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The basal ganglia network is represented by an interconnected group of subcortical nuclei
traditionally thought to play a crucial role in motor learning and movement execution.
During the last decades, knowledge about basal ganglia physiology significantly evolved
and this network is now considered as a key regulator of important cognitive and
emotional processes. Accordingly, the disruption of basal ganglia network dynamics
represents a crucial pathogenic factor in many neurological and psychiatric disorders. The
striatum is the input station of the circuit. Thanks to the synaptic properties of striatal
medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum
exerts a fundamental integrative and filtering role in the basal ganglia network, influencing
the functional output of the whole circuit. Although it is currently established that the
immune system is able to regulate neuronal transmission and plasticity in specific cortical
areas, the role played by immune molecules and immune/glial cells in the modulation of
intra-striatal connections and basal ganglia activity still needs to be clarified. In this
manuscript, we review the available evidence of immune-based regulation of synaptic
activity in the striatum, also discussing how an abnormal immune activation in this region
could be involved in the pathogenesis of inflammatory and degenerative central nervous
system (CNS) diseases.
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HIGHLIGHTS

• The basal ganglia network operates for appropriate context-dependent cognitive, behavioral and
emotional responses.

• Bidirectional plastic changes of striatal synapses allow input integration and input-output
associations in the basal ganglia network.

• Astrocytes gate striatal excitatory synaptic transmission and orchestrate striatal pathways and
subnetworks activation.
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• Soluble immune molecules may influence striatal
glutamatergic transmission acting on both pre- and post-
synaptic sites.

• Pathological activation of striatal astrocytes and microglia
could influence the synaptic bases of basal ganglia network
functioning, leading to cognitive and behavioral
abnormalities during neurological disorders.
INTRODUCTION

The extensive research performed during the last years has made
it clear the crucial role of the immune system in the field of
cognitive and behavioral sciences. Human behavioral, cognitive
and social traits could be deeply influenced by the activation of
immune cells in both physiological and pathological conditions.
The classical concept of the central nervous system (CNS) as an
immune-privileged site has significantly evolved during the last
years, acknowledging the presence of functional meningeal
lymphatic vessels and a complex neuro-immune cross-talk
involving innate and adaptive immunity, as well as resident
immune cells within the CNS (1, 2). Indeed, the release of
soluble immune mediators is thought to physiologically tune
the activity of neural networks, influencing learning and memory
processes through the regulation of synaptic transmission and
long-term plasticity (3–5).

A prototypical example of the neuromodulatory role of the
immune system is represented by the shift in an individual’s
behavior and perceptions frequently accompanying infectious
diseases. Indeed, a reduced interest in social interactions and
unnecessary physical activity could represent a protective
evolutionistic response aimed at limiting pathogen spreading
in a social community. These complex cognitive and behavioral
responses are thought to be caused by pro-inflammatory
mediators released by immune cells counteracting the infection
(6). If the immune activation is inappropriate or unabated, this
para-physiological process may become pathological. Indeed,
many disabling cognitive and behavioral features occurring
during neuroinflammatory and neurodegenerative disorders
are thought to rely on the detrimental neuronal and synaptic
effects triggered by an uncontrolled cerebral inflammatory
microenvironment (4, 7). The influence exerted by the
immune system on neuronal and synaptic activity has been
mainly investigated in cortical areas, such as in the
hippocampus (8, 9), while less is known about the neuro-
immune cross-talk occurring in subcortical structures such as
the basal ganglia, that together with cortical structures mediate
cognitive and behavioral functions (10, 11).

The cortico-striato-thalamo-cortical network was originally
described as an essential circuit for locomotor activity and
movement execution (12). Still, the identification of extensive
functional connections between the striatum and non-motor
cortical areas (13, 14) raised the hypothesis of an involvement of
the basal ganglia also in associative, cognitive and emotional
processes. Indeed, thanks to the closed-loop architecture of the
basal ganglia network, the striatum can filter and integrate
Frontiers in Immunology | www.frontiersin.org 2
different cortical inputs during goal-directed behavior, decision
making and response selection under competition (11).

The complex microstructural organization of the striatum,
characterized by multiple inhibitory and excitatory synaptic
connections among various neuronal subtypes, highlights the
activity of this structure as an input integrator. Functional or
structural alterations of such synaptic connections can
powerfully influence the final output and tuning of the whole
basal ganglia network (15). Despite the essential functions of the
basal ganglia, the potential neuro-immune interactions occurring
at this level have been less investigated and should be better
understood. In this review, we summarize the available evidence
suggesting an immune-based regulation of synaptic activity in
the striatum during physiological conditions and pathological
inflammatory and degenerative processes of the CNS.
THE BASAL GANGLIA NETWORK: FROM
MOVEMENTS TO EMOTIONS

The functional anatomy of the basal ganglia can be described as a
closed-loop network with two different pathways canonically
considered as parallel and opposed, one favoring (direct) and
another inhibiting (indirect) the activation of cortical brain areas.
The main input of the basal ganglia network is represented by
glutamatergic excitatory projections from cortical and thalamic
areas, making synaptic contact with striatal medium spiny
neurons (MSNs) and aspiny interneurons (16, 17). Such
corticostriatal connections are influenced by dopaminergic
projections arising from the substantia nigra pars compacta
(SNc) and converging into the dendritic tree of MSNs, which
can be distinguished by their dopamine (DA) receptor
expression patterns (18, 19). In addition, striatal GABAergic or
cholinergic interneurons can act as additional elements for the
integration of cortical, thalamic, and dopaminergic afferents and
the modulation of neighboring MSNs activation (20).

The extensive net of intra-striatal inter-neuronal connections,
integrating various cortical and sub-cortical inputs, makes the
striatum a crucial station from which the information is filtered
and channeled through the direct and indirect pathways
(Figure 1).

