<0.001) tumors (12.9±15.0 and
18.6±13.3 cm3, respectively) in our study group.

Discussion
In this study, we developed and evaluated a pipeline for
automatic primary tumor segmentation in HNSCC using
three conventional MRI sequences obtained from our
multivendor MRI database. The proposed MV-CNN
produces segmentations with reasonable volumetric and
spatial performances (ICC=0.64±0.06 and DSC=0.49±
0.19 respectively).
Only a limited number of studies are available on pri-

mary tumor segmentation in the head and neck area
solely using MRI data as input. Although the goal of Bie-
lak et al. [12] was different from this study, the segmen-
tation results can be compared to ours. They evaluated

the effect of distortion correction in apparent diffusion
coefficient (ADC) measurements on the segmentation
performance of CNNs. In their study, they used a 3D
DeepMedic network structure to segment HNSCC in 18
patients. They found no significant performance differ-
ence with or without this distortion correction and re-
ceived an average DSC of 0.40. They also emphasized
the impact of the complexity of the head and neck re-
gion and the large variety of sizes, shapes and locations
in HNSCC on the performance of an automatic segmen-
tation algorithm. In a more recent study of Bielak et al.
[13], only HNSCCs were included with a shortest diam-
eter of at least 2 cm to investigate the segmentation per-
formance. Even though these tumors would classify as
larger tumors in our study and full MRI protocols with
seven MRI sequences were used as input for the 3D
DeepMedic CNN (compared with three sequences in
this study), they scored a lower mean DSC of 0.30.
In other previous studies, MRI-based segmentation

proved to be able to segment nasopharyngeal carcinoma
in the head and neck region with good performance with
mean DSCs around 0.80 [27, 28]. However, this type of
cancer is not considered to be biologically related to
HNSCC [29] and always arises from the nasopharynx
epithelium [30], which makes anatomical localization
easier than HNSCCs that in our case were located in
various anatomical locations within the hypopharynx,
oropharynx or oral cavity.
Segmentation of HNSCC with both PET- and CT-

scans have been done more frequently in literature and
with better results than with MRI. Guo et al. [9] showed
a DSC of 0.31 using only CT scans, but reached a DSC
of 0.71 when CT was combined with PET images. Other
PET/CT studies also show high segmentation perfor-
mances with DSCs above 0.70 [10, 31–33]. Although the
results in this study seem to be an improvement to pre-
vious HNSCC segmentation results in MRI, there is still
a gap between the performance of MRI and PET/CT
that should be overcome first to make MRI as suitable
for automatic segmentation of HNSCC as PET/CT. Be-
sides further research in segmentation methods with
only MRI input data, the use of data obtained from an
integrated PET/MRI system might help in bridging the
gap in the future.
The relatively low mean ICC and DSC in this study

were mainly driven by false positives, both in the tumor
border and in pathologically enlarged lymph nodes. De-
pending on the tissue within the head and neck region,
the transition between tumor and healthy tissue can vary
significantly. The registration of the images to the stand-
ard space also resulted in loss of data when the voxel
size changes to 1mm in all directions, which can also
have an effect on the clearness of the border around the
tumor. Apart from this, there were also frequently false

Table 2 Performance results in ICC and DSC (mean±standard
deviation) by the MV-CNN for all test cases and DSCs per
subgroup based on tumor classification, location, volume and
lymph node classification for the five-fold cross-validation

N MV-CNN

INTRA-CLASS CORRELATION (ICC)

All 220 0.64±0.06

DICE SIMILARITY SCORE (DSC)

All 220 0.49±0.19

Tumor classification

T2 78 0.39±0.21

T3 45 0.53±0.17

T4 97 0.55±0.15

Tumor location

Oral cavity 52 0.38±0.19

Oropharynx 151 0.51±0.18

Hypopharynx 17 0.57±0.11

Tumor volume

V <= 3 cm3 51 0.26±0.16

3 < V <= 7 cm3 62 0.47±0.12

7 < V <= 15 cm3 50 0.59±0.11

V > 15 cm3 57 0.63±0.11

Lymph node classification

N0 78 0.47±0.18

N1 42 0.53±0.20

N2/3 100 0.48±0.19
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positively classified structures present in healthy tissues
as well as in pathologically enlarged lymph nodes.
Lymph node metastases occur frequently in HNSCC and
are sometimes even larger in volume compared with the
primary tumor. That the network classifies these en-
larged nodes as tumor tissue can be understood since
the normal anatomy is sometimes significantly distorted
due to the local mass effect. It can be hypothesized that
an integrated network, which is trained on both primary
tumors and lymph node metastases might show a better
spatial and volumetric performance compared with net-
works only based on the primary tumor. Therefore, in-
cluding manual reference segmentations of the
pathologic lymph nodes could potentially further in-
crease the segmentation accuracy of the primary tumor.
Another solution might be to manually draw a cube
around the tumor in which the network accurately seg-
ments the tumor to reduce misclassifications in healthy
tissue.

