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Flux-dependent graphs for metabolic networks
Mariano Beguerisse-Díaz 1,2, Gabriel Bosque3, Diego Oyarzún1, Jesús Picó3 and Mauricio Barahona 1

Cells adapt their metabolic fluxes in response to changes in the environment. We present a framework for the systematic
construction of flux-based graphs derived from organism-wide metabolic networks. Our graphs encode the directionality of
metabolic flows via edges that represent the flow of metabolites from source to target reactions. The methodology can be applied
in the absence of a specific biological context by modelling fluxes probabilistically, or can be tailored to different environmental
conditions by incorporating flux distributions computed through constraint-based approaches such as Flux Balance Analysis. We
illustrate our approach on the central carbon metabolism of Escherichia coli and on a metabolic model of human hepatocytes. The
flux-dependent graphs under various environmental conditions and genetic perturbations exhibit systemic changes in their
topological and community structure, which capture the re-routing of metabolic flows and the varying importance of specific
reactions and pathways. By integrating constraint-based models and tools from network science, our framework allows the study of
context-specific metabolic responses at a system level beyond standard pathway descriptions.

npj Systems Biology and Applications (2018)4:32; doi:10.1038/s41540-018-0067-y

INTRODUCTION
Metabolic reactions enable cellular function by converting
nutrients into energy, and by assembling macromolecules that
sustain the cellular machinery.1 Cellular metabolism is usually
thought of as a collection of pathways comprising enzymatic
reactions associated with broad functional categories. Yet meta-
bolic reactions are highly interconnected: enzymes convert
multiple reactants into products with other metabolites acting
as co-factors; enzymes can catalyse several reactions, and some
reactions are catalysed by multiple enzymes, and so on. This
enmeshed web of reactions is thus naturally amenable to network
analysis, an approach that has been successfully applied to
different aspects of cellular and molecular biology, e.g., protein-
protein interactions,2 transcriptional regulation,3 or protein
structure.4,5

Tools from graph theory6 have previously been applied to the
analysis of structural properties of metabolic networks, including
their degree distribution,7–10 the presence of metabolic roles,11

and their community structure.12–15 A central challenge, however,
is that there are multiple ways to construct a network from a
metabolic model.16 For example, one can create a graph with
metabolites as nodes and edges representing the reactions that
transform one metabolite into another;7,8,17,18 a graph with
reactions as nodes and edges corresponding to the metabolites
shared among them;19–21 or even a bipartite graph with both
reactions and metabolites as nodes.22 Importantly, the conclusions
of graph-theoretical analyses are highly dependent on the chosen
graph construction.23

A key feature of metabolic reactions is the directionality of
flows: metabolic networks contain both irreversible and reversible
reactions, and reversible reactions can change their direction
depending on cellular and environmental contexts.1 Existing
graph constructions have been useful for developing an intuitive
understanding of metabolic complexity. Many of these

constructions, however, lead to graphs that do not include
directional information that is central to metabolic function.8,16 In
addition, current graph constructions are usually derived from the
whole set of metabolic reactions in an organism, and thus
correspond to a generic metabolic ‘blueprint’ of the cell. Yet cells
switch specific pathways ‘on’ and ‘off’ to sustain their energetic
budget in different environments.24 Hence, such blueprint graphs
might not capture the specific metabolic connectivity in a given
environment, thus limiting their ability to provide biological
insights in different growth conditions.
In this paper, we present a flow-based approach to construct

metabolic graphs that encapsulate the directional flow of
metabolites produced or consumed through enzymatic reactions.
The proposed graphs can be tailored to incorporate flux
distributions under different environmental conditions. To intro-
duce our approach, we proceed in two steps. We first define the
Normalised Flow Graph (NFG), a weighted, directed graph with
reactions as nodes, edges that represent supplier-consumer
relationships between reactions, and weights given by the
probability that a metabolite chosen at random from all reactions
is produced/consumed by the source/target reaction. This graph
can be used to carry out graph-theoretical analyses of organism-
wide metabolic organisation independent of cellular context or
environmental conditions. We then show that this formalism can
be adapted seamlessly to construct the Mass Flow Graph (MFG), a
directed, environment-dependent, graph with weights computed
from Flux Balance Analysis (FBA),25 the most widespread method
to study genome-scale metabolic networks.
Our formulation addresses several drawbacks of current