The classical “push–pull”, direct–indirect dichotomous view of
striatal output pathways has been challenged by the evidence that
both pathways are activated during the initiation/stopping of
actions or behavioral sequences (11, 43–45) and by the
identification of multiple functional and structural connections
between the two pathways orchestrating the activity of the whole
network (15). The architecture of the basal ganglia network might
allow to obtain a simple binary output (go/no-go response) from
various cortical and subcortical inputs, perfectly fulfilling their
acknowledged role in solving a “selection” problem (46).
Accordingly, basal ganglia are considered a phylogenetically
conserved network underlying action selection in vertebrates
initially devoted to the execution of the previously learned
motor plan (47) and subsequently co-opted for other key
mammalian superior cortical functions through a process of
exaptation, following the evolution of cortical networks (48).
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FIGURE 1 | Schematic representation of basal ganglia and striatal synaptic networks. Multimodal inputs are constantly conveyed toward the striatum, including
projections arising from sensori-motor cortices (red), limbic structures (yellow) and associative areas (blue) (10, 11, 21). The striatal synaptic network acts as a
processing unit through differential signal amplification, output selection and context-dependent input integration. The induction of bidirectional synaptic plastic
changes (long-term potentiation, LTP, and long-term depression, LTD) at corticostriatal connections is deeply influenced by DA released by dopaminergic (DAergic)
terminals, originating from substantia nigra pars compacta/ventral tegmental area (SNc/VTA). Specifically, LTP of corticostriatal projections is dependent on the
activation of D1-like receptors (D1Rs) (22, 23) and under the negative control of D2-like receptors (D2Rs) (24), while the induction of LTD requires the presence of
functionally active D1Rs and D2Rs (25–29). These observations are not in line with the classical view of a complete D1- and D2-like receptor functional segregation
(30, 31) and may rely on the presence of MSNs expressing both receptor subtypes (32) or membrane heteromeric D1/D2 receptors (D1/2Rs) (33–35). In addition,
DA may indirectly act on MSNs through different populations of striatal interneurons (25, 36–38). Striatal cholinergic (Ch-Is), NOS-positive (NOS-Is) and fast-spiking
(FS-Is) interneurons exert a feedforward and parallel control of striatal circuit (15). Acetylcholine (Ach) released by Ch-Is can act on M2/4 muscarinic receptors
expressed by pre-synaptic glutamatergic terminals and on M1 muscarinic receptors expressed by MSNs. The DA-dependent modulation of Ach release by Ch-Is
(expressing both D1Rs and D2Rs) can influence the induction of synaptic LTD in MSNs (39). Nitric oxide (NO) is released by NOS-Is under the control of D1Rs and
could act on MSNs facilitating LTD at the post-synaptic level (39). FS-Is releasing GABA represent a parallel inhibitory system. Of note, dopaminergic regulation of
LTD induction also relies on the release of retrograde neurotransmitters under the control of different cell-type specific thresholds in D1R- and D2R-expressing MSNs
(40). Indeed, the D2R-dependent release of endocannabinoids (eCBs) by MSNs modulates LTD induction through the activation of CB1 cannabinoid receptors
(CB1Rs) located on glutamatergic terminals, inhibiting glutamate (Glu) release. Striatal processing of cortical multimodal inputs generated an integrated signal to
output nuclei which, in turn, project to thalamic nuclei sending efferents that complete the cortico-basal ganglia-thalamo-cortical loop. Specifically, striatal inhibitory
outputs directed toward the GABAergic neurons of substantia nigra pars reticulata (SNr) and globus pallidus pars interna (GPi), which make direct inhibitory synaptic
connections with the thalamus, ultimately results in a disinhibition of the thalamic glutamatergic cortical projections (direct pathway). Conversely, the activation of
striatal MSNs connected to the globus pallidus pars externa (GPe) results in a disinhibition of the glutamatergic neurons of subthalamic nucleus (STN), leading to a
GPi/SNr-dependent inhibition of thalamo-cortical projections (indirect pathway). The presence of bridging collaterals in striatofugal projections ensures signal
coordination and mutual inhibition for each pathway and each subnetwork (41, 42). Please, note that the schematic representation of the striatal network does not
reflect the effective relative size of the neuronal cells.
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Indeed, the striatum receives massive projections from almost all
regions of the cortex, acquiring sensorimotor inputs, emotional/
motivational information from limbic areas, and multimodal
processed data from associative areas (10, 11, 49). This various
set of basal ganglia inputs could be considered as a “generator of
diversity” (21), fromwhich the striatal filter selects a proper output
response which is conveyed through the thalamic nuclei to
functionally distinct cortical areas (13, 50). The initially
proposed presence of parallel and segregated basal ganglia sub-
networks (13), each one processing a different type of input, has
been challenged by the description of functional overlap (51–54),
allowing the integration of multimodal information in line with
the known influence of emotional and motivational state on an
individual’s behavior.

Overall, basal ganglia seem to be involved in a wide range of
behavioral, cognitive and affective functions, leading to the
execution of a specific response out of the different choices
continuously arising during daily living. Basal ganglia activity
could be involved both in conscious goal-directed behavior and
in habitual unconscious actions, representing two possible
decision-making performances (21, 55). Ventral and dorsolateral
striatal networks seem to be deeply involved in both situations,
characterized by the selection of an appropriate action through the
evaluation of context-dependent information (21, 55, 56).
Extensive afferents from the ventral tegmental area (VTA), the
ventral hippocampal subiculum, the prefrontal cortex and the
basolateral amygdala converge into the ventral striatum,
specifically in the nucleus accumbens (NAc), allowing the
integration of contextual/spatial information with affective
inputs to select a proper reward-based adaptive action (57–59).
In this context, proactive or reactive inhibition of habitual actions
is involved not only in motor activity but also in cognitive
functions, gating the access to working memory (60, 61), or
avoiding the recall of irrelevant information (11) and emotional
reactions (like inhibiting context-inappropriate anxious or
fear reactions).

According to the critical roles played by the basal ganglia
circuit in brain physiology, its dysfunctional activity could lead to
a wide range of behavioral/cognitive/emotional consequences.
The selection process mediated by the circuit could become
altered, since basal ganglia malfunction could be followed by an
excessive impulsivity in high-conflict decisions (62), lowering the
information threshold required for a selection (63) and influencing
the balance between speed and accuracy of performance (64). In
line with this view, some clinical characteristics of different
neuropsychiatric disorders are thought to rely on an alteration of
basal ganglia activity. These include, but are not limited to,
bradykinesia, apathy and abulia in Parkinson’s disease (PD);
motor or verbal urges in Tourette’s Syndrome (TS); impulsivity
and lack of attention in attention-deficit hyperactivity disorder;
intrusive thoughts and compulsive behaviors in obsessive-
compulsive disorder (OCD); hyperactivity in Huntington’s
disease (HD) (11, 65, 66). The pathophysiology of these
conditions could rely on the alteration of cellular and synaptic
mechanisms underlying the context-dependent selection operated
by the basal ganglia network.
Frontiers in Immunology | www.frontiersin.org 4
STRIATAL SYNAPTIC PLASTICITY AND
INFORMATION PROCESSING IN THE
BASAL GANGLIA
Since their discovery, long-lasting and activity-dependent plastic
changes of synaptic transmission have been considered a
plausible biological process underlying brain ability to translate
experiences into memories (67–70). Synaptic long-term
potentiation (LTP) might enhance the synaptic weight of
specific neuronal connections, increasing input specificity of
neural network and lasting sufficiently long to induce the
formation of stable memories (69, 70). On the other side, long-
term depression (LTD) of synaptic connections may enhance
input divergences, inhibiting competitive connections or
reversing a previous synaptic potentiation due to bidirectional
synaptic changes (39, 69, 70).