The performance of the segmentation network also
depended on size of the primary tumor. Since T-stage
in the TNM classification is not based solely on
tumor size, but also takes into account tumor inva-
sion into critical anatomical structures, we added the
analysis of network performance in categories of
tumor volume. Larger tumor volumes showed signifi-
cantly higher DSCs compared with the low volume
tumors. There is only little information on tumor vol-
umes of included HNSCCs used in previously pub-
lished studies. Besides the fact that smaller tumors
are also harder to manually segment for experts, an-
other explanation of this lower spatial performance
could be that the DSC of a small object is also more
easily affected by false positives because of the smaller
true positive area. To be able to really compare per-
formances between studies, information on the in-
cluded tumor volumes should be provided in
published studies.

Fig. 2 Segmentation results with the three MRI sequences, in red the manual segmentation and in green the network segmentation of the MV-
CNN on T1-weighted images. The whole image DSC scores are given per example. On top a good (A) and reasonable (B) result is shown in an
oral cavity (tongue) and floor of the mouth tumor, respectively. False positives in the predicted segmentation were found often. In (C) the
oropharyngeal (tonsillar fossa) tumor was located on the right side, with false positive classifications on the contralateral side in healthy tissue. In
(D) a large oropharyngeal cancer (base of tongue) was adequately segmented, however the network also had false positive segmentations in the
bilateral lymphadenopathy (yellow arrows)
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Head movement (turning or tilting of the head), swal-
lowing and metal artifacts are important causes of MR
image artifacts in the head and neck area. Besides ham-
pering the quality of the images, movement will also
cause a variable appearance of normal anatomy. To im-
prove network training, we applied registration to the in-
dividual MRI images. By first creating a standard space
neck by non-linear registration of T1 images, the success
rate of the linear registration of each case to this stand-
ard space was increased and similarity in the orientation
of the scans was created for the network to train with.
Linear registration was chosen for the actual registration
of the cases, to not alter the anatomical structures in
each subject. Because of the linear registration, differ-
ences between cases due to swallowing or breathing
were not corrected for and could still affect the segmen-
tation performance. The STIR and T1gad scans were
also not perfectly aligned to the T1-weighted scan due
to the linear registration. The registration could also be
improved when patients would lay in a mask during the
MRI scan, which is often the case in radiotherapy plan-
ning (PET-)CT scans that also have been used for man-
ual segmentation in the cited PET/CT studies [9, 31].
Although the segmentations were evaluated in the stand-
ard space in this study, they could be brought back to
the original image dimensions of the MRI scans by ap-
plying the inverse matrices of the registration process.
Further research would be useful to further optimize, or

even removing the preprocessing method to make the
network more robust for new datasets.
The manual reference segmentation was drawn on the

T1-weighted scan, so it is therefore still possible that the
manual segmentation did not align perfectly with the
other MRI sequences which could also influence the
automatic segmentation performance. Improvements
can also be made on the manual segmentations of the
tumor. Because our study included data from two previ-
ous studies, the manual segmentation has been done by
two different experts. The exact border between tumor
and healthy tissue is sometimes difficult to appreciate in
HNSCC, causing a substantial disagreement on the de-
lineation of the tumor between raters [5]. Adding more
structural (T2-weighted) and functional (i.e. diffusion
weighted imaging and 3D ultrafast dynamic contrast en-
hanced) MRI sequences could potentially improve man-
ual and automated tumor delineations [34, 35], where it
would also be interesting to evaluate the added value of
each MRI sequence to the overall performance of a net-
work. Furthermore, the used conventional MRI se-
quences all consisted of 2D images, which were
interpolated to make it usable for our 2.5D approach.
The increased availability of functional MRI sequences
and 3D MRI sequences for high-resolution diagnostic
imaging in HNSCC can further increase automatic
tumor segmentation in the future. Because data was
used from two previous studies and was obtained by

Fig. 3 A The reference tumor volume plotted against the predicted tumor volume that shows systematic overestimation of the tumor. B For the
four volume groups, the spatial performance in DSC of the MV-CNN is shown. The spatial performance increases when the tumor volume. V1 =
tumor volumes below 3 cm3; V2 = tumor volumes between 3 and 7 cm3; V3 = tumor volumes between 7 and 15 cm3; V4 = tumor volumes
above 15 cm3
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scanners from three different MRI vendors, the data was
intrinsically heterogeneous. Although this makes it
harder to train the network it can be hypothesized that
the result will be more robust and better suited for data
acquired in a clinical setting.