constructions of metabolic graphs. Firstly, in our flow graphs, an
edge indicates that metabolites are produced by the source
reaction and consumed by the target reaction, thus accounting for
metabolic directionality and the natural flow of chemical mass
from reactants to products. Secondly, the Normalised Flow Graph
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discounts naturally the over-representation of pool metabolites
(e.g., adenosine triphosphate (ATP), nicotinamide adenine dinu-
cleotide (NADH), protons, water, and other co-factors) that appear
in many reactions and tend to obfuscate the graph connectivity.
Our construction avoids the removal of pool metabolites from the
network, which can change the graph structure drastically.26–30

Finally, the Mass Flow Graph incorporates additional biological
information reflecting the effect of the environmental context into
the graph construction. In particular, since the weights in the MFG
correspond directly to fluxes (in units of mass per time), different
biological scenarios can be analysed using balanced fluxes (e.g.,
from different FBA solutions) under different carbon sources and
other environmental perturbations.16,25,31,32

After introducing the mathematical framework, we showcase
our approach with two examples. Firstly, in the absence of
environmental context, our analysis of the NFG of the core model
of Escherichia coli metabolism33 reveals the importance of
including directionality and appropriate edge weights in the
graph to understand the modular organisation of metabolic sub-
systems. We then use FBA solutions computed for several relevant
growth conditions for E. coli, and show that the structure of the
MFG changes dramatically in each case (e.g., connectivity, ranking
of reactions, community structure), thus capturing the
environment-dependent nature of metabolism. Secondly, we
study a model of human hepatocyte metabolism evaluated under
different conditions for the wild-type and in a mutation found in
primary hyperoxaluria type 1, a rare metabolic disorder,34 and
show how the changes in network structure of the MFGs reveal
new information that is complementary to the flux analysis
predicted by FBA.

RESULTS
Definitions and background
Consider a metabolic network composed of nmetabolites Xi (i= 1,
…,n) that participate in m reactions

Rj :
Xn
i¼1

αijXi Ð
Xn
i¼1

βijXi; j ¼ 1; 2; ¼ ;m; (1)

where αij and βij are the stoichiometric coefficients of species i in
reaction j. Let us denote the concentration of metabolite Xi at time
t as xi(t). We then define the n-dimensional vector of metabolite
concentrations: x(t)= (x1(t),…,xn(t))

T. Each reaction takes place
with rate vj(x,t), measured in units of concentration per time.35 We
compile the reaction rates in the m-dimensional vector: v(t)=
(v1(t),…,vm(t))

T.
The mass balance of the system can then be represented

compactly by the system of ordinary differential equations

_x ¼ Sv; (2)

where the n ×m matrix S is the stoichiometric matrix with entries
Sij= βij− αij, i.e., the net number of Xi molecules produced
(positive Sij) or consumed (negative Sij) by the j-th reaction. Figure
1a shows a toy example of a metabolic network including nutrient
uptake, biosynthesis of metabolic intermediates, secretion of
waste products, and biomass production.32

There are several ways to construct a graph for a given
metabolic network with stoichiometric matrix S. A common
approach16 is to define a unipartite graph with reactions as nodes
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Fig. 1 Graphs from metabolic networks. a Toy metabolic network describing nutrient uptake, biosynthesis of metabolic intermediates,
secretion of waste products, and biomass production.32 The biomass reaction is R8: X3 + 2X4 + X5. b Bipartite graph associated with the