In this scenario, the synaptic plastic changes described at
excitatory corticostriatal connections (15, 39, 71–73) are deeply
influenced by the activation of both D1- and D2-like DA
receptors (39) and by an extensive net of parallel connections,
involving interneurons, such as fast-spiking GABA-releasing
cells, large cholinergic neurons, and NO synthase (NOS)-
positive interneurons (20, 36, 39, 74, 75) (Figure 1).

A fine coordination of striatal direct/indirect MSNs synaptic
activity is thought to be crucial for the execution of a specific task
(76–80), especially considering that the in vivo activation of the
two striatal pathways was found to be concurrent (43) and
complementary (81, 82) during the execution of motor and
behavioral sequences. In addition, learning and refinement of
actions seem to require parallel but dissociable input processing
within associative and sensorimotor striatal subnetworks,
implying a learning-related in vivo modulat ion of
corticostriatal synaptic transmission (83) and a dynamic
filtering of cortical inputs (84–86).

Behaviorally relevant reinforcement signals might influence
striatal synaptic plasticity through short-latency and phasic
release of DA from the ascending midbrain projections (87–
89). These dopaminergic inputs are thought to play a key role in
prediction/learning of reward-related processes by reinforcing
causal relationships and input-outcome association during the
execution of novel actions (90). This hypothesis is supported by
the evidence that appropriately timed dopaminergic
reinforcement signals are required to induce corticostriatal
bidirectional plasticity, with divergent outcomes depending on
the intensity and timing of MSNs activation by cortical/thalamic
projections (39, 91). Specifically, it has been shown in intact
animals that behaviorally relevant reinforcement signals,
inducing a phasic release of DA in the striatum, are required
for corticostriatal potentiation, and this occurs only if the
electrical stimulation of the motor cortex precedes the
depolarization of striatal MSNs (positive paring). Conversely,
the same dopaminergic reinforcement is able to induce
corticostriatal depression when cortical activation occurs after
MSNs membrane depolarization (negative pairing) (91). This
form of bidirectional synaptic plasticity, named spike-timing-
dependent plasticity (STDP), is considered as a synaptic Hebbian
April 2021 | Volume 12 | Article 644294
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learning paradigm (92, 93) and is deeply influenced by striatal
eCBs release, serotonergic transmission, and stimulation of
dopaminergic receptors (94–97).

In this scenario, it has been proposed that the input
component from the cortex represents an ongoing behavior/
action (98), and a positive pairing would arise when a specific
cortical projection has directly contributed to MSNs
depolarization (91). This striatal synaptic pairing could
enhance input specificity and input divergence for a proper
behavior/action selection allowing action-outcome association
and context-dependent positive selection of satisfactory actions.
In parallel, the divergent depressive changes of negatively-paired
connections can refine striatal habit formation, lowering the
strength of corticostriatal connections not contributing to action
yielding reward and increasing signal-to-noise ratio (91).

Of note, the detection of the temporal contingency between
two consecutive stimuli requires a balanced removal/reuptake of
neurotransmitters previously released in the synaptic cleft.
Astroglial cells could be deeply involved in these processes,
and an alteration of their homeostatic functions can disrupt
the induction of Hebbian synaptic plastic changes, leading to
aberrant non-timing-dependent plasticity for uncorrelated
events or precluding STDP expression (99).

Overall, the emerging picture of the basal ganglia network
organization is more dynamic and fluid than that previously
established. Cortical and thalamic inputs can be filtered and
integrated in the striatum by the intrinsic membrane plastic
properties of MSNs, fluctuating between an “up” or “down” state
depending on the firing frequency of cortical inputs (100–102).
Input signal specificity and input divergence may be guaranteed
and enhanced by bidirectional plastic changes of corticostriatal
synapses, under the control of parallel intra-striatal connections
among MSNs and interneuronal cells and vertical dopaminergic
projections arising from the midbrain, influencing motivational
behavior and reward-related learning.

Such a functional view gets away from the simplistic
dichotomous model of direct/indirect pathways and focuses on
the plastic properties of corticostriatal connections as the core
processing units for basal ganglia activity. In this scenario,
growing evidence suggests the involvement of glial cells in
synaptic transmission, synaptic plasticity, and synaptic
remodeling, both in the post-natal and adult brain (103–106).
Glial cells, including astrocytes, microglia, oligodendrocytes, and
other specialized cells, appear as a highly represented cellular
population throughout the CNS (107–109). The functional
architecture of the neuronal-glial network has been deeply
investigated during the last years in different brain structures,
including basal ganglia (110, 111). Glia/neuron ratio was found
to vary in the human brain in relation to neuronal density and
the numerical relationship between these cellular elements was
found to be remarkably conserved among different species, as if a
proper balance is essential for the physiological brain activity
(107, 112). It has been shown that the overall ratio between non-
neuronal/neuronal cells in the whole human brain is close to 1,
varying from a value of 1.48 in the gray matter of the cerebral
cortex to 11.35 in basal ganglia/diencephalon/mesencephalon/
Frontiers in Immunology | www.frontiersin.org 5
pons (113). Accordingly, an updated view of the striatal network
function should necessarily take into account the contribution of
glial cells during both physiological and pathological conditions.
NEURON-ASTROCYTE INTERACTIONS
IN THE STRIATUM

Astrocytes are widely represented in the brain, counting
approximately 19-40% of total brain cells (112) and exerting
multiple homeostatic functions through thousands of fine
processes, creating “bushy” territories around neuronal somata,
dendrites, and blood vessels (110). The functional view of these
cells has significantly changed after the discovery that astrocytes
can display a form of cellular excitability based on variations of
intracellular calcium ion (Ca2+) concentration (114, 115),
occurring spontaneously and in response to neurotransmitter
release by neighboring synaptic connections (116, 117). The
ident ifica t ion of a b id i rec t iona l neuron-as t rocyte
communication led to identify synaptic connections as
“tripartite” elements, where astrocytes represent cellular
processors of information with selective responses to specific
synaptic inputs and integrative abilities due to cell-intrinsic
properties and nonlinear input-output relationships (104). A
recent study has identified, through cortical live-cell 3D-STED
microscopy in mice, astrocytic Ca2+ signals at the level of bulbous
enlargements localized along the thin astrocytic processes (118).
Such “nodes” have been found to be in tight contact with
dendritic spines, suggesting the presence of specific signaling
domains tailored for neuron-astrocyte communication (118).
The astrocytic processes can contact neighboring synapses and
create an “astroglial cradle” essential for synaptic maturation and
isolation (119), influencing neuron transmission through
different mechanisms, including vesicular gliotransmission,
release of neuroactive substances, potassium buffering, and
neurotransmitter recycling (103, 120–122).