Conclusions
We investigated an automatic segmentation pipeline for
primary HNSCC based on MRI data. After registration
of the MRI sequences using a head and neck standard
space, MV-CNN produced reasonable volumetric and
spatial performances, especially in large tumors, but to
be able to use the automatic segmentations only on MRI
data in treatment planning, the performance has to in-
crease. This could be achieved by reducing the number
of false positives in the predicted segmentation.

Abbreviations
HNSCC: Head and neck squamous cell cancer; CNN: Convolutional neural
network; MV-CNN: Multi-view convolutional neural network; ICC: Intra-class
correlation; DSC: Dice similarity score; MRI: Magnetic resonance imaging;
CT: Computed tomography; PET: Positron emission tomography; STIR: Short-
T1 inversion recovery; T1gad: Contrast-enhanced T1-weighted imaging;
TR: Repetition time; TE: Echo time; FOV: Field of view; GPU: Graphics
processor unit

Acknowledgements
Not applicable.

Authors’ contributions
The data was provided by RM, SM and RL. JS combined the datasets and
trained the network with support of MS and PdG. JS, MS and PdG wrote the
report with feedback from all authors. All authors approved the final version
of the manuscript.

Funding
This work is financially supported by a grant from the Amsterdam UMC,
Cancer Center Amsterdam (CCA 2017-5-40).

Availability of data and materials
The datasets analyzed during the current study are not publicly available.

Declarations

Ethics approval and consent to participate
The Dutch Medical Research Involving Human Subjects Act (WMO) does not
apply to this study and therefore informed consent was waived by the
Medical Ethics Review Committee at Amsterdam UMC.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam,
Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117,
Amsterdam, The Netherlands. 2Department of Anatomy and Neurosciences,
Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117,
Amsterdam, The Netherlands. 3Department of Otolaryngology – Head and
Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan
1117, Amsterdam, The Netherlands. 4De Boelelaan 1108, 1081 HZ
Amsterdam, The Netherlands.

Received: 2 August 2021 Accepted: 31 December 2021

References
1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA
Cancer J Clin. 2018;68(6):394–424.

2. Marur S, et al. HPV-associated head and neck cancer: a virus-related cancer
epidemic. The lancet oncology. 2010;11(8):781–9.

3. Chow LQ. Head and Neck Cancer. N Engl J Med. 2020;382(1):60–72.
4. Njeh C. Tumor delineation: The weakest link in the search for accuracy in

radiotherapy. Journal of medical physics/Association of Medical Physicists of
India. 2008;33(4):136.

5. Vinod SK, et al. Uncertainties in volume delineation in radiation oncology: a
systematic review and recommendations for future studies. Radiother
Oncol. 2016;121(2):169–79.

6. Verbakel WF, et al. Targeted intervention to improve the quality of head
and neck radiation therapy treatment planning in the Netherlands: short
and long-term impact. International Journal of Radiation Oncology*
Biology* Physics. 2019;105(3):514–24.

7. Nikolov S, et al., Deep learning to achieve clinically applicable segmentation of
head and neck anatomy for radiotherapy. arXiv preprint arXiv:1809.04430, 2018.

8. Ibragimov B, Xing L. Segmentation of organs-at‐risks in head and neck CT
images using convolutional neural networks. Medical physics. 2017;44(2):
547–57.

9. Guo Z, et al. Gross tumor volume segmentation for head and neck cancer
radiotherapy using deep dense multi-modality network. Phys Med Biol.
2019;64(20):205015.

10. Huang B, et al., Fully automated delineation of gross tumor volume for
head and neck cancer on PET-CT using deep learning: a dual-center study.
Contrast media & molecular imaging, 2018. 2018.

11. Chung NN, et al. Impact of magnetic resonance imaging versus CT on
nasopharyngeal carcinoma: primary tumor target delineation for
radiotherapy. Head Neck: Journal for the Sciences Specialties of the Head
Neck. 2004;26(3):241–6.

12. Bielak L, et al. Automatic Tumor Segmentation With a Convolutional Neural
Network in Multiparametric MRI: Influence of Distortion Correction.
Tomography. 2019;5(3):292.