boolean stoichiometric matrix bS, and the Reaction Adjacency Graph (RAG)16 with adjacency matrix A ¼ bSTbS. The undirected edges of A
indicate the number of shared metabolites among reactions. c The Normalised Flow Graph (NFG) D and two Mass Flow Graphs (MFG) Mðv�Þ
constructed from the consumption and production stoichiometric matrices (5). Note that the reversible reaction R4 is unfolded into two
nodes. The NFG in Eq. (8) is a directed graph with weights representing the probability that a metabolite chosen uniformly at random from the
stoichiometric matrix is produced by source reaction is consumed by the target reaction. The MFGs in Eq. (12) are constructed from two
different Flux Balance Analysis solutions (v�1 and v�2) obtained by optimising a biomass objective function under different flux constraints
representing different environmental or cellular contexts (see Sec. SI 2 in the Supplementary Information for details). The weighted edges of
the MFGs represent mass flow from source to target reactions in units of metabolic flux. The computed FBA solutions translate into different
connectivity in the resulting MFGs
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and m ×m adjacency matrix

A ¼ bSTbS; (3)

where bS is the boolean version of S (i.e., Ŝij ¼ 1 when Sij ≠ 0 and
Ŝij ¼ 0 otherwise). This is the Reaction Adjacency Graph (RAG), in
which two reactions (nodes) are connected if they share
metabolites, either as reactants or products. Self-loops represent
the total number of metabolites that participate in a reaction
(Fig. 1b).
Though widely studied,8,16 the RAG has known limitations and

overlooks key aspects of the connectivity of metabolic networks.
The RAG is blind to the directionality of flows, as it does not
incorporate the irreversibility of reactions (by construction A is a
symmetric matrix). Furthermore, the structure of A is dominated
by the large number of edges introduced by pool metabolites that
appear in many reactions, such as water, ions or enzymatic
cofactors. Computational schemes have been introduced to
mitigate the bias caused by pool metabolites,27 but these do
not follow from biophysical considerations and need manual
calibration. Finally, the construction of the graph A from is not
easily extended to incorporate the effect of environmental
changes.

Metabolic graphs that incorporate flux directionality and
biological context
To address the limitations of the reaction adjacency graph A, we
propose a graph formulation that follows from a flux-based
perspective. To construct our graph, we unfold each reaction into
two separate directions (forward and reverse) and redefine the
links between reaction nodes to reflect producer-consumer
relationships. Specifically, two reactions are connected if one
produces a metabolite that is consumed by the other. As shown
below, this definition leads to graphs that naturally account for the
reversibility of reactions, and allows for the seamless integration of
biological contexts modelled through FBA. Inspired by matrix
formulations of chemical reaction network kinetics,36 we rewrite
the reaction rate vector v as:

v :¼ vþ � v� ¼ vþ � diag rð Þv�;
where v+ and v− are non-negative vectors containing the forward
and backward reaction rates, respectively. Here the m ×m matrix
diag(r) contains r in its main diagonal, and r is the m-dimensional
reversibility vector with components rj= 1 if reaction Rj is
reversible and rj= 0 if it is irreversible. With these definitions, we
can rewrite the metabolic model in Eq. (2) as:

_x ¼ Sv ¼ S �S½ � Im 0

0 diag rð Þ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S2m

vþ

v�

� �
:¼ S2mv2m ;

(4)

where v2m:= [v+v−]T is the unfolded 2m-dimensional vector of
reaction rates, Im is the m ×m identity matrix, and we have
defined S2m, the unfolded version of the stoichiometric matrix of
the 2m forward and reverse reactions.

Normalised Flow Graph: a directional blueprint of metabolism
The unfolding into forward and backward fluxes leads us to the
definition of production and consumption stoichiometric matrices:

Production : Sþ2m ¼ 1
2 abs S2mð Þ þ S2mð Þ

Consumption : S�2m ¼ 1
2 abs S2mð Þ � S2mð Þ; (5)

where abs(S2m) is the matrix of absolute values of the
corresponding entries of S2m. Note that each entry of the matrix
Sþ2m, denoted sþij , gives the number of molecules of metabolite Xi
produced by reaction Rj. Conversely, the entries of S�2m, denoted

s�ij , correspond to the number of molecules of metabolite Xi
consumed by reaction Rj.
Within our directional flux framework, it is natural to consider a

purely probabilistic description of producer-consumer relation-
ships between reactions, as follows. Suppose we are given a
stoichiometric matrix S without any additional biological informa-
tion, such as metabolite concentrations, reaction fluxes