It has been shown that astrocytes may influence synapse
structure and function through several contact-mediated and
soluble synaptogenic cues (123). Specifically, astrocytes may
regulate cortical synaptogenesis through the secretion of
thrombospondins (TSP1 and 2) (124) or through cell adhesion
proteins like gamma protocadherins (125). Other astrocyte-
derived soluble mediators may modulate the expression of
neurotransmitter receptors at synaptic sites since heparan
sulfate proteoglycans glypican 4 and 6 (Gpc4 and 6) were
linked to an increased expression of GluA1 AMPA receptor
(AMPAR) subunit at the post-synaptic level (126) and tumor
necrosis factor a (TNF-a) was associated with enhanced surface
expression of AMPARs in hippocampal neurons (127).

Interestingly, CNS astrocytes are not a homogeneous cell
population, displaying different region-specific functions to
optimize local neural network activity (110, 128, 129).
Transcriptomic and proteomic analysis revealed significant
differences in gene expression patterns between striatal and
hippocampal astrocytes (111). Moreover, from a morphological
point of view, it has been shown in murine tissues that striatal
April 2021 | Volume 12 | Article 644294

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mancini et al. Neuro-Immune Cross-Talk in the Striatum
and hippocampal astrocytes are characterized by equivalent
somatic volumes, number of primary branches, and cell
volumes, but striatal astrocytes displayed larger territory
volumes impinging upon greater numbers of neurons (129). In
line with these findings, other authors have recently found,
through a genetically targeted neuron-astrocyte proximity
assay (NAPA), that murine striatal astrocytes tightly interact
with cortical, thalamic, and nigral projections (130).
Interestingly, no substantial anatomical difference was found in
astrocyte-synapse proximity for D1- and D2-like receptor-
expressing MSNs (130). Overall, it has been estimated that
each striatal astrocyte could make contact with an average
number of ~11 MSNs, sampling D1- and D2-like receptor-
expressing MSNs in an almost equivalent way (130), and could
interact with approximately 50,700 excitatory synapses (129).

This extensive net of neuron-astrocyte interactions could
exert a key role in the regulation of striatal network function.
Indeed, it has been hypothesized that homogeneously distributed
striatal astrocytes could display different patterns of activation in
order to sustain and modulate the coordinated activity of direct
and indirect striatal pathways (131). It has been shown that
homotypic (D1-D1 or D2-D2) but not heterotypic MSNs
stimulation is characterized by an endocannabinoid-dependent
activation of astrocytic CB1 receptors (CB1Rs), leading to
glutamate release upon elevating their Ca2+ levels (131). Of
note, glutamate released by corticostriatal projections and by
astrocytes could directly stimulate glutamatergic NMDA
receptors (NMDARs) expressed at the synaptic cleft by MSNs
(131), but it could also act on metabotropic receptor subtype 5
(mGluR5) expressed by astrocytes (132). The activation of these
astrocytic receptors could lead to an additional Ca2+-dependent
release of glutamate, triggering a stimulation of MSNs through
GluN2B containing NMDARs which could last for minutes
beyond the initial stimulus (133). In this scenario, the selective
reinforcement of homotypic synapses supports the presence of
specific astrocyte subpopulations enhancing striatal pathways
divergence and coordination during behavior/action
execution (131).

Astrocytes can also influence the induction of corticostriatal
synaptic plastic changes, such as LTD (134) or STDP (99),
through neurotransmitter release or regulation of glutamate
reuptake. Astrocytes ensure a proper striatal signal-to-noise
ratio, regulating glutamate concentration in the synaptic cleft
(135), and this activity could act as a gatekeeper for the induction
of corticostriatal synaptic plasticity. It has been hypothesized that
the proper activation of astrocytic excitatory amino-acid
transporter type-2/glutamate transporter 1 (EAAT2/GLT-1)
could represent a key element for ensuring the detection of the
temporal contingency required for Hebbian synaptic plastic
changes like STDP, since the blockade or the overexpression of
this astrocytic protein could lead to aberrant synaptic plastic
changes (99).

Moreover, other authors proposed a model in which up-state
MSNs could stimulate neighboring astrocytes through dendritic
GABA release, leading to a GABAB receptor- and Gi-dependent
release of Ca2+ from intracellular stores (136). The activation of
Frontiers in Immunology | www.frontiersin.org 6
this transduction pathway is supposed to upregulate the
synaptogenic cue thrombospondin-1 (TSP1) in astrocytes,
boosting excitatory synapse formation, fast excitatory synaptic
transmission and MSNs firing frequency in the striatum (136).
The abnormal activation of this Gi-dependent astrocytic pathway
could pathologically enhance corticostriatal transmission leading
to behavioral hyperactivity and impaired attention in mice (136).
In line with these observations, an alteration of astrocytic Ca2+

dynamics has been linked with abnormal MSNs activity and
excessive self-grooming behavior, as assessed with in vivo
electrophysiological recordings in mice (137).

Overall, the astrocytic modulation of STDP through
reinforcement signals and the maintenance of a proper signal-
to-noise ratio, allowing the detection of the temporal relationship
between two paired stimuli (negative or positive pairing), could
deeply influence the basal ganglia action-outcome synaptic
associations. Accordingly, altered astrocytic activity has been
linked to enhanced reward-seeking behavior and to the
pathological intake of drugs of abuse (138). In rodent models,
methamphetamine and cocaine assumption has been associated
with a reduction in the contacts between astrocytes and synapses
in the NAc (139, 140), while cocaine and heroin seem to be
linked to reduced expression of the glutamate transporter
EAAT2/GLT-1, mainly located in astrocytes (141, 142). A
recent study showed that DA in the NAc could directly
stimulate astrocytes through D1-like receptors (D1Rs), with a
subsequent astrocytic release of ATP/adenosine and inhibition of
excitatory transmission through the stimulation of pre-synaptic
A1 receptors expressed by glutamatergic projections (143). This
evidence suggests new possible astrocyte- and dopamine-
dependent pathways regulating reward-related behaviors.