13. Bielak L, et al. Convolutional neural networks for head and neck tumor
segmentation on 7-channel multiparametric MRI: a leave-one-out analysis.
Radiat Oncol. 2020;15(1):1–9.

14. Birenbaum A, Greenspan H. Multi-view longitudinal CNN for multiple
sclerosis lesion segmentation. Eng Appl Artif Intell. 2017;65:111–8.

15. Steenwijk M, et al. Multi-view convolutional neural networks using batch
normalization outperform human raters during automatic white matter
lesion segmentation. in MULTIPLE SCLEROSIS JOURNAL. 2017. SAGE
PUBLICATIONS LTD 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP,
ENGLAND.

16. Roth HR, et al. A new 2.5 D representation for lymph node detection using
random sets of deep convolutional neural network observations. in
International conference on medical image computing and computer-
assisted intervention. 2014. Springer.

17. Mes SW, et al. Outcome prediction of head and neck squamous cell
carcinoma by MRI radiomic signatures. European Radiology. 2020;30(11):
6311–6321.

18. Martens RM, et al. Predictive value of quantitative diffusion-weighted
imaging and 18-F-FDG-PET in head and neck squamous cell carcinoma
treated by (chemo) radiotherapy. Eur J Radiol. 2019;113:39–50.

19. Martens RM, et al. Multiparametric functional MRI and 18 F-FDG-PET for
survival prediction in patients with head and neck squamous cell carcinoma
treated with (chemo) radiation. Eur Radiol. 2021;31(2):616–28.

20. Sobin LH, Gospodarowicz MK, Wittekind C. TNM classification of malignant
tumours. John Wiley & Sons; 2011.

21. Liew S-L, et al. A large, open source dataset of stroke anatomical brain
images and manual lesion segmentations. Scientific data. 2018;5(1):1–11.

22. Suntrup-Krueger S, et al. The impact of lesion location on dysphagia
incidence, pattern and complications in acute stroke. Part 2: Oropharyngeal
residue, swallow and cough response, and pneumonia. European journal of
neurology. 2017;24(6):867–74.

Schouten et al. Cancer Imaging            (2022) 22:8 Page 8 of 9



23. Hesamian MH, et al. Deep learning techniques for medical image
segmentation: achievements and challenges. J Digit Imaging. 2019;32(4):
582–96.

24. Ding P, et al. Pyramid context learning for object detection. Journal of
Supercomputing. 2020;76(12);1–14.

25. Kingma DP, Ba J, Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

26. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation
coefficients for reliability research. Journal of chiropractic medicine. 2016;
15(2):155–63.

27. Lin L, et al. Deep learning for automated contouring of primary tumor
volumes by MRI for nasopharyngeal carcinoma. Radiology. 2019;291(3):677–86.

28. Wang Y, et al. Automatic tumor segmentation with deep convolutional
neural networks for radiotherapy applications. Neural Process Lett. 2018;
48(3):1323–34.

29. Bruce JP, et al. Nasopharyngeal cancer: molecular landscape. J Clin Oncol.
2015;33(29):3346–55.

30. Chua ML, et al. Nasopharyngeal carcinoma. The Lancet. 2016;387(10022):
1012–24.

31. Yang J, et al. A multimodality segmentation framework for automatic target
delineation in head and neck radiotherapy. Medical physics. 2015;42(9):
5310–20.

32. Berthon B, et al. Head and neck target delineation using a novel PET
automatic segmentation algorithm. Radiother Oncol. 2017;122(2):242–7.

33. Stefano A, et al. An enhanced random walk algorithm for delineation of
head and neck cancers in PET studies. Med Biol Eng Comput. 2017;55(6):
897–908.

34. Cardoso M, et al. Evaluating diffusion-weighted magnetic resonance
imaging for target volume delineation in head and neck radiotherapy. J
Med Imaging Radiat Oncol. 2019;63(3):399–407.

35. Martens RM, et al. The Additional Value of Ultrafast DCE-MRI to DWI-MRI
and 18F-FDG-PET to Detect Occult Primary Head and Neck Squamous Cell
Carcinoma. Cancers. 2020;12(10):2826.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Schouten et al. Cancer Imaging            (2022) 22:8 Page 9 of 9


	Abstract
	Background 
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Study population
	MR imaging
	Preprocessing
	Network structure
	Training procedure
	Evaluation
	Statistical analysis

	Results
	Tumor size dependency

	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