Lastly, the neuron-astrocyte net could represent an
anatomical “track” facilitating microglial cells movements and
synaptic surveillance (130). Indeed, astrocytes may participate in
network modeling and synapse elimination via direct synaptic
phagocytosis and in cooperation with microglial cells, tagging
synapses for elimination through the secretion of transforming
growth factor-b (TGF-b) (144, 145).
MICROGLIAL CELLS AS MODULATORS
OF STRIATAL SYNAPTIC FUNCTION

Microglia can account for 5%–12% of total cellular elements in
the CNS, representing the main element of the resident CNS
immune system with critical roles in organizing rapid responses
against different kinds of tissue injury (146–148). Activated
microglial cells can produce soluble chemotactic and pro-
inflammatory molecules orchestrating inflammatory responses
within the CNS, and these cells can assume a phagocytic profile
aimed at clearing cellular debris (146–148). During the last
decades, it has been clearly established that microglial cells are
physiologically involved in synaptic transmission, plasticity and
structural remodeling during CNS development and adult life,
dynamically interacting with synapses as “synaptic sensors” (105,
149, 150).
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Several high-resolution imaging studies have shown that
immature, redundant, or dysfunctional axonal terminals and
dendritic spines can be engulfed by microglial cells as a
mechanism to refine brain networks (149, 151). Such a
dynamic process of synaptic pruning was found to be
dependent on several potential ‘find-me’ and ‘eat-me’ neuro-
immune pathways (152). The chemokine CX3CL1, which could
be secreted or expressed as a membrane-tethered protein, is
thought to represent a synaptic tagging mechanism through
which neuronal cells may attract resident CX3CR1-expressing
microglia (153, 154). Accordingly, the genetic ablation of
CX3CL1 was associated with an increased density of immature
synapses in cortical areas (151, 155) and impaired cortical
synaptic remodeling (154). Another potential ‘eat-me’ signal
may be represented by the classical complement proteins C1q
and C3, which can be expressed in an activity-dependent manner
by neuronal cells in less active or immature synapses, flagging
them for removal by microglia (149, 152, 156). Of note, the
expression of complement proteins at synaptic sites is influenced
by astrocyte-derived TGF-b (144), suggesting a cooperation
between these glial elements in the process of synaptic
pruning. Such active neural network refinement is thought to
be involved in learning and memory processes, mediating the
removal of specific synaptic connections as a way of active
forgetting (157–159). The microglia- and complement-
dependent process of synaptic shaping could be crucial in
maintaining a physiological balance between retaining relevant
memory engrams and removing irrelevant ones (160), and it
could be pathologically enhanced in various CNS diseases
characterized by learning/memory deficits, including
Alzheimer’s disease (158, 159).

In addition, beyond synaptic removal, microglial cells may
participate in the functional modulation of synaptic transmission
and plasticity by producing soluble immune mediators,
including the pro-inflammatory cytokine interleukin-1b (IL-
1b) (161) or neurotrophic factors like brain-derived
neurotrophic factor (BDNF) (162). Moreover, inflammatory
processes of the CNS may be accompanied by a microglia-
dependent disruption of neuronal plastic properties, relying on
the microglial over-expression of reactive oxygen species (ROS)-
producing enzymes such as NADPH oxidase (163). In this
scenario, the molecular mechanisms underlying microglia-
centered neuro-immune pathways have been mostly
investigated in cortical and hippocampal areas, with few
reports regarding its involvement in the striatal network (152).

Murine microglial cells display a spectrum of distinct
anatomical features, lysosome content and membrane
properties across basal ganglia nuclei, suggesting that region-
specific local cues could shape the functional state of these cells
(164). A recent study described a role for microglia and
complement in sex-specific synaptic shaping in the NAc
during rat adolescence, with potential key consequences on
social behavior (165). Specifically, in adolescent male rats,
D1Rs in the NAc were found to be downregulated and
degraded through a microglial and C3R-dependent engulfment
of C3-tagged D1Rs. Interestingly, the reduced expression of this
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receptor at synaptic sites in the NAc was correlated with social
play behavior in male rats, and the pharmacological interference
of C3–C3R interactions was able to increase social play in a D1R-
dependent manner (165). This evidence raises the hypothesis
that an immune-mediated shaping of striatal synapses may
regulate behavioral responses in an age-related way (165).

Moreover, microglial cells could modulate goal-directed and
drug-seeking behavior through a molecular pathway, yet to be
fully characterized, involving a Toll-like receptor 4 (TLR4)-
induced modulation of NMDAR-dependent synaptic plasticity
in MSNs of NAc (166), or through the secretion of soluble
inflammatory mediators exerting neuromodulatory effects on
excitatory striatal transmission, such as TNF-a (167).
Interestingly, it has been shown that microglial cells express
dopaminergic receptors and DA can modulate the activation of
these cells (168–170). Indeed, the release of TNF-a can be
induced by the activation of microglial DA D2 receptors
(D2Rs) (167). A proper investigation of the molecular
pathways linking microglia and striatal synaptic transmission
will help understand the puzzling neuro-glial interactions within
the basal ganglia network.
SOLUBLE IMMUNE MOLECULES
AS STRIATAL NEUROMODULATORS

Increasing evidence suggests that soluble products of
inflammation can influence learning/memory processes and
human behavior through the modulation of synaptic
transmission and plasticity in different neural networks (2, 3, 5,
6, 171, 172). In this context, the effects exerted by pro-
inflammatory cytokines have been mainly investigated in
hippocampal and cortical areas, suggesting that some of these
molecules could play a key physiological role in memory
formation, storage and retrieval (3, 172). The connection
between IL-1b production and hippocampal synaptic plasticity
induction can be considered as paradigmatic in the field.
Synaptic LTP in hippocampal areas was found to be followed
by IL-1b gene expression and the genetic ablation or the
pharmacological blockade of the IL-1b axis were found to alter
the induction and maintenance of hippocampal synaptic long-
term changes, together with the execution of hippocampal-
dependent memory tasks (173–176). Interestingly, IL-1b-
dependent modulation of synaptic plasticity seems to rely on
several mechanisms, including the modulation of NMDARs
and AMPARs phosphorylation, synaptic localization, and
calcium conductance (177–180). Similarly, other cytokines
like interleukin-6 (IL-6) (181–184), interleukin-18 (IL-18)
(185–187), interferon-g (IFN-g) (188, 189), TNF-a and -b (127,
190–196) and, more recently, interleukin-17 (IL-17) (197–199)
have been described as key cortical neuromodulators influencing
synaptic transmission and plasticity during physiological
and pathological conditions, with relevant behavioral and
cognitive implications.

On the other side, less is known about the potential effects of
such molecules on subcortical network activity. It has been
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suggested that IL-1b could be involved in the modulation of
striatal neurotransmission during both physiological and
pathological conditions. Indeed, the exposure of murine
corticostriatal slices to IL-1b is followed by an enhanced
frequency of spontaneous excitatory transmission, an effect
potentially caused by the activation of transient receptor
potential vanilloid 1 (TRPV1) channels located in striatal pre-
synaptic terminals (200) together with a reduced sensitivity of
CB1Rs controlling glutamate release (201). Interestingly,
exposure to IL-1b could induce an hyperactivation of MSNs
not only through the enhancement of glutamatergic
neurotransmission but also by lowering GABAergic inhibition
of MSNs (202). In this case too, the modulation of pre-synaptic
TRPV1 channels and CB1Rs seems to mediate the IL-1b-
dependent modulation of inhibitory terminals (203, 204). The
disruption of striatal glutamatergic/GABAergic balance through
the IL1b-CB1R axis could play a key role in triggering altered
motivated behavior during pathological neuroinflammation,
with a possible additional effect linked to an IL-1b-dependent
alteration of dopaminergic transmission or DA-induced release
of neurotrophic factors (205, 206). Of note, nigral dopaminergic
neurons were found to express IL-1 receptors (207), thus
suggesting a potential direct modulation of striatal
dopaminergic projections.

Another pro-inflammatory cytokine, TNF-a, has been
hypothesized to modulate glutamatergic neurotransmission in
the striatum. Specifically, exposure of murine brain slices to
TNF-a was able to induce an alteration of spontaneous
excitatory synaptic currents in MSNs, with an increased
duration and decay time that could be reversed by the
application of anti-TNF receptor (TNFR)–antibodies (208).
Interestingly, the same study has shown that pathological
neuroinflammation in mice is characterized by similar striatal
synaptic changes in association with an abnormal microglial
release of this cytokine and an increased expression and
phosphorylation of AMPARs in MSNs (208). These results
suggest a potential TNF-a-dependent modulation of
glutamatergic neurotransmission, in line with what has been
described in other brain areas (209–211). In support of this
hypothesis, intracerebroventricular (icv) injections of TNF-a
were able to enhance striatal glutamatergic transmission,
mimicking the synaptic alterations observed during
pathological neuroinflammation (212). Of note, such
modifications in striatal excitatory neurotransmission were
paralleled by behavioral abnormalities that could be reversed
by the icv administration of anti-TNF-a drugs (212).

On the other hand, it has been proposed that TNF-a could
play a role in the homeostatic maintenance of excitatory synaptic
weights around a firing set point, exerting a physiological and
adaptive role aimed at limiting the corticostriatal drive during
pathological conditions (213). Specifically, Lewitus and
coworkers have shown that TNF-a is upregulated after the
prolonged disinhibition of MSNs through the blockade of
D2Rs, and can drive AMPARs internalization, DARPP-32 and
GluA1 dephosphorylation in these cells (213) collectively
reducing corticostriatal synaptic input as an adaptive
Frontiers in Immunology | www.frontiersin.org 8
homeostatic response. Taking into account that this cytokine
was found to induce an opposite and rapid exocytosis of
AMPARs in hippocampal, motor and visual cortex neurons
(214–217), it could be hypothesized that TNF-a could exert
region- and neuronal type-specific modulations of activity-
dependent synaptic upscaling or downscaling (218). Moreover,
considering that the stimulation of microglial D2Rs was found to
induce the production of TNF-a by these cells (167), this TNF-
a-centered neuro-immune interaction could be involved in the
well-known D2R-dependent inhibition of corticostriatal
transmission. An abnormal striatal release of this cytokine
during neurodegenerative and neuroinflammatory disorders
could impair the physiological tuning of corticostriatal inputs,
altering basal ganglia activity with potential cognitive and
behavioral abnormalities.

Lastly, interferons (IFNs) represent a family of soluble
immune mediators exerting pleiotropic immune-modulating
effects, with particular regard to immune-surveillance processes
against viral infections (219, 220). Interestingly, IFNs can be
produced by different cellular subtypes in the CNS and can
directly modulate neuronal function and synaptic transmission
leading to cognitive and psychiatric disturbances during
infectious or inflammatory disorders of the CNS (189,
221–223). Several drugs have been designed to mimic the
immunomodulating effects of IFNs, in order to treat human
disorders characterized by a pathological immune system
activation (219). In this scenario, it has been shown that IFN-
b1a is able to reduce the amplitude of excitatory synaptic
currents in MSNs, suggesting an inhibitory effect on
glutamatergic transmission in the striatum (224). In particular,
this cytokine was found to specifically influence NMDAR-
mediated synaptic currents in MSNs, interacting with the
GluN2A subunit of this receptor, with no effect on the
AMPAR-dependent component of striatal excitatory
transmission (224). Interestingly, it has been hypothesized that
the effect of IFN-b1a on synaptic transmission relies on the
activation of post-synaptic Ca2+/Calmodulin(CaM)-dependent
protein kinase II (CaMKII) (224), known to strictly interact with
NMDAR and GluN2A subunit (225, 226). Of note, the exposure
of murine brain slices to IFN-b1a was found to reduce the
detrimental consequences induced by mitochondrial complex I
inhibition in the striatum, through the modulation of the IFN-
activated intracellular JAK-STAT1 pathway (227).
A SYNAPTOCENTRIC PERSPECTIVE:
STRIATAL NEUROINFLAMMATION AND
NEUROLOGICAL DISORDERS

The last decades have been characterized by an intense
investigation of the crucial role played by neuroinflammation
in the pathogenesis of several neurodegenerative disorders (228,
229), including the prototypical disorder of the basal ganglia
network: Parkinson’s disease (PD) (230). Mounting evidence
suggests that an aberrant immune system activation and a
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chronic inflammatory process within the CNS may contribute to
the progressive loss of midbrain dopaminergic neurons
characterizing PD (231–234). Pathological studies showed that
midbrain infiltrating T cells (235) and increased basal ganglia
levels of proinflammatory cytokines, such as TNF-a, IL-1b and
IL-6 (236, 237), can be found in post-mortem brains of PD
patients. Moreover, several studies have reported increased levels
of pro-inflammatory cytokines in serum and cerebrospinal fluid
(CSF) of PD patients (238–242). In this scenario, brain
infiltrating immune cells could represent autoreactive T
lymphocytes targeting alpha-synuclein (a-syn) aggregates, as
suggested by a recent study (243), or different and still
unknown neuronal antigens, orchestrating a pathological
inflammatory reaction through the production of chemo-active
and pro-inflammatory molecules. Several studies performed in
experimental PD models have led to hypothesize that such
abnormal immune activation in the basal ganglia and the
midbrain could act as a co-factor in PD-associated
neurodegeneration, by triggering cell-to-cell death signals or
because of the toxic damage induced by soluble pro-
inflammatory cytokines (235, 244–250).

Resident immune cells are thought to be involved in these
pathological processes. Early reports showed high levels of
activated microglia in the midbrain and in the striatum of PD
brains (251, 252), and the temporal relationship between the
presence of inflammation with activated microglia and the
emergence of a-syn pathology has been recently investigated
in dopaminergic neuronal grafts implanted in the striatum of PD
patients (253). Interestingly, the authors have found evidence of
inflammation long before the accumulation of a-syn, supporting
the concept that microglia plays an integral role in the
propagation and spread of a-syn pathology (253). Studies
performed in experimental models supported the hypothesis of
a microglial-driven degeneration of dopaminergic neurons
during the disease, probably due to an increased production of
reactive oxygen species and soluble mediators like TNF-a and
IL-1b (254–260). Similar neurotoxic effects have been described
for chemokines and cytokines released by the reactive and
dysfunctional astrocytes that have been identified in human
and experimental PD (261, 262) since the early phases of the
disease (263). However, most of the studies have focused on the
pathological neuro-immune interactions potentially triggering
progressive dopaminergic neuronal death during PD,
overlooking the possible detrimental influence exerted by
activated immune cells on synaptic connections within the
basal ganglia network, which could also anticipate irreversible
cell loss.

As introduced above, the abnormal release of pro-
inflammatory soluble mediators within the striatum, together
with the loss of the physiological supporting functions exerted by
glial cells, could alter the function of the striatal synaptic network
during PD development, long before the occurrence of
neurodegenerative features (Figure 2). Accordingly, it has been
hypothesized that a striatal immune-mediated synaptopathy
could account for disabling cognitive, motor and behavioral
abnormalities in PD patients (264), which can be highlighted
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in disease stages characterized by a still partial dopaminergic cell
loss (265). In this scenario, several studies performed in
experimental models of PD have highlighted that synaptic
dysfunction can be considered as an early event in the
pathogenesis of the disease, altering the ability of corticostriatal
connections to express short- and long-term plastic changes
(266–268). The disruption of the physiological filtering activity
of the basal ganglia network could induce an extensive
reorganization of the overall architecture of brain node
connectivity since early disease stages, as shown by functional
imaging studies (269, 270).

To date, PD-related synaptopathy has been mainly linked to
the synaptic and molecular effects of pathological a-syn
aggregates (271–278). However, an involvement of the
immune system in the synaptic dysfunction triggered by a-syn
accumulation cannot be ruled out since a-syn can activate
different subsets of T-cells (243) and oligomeric or fibrillary a-
syn can induce a pro-inflammatory activation of microglia
through the interaction with toll-like receptor 2 (TLR2) (279)
or the activation of NF-kB pathway (262). Moreover, it has been
suggested that astrocytes can uptake and accumulate the
pathological a-syn released by neighboring neuronal cells
(280), triggering a pro-inflammatory astrocytic reaction with
the production of soluble molecules such as IL-1b, IL-6 and
TNF-a (281). Collectively, accumulating evidence suggests that
striatal neurons and synapses could be submerged in an
inflammatory micro-environment linked to a-syn aggregation
(282), with the exposure to soluble immune molecules with
demonstrated modulatory effects on corticostriatal terminals.
Such abnormal immune influence on striatal transmission
could also account for late disease complications, like
L-DOPA-induced dyskinesia (283), which pathogenesis is
thought to rely on an abnormal corticostriatal synaptic
plasticity (284–286).

The potential relevance of pathological neuro-immune
interactions during PD is supported by a recent study showing
that corticostriatal synaptic plasticity can be rescued through the
modulation of astrocytic and microglial activation by
transcranial magnetic stimulation (TMS) (287). Specifically, it
has been shown that the loss of LTD and LTP of corticostriatal
projections accompanying striatal dopaminergic denervation can
be restored by TMS treatment in an experimental model of PD
(287). The beneficial effects of TMS on synaptic function were
paralleled by an increase in striatal DA levels and an
amelioration of PD-related deficits in motor behavior.
Interestingly, such a therapeutic protocol was also associated
with a significant reduction of astrocytic and microglial pro-
inflammatory responses in the striatum (287). This result is of
particular relevance since glial cells have been proposed as key
targets and effectors of TMS protocols, potentially mediating
widespread effects in neural networks through extensive
connections and cell type-specific modulation of neuronal
firing (288). The TMS-dependent reduction of pathological
glial activation in the striatum could lower the production of
soluble pro-inflammatory mediators and lead to the recovery of
glial supporting functions relevant for neurons, like the
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modulation of DA and glutamate metabolism, reuptake, or
release (138, 289). In line with these findings, another research
group has shown that the modulation of astrocytic glutamate
content and reuptake in the globus pallidus pars externa (GPe) is
able to restore the proper pre-synaptic tuning of striato-pallidal
input in an experimental model of PD (290). This result is
interesting since the hyperactivity of striato-pallidal pathway is
thought to underlie hypokinetic features of PD patients (291,
292) and the astrocytic gating of these synapses, which is
disrupted during PD, can represent an alternative therapeutic
strategy (290).

Further investigations are required to clearly decipher the
potential dysfunction of striatal astrocytes during the course of
PD, but findings obtained in research studies on other basal
ganglia disorders like HD seem to suggest that the loss of
physiological astrocytic properties could be associated with
Frontiers in Immunology | www.frontiersin.org 10
altered action selection, habit formation, impulse inhibition
and motor behavior (111, 293). HD is a genetic disorder
primarily affecting cortico-basal ganglia-thalamo-cortical
network , l inked to a pathologica l expansion of a
polyglutamine-encoding CAG repeat in the huntingtin gene
(HTT) and characterized by progressive motor hyperactivity with
psychiatric and cognitive disturbances (294, 295). Accumulating
evidence, both clinical and pre-clinical, suggests that an alteration
in astrocytic activity could be deeply involved in the pathogenesis
of HD (261, 293). In post-mortem tissues obtained from HD
patients, the striatum was characterized by a significant astrocytic
reaction (296) with an altered expression of the transporter
EAAT2/GLT-1, potentially triggered by mutant HTT (mHTT)
(297–299). Interestingly, the delivery of mHTT-expressing
human glial cells to the striatum was able to cause an HD-like
phenotype in mice, with the evidence of MSNs hyperexcitability
FIGURE 2 | Immune modulation of striatal synaptic transmission. Suggested mechanisms underlying astrocytic, microglial and immune modulation of corticostriatal
synaptic transmission are represented in the box on the left. The production of soluble immune mediators (like IL-1b, TNF-a, IL-6 and IL-17) by activated T-cells,
astrocytes and microglial cells can influence striatal transmission during the course of neuro-psychiatric disorders. Specifically, IL-1b can enhance striatal excitatory
transmission activating transient receptor potential vanilloid 1 (TRPV1) channels (200) and reducing CB1 receptors (CB1Rs) activation (201) at pre-synaptic glutamatergic
terminals. In addition, it has been shown that TNF-a can increase the decay time and duration of spontaneous striatal excitatory transmission during pathological
neuroinflammation (208) or induce AMPAR internalization as an adaptive response to prolonged MSNs disinhibition (167, 213). Microglial cells can also regulate dopamine
D1R expression through a complement (C3-C3R) dependent internalization and degradation of this receptor (165). Other authors have shown that IFN-b1a can inhibit
NMDAR-mediated glutamatergic transmission interacting with NMDAR subunit and CaMKII (224). Glutamate (Glu) released in the synaptic cleft could activate AMPARs
and NMDARs of MSNs, but could also act on metabotropic receptor subtype 5 (mGluR5) expressed by astrocytes triggering a Ca2+-dependent release of Glu, sustaining
MSNs activation for minutes after the initial stimulus (133). Depolarization of MSNs is associated with endocannabinoids (eCBS) release which can activate astrocytic
CB1Rs leading to an increase of intracellular Ca2+ levels and glutamate (Glu) release (131). Moreover, up-state MSNs could lead to Gi-coupled GABAB receptor activation
in neighboring astrocytes through dendritic GABA release (Nagai et al., 2019). The activation of this astrocytic receptor is thought to induce astrocytic Ca2+ release from
cellular stores and influence striatal excitatory transmission through the production of the synaptogenic cue TSP1 (not shown in the figure). The astrocytic expression of
EAAT2/GLT-1 is thought to be required for the maintenance of a proper Glu concentration in the synaptic cleft. Astrocytic Glu reuptake allows the detection of the
temporal contingency of synaptic stimuli, modulating the induction of corticostriatal synaptic plasticity (99). In addition, dopamine (DA) could trigger the release of ATP/
adenosine (Ade) by astrocytes through D1Rs activation, leading to A1 receptor (A1R)-dependent inhibition of striatal excitatory transmission (143). Microglial cells can
modulate NMDAR-dependent synaptic plasticity in MSNs through a still not fully characterized Toll-like receptor 4 (TLR4)-dependent mechanism (166), or influence
glutamatergic transmission through the secretion of tumor necrosis factor a (TNF-a), which could be also induced by the activation of microglial D2Rs (167).
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and striatum-dependent motor impairment (300). Conversely, the
selective deletion of mHTT in astrocytes was found to be protective
in an experimental model of HD, with beneficial effects on motor
and psychiatric-like disturbances (301). Overall, it has been
hypothesized that an altered expression of astrocytic proteins,
such as Kir4.1 and EAAT2/GLT-1, together with an impairment
in astrocytic Ca2+ signaling, could alter MSNs membrane
excitability and disrupt cortico-striatal glutamatergic transmission
(111, 293). Such disease-related synaptic and neuronal
abnormalities could influence the physiological mechanisms
underlying basal ganglia’s ability to inhibit context-inappropriate
actions, leading to the typical excessive and uncontrolled motor
behavior of HD patients. In line with this hypothesis, the
pathological activation of striatal glial cells has been proposed as
a key pathogenic factor in neuropsychiatric disorders characterized
by repetitive and impulsive behaviors like OCD, TS and “pediatric
autoimmune neuropsychiatric disorders associated with
streptococcal infections” (PANDAS) (302, 303), potentially
inducing a disruption of synaptic tuning in the striatal network.
In this scenario, the neuronal and synaptic consequences triggered
by the acquisition of a pro-inflammatory phenotype by striatal
astrocytes and the role of microglial cells during HD are still under
investigation (261, 304). Overall, interventions aimed at lowering
the immune system activation and restoring the physiological glial
functions could counteract the synaptic imbalance characterizing
basal ganglia disorders, limiting early clinical features, late disease
complications and, potentially, disease progression in several
neurological and psychiatric diseases.
CONCLUDING REMARKS

The functional view of the basal ganglia network slowly moved
from the brain motor control station to the decision-maker of
appropriate context-dependent cognitive, behavioral and
emotional responses. In parallel, the physiological processes
underlying the integrative and filtering activity of the basal
Frontiers in Immunology | www.frontiersin.org 11
ganglia started to be deciphered during the last decades. Plastic
properties of striatal synaptic connections have been
demonstrated as crucial for the integration of multimodal
cortical inputs and for conveying a proper basal ganglia output
driving an individual’s action selection/inhibition and habit
formation. In this scenario, the current evidence on the neuro-
modulatory role played by immuno-glial cells in cortical areas
suggests that corticostriatal projections and subcortical networks
can be influenced by the immune system as well.

The characterization of the neuro-immune interactions
taking place in the striatum, both in its dorsal and ventral
areas, could help to decipher the molecular mechanisms
underlying the previously underscored effects of the immune
system on motivated and context-dependent human behavior.
The identification of cells and soluble immune mediators
involved in the striatal neuro-immune cross-talk could lead to
a new approach to basal ganglia disorders, disclosing a novel
pathophysiological view for motor, behavioral, cognitive and
emotional abnormalities accompanying neurological and
psychiatric disorders.
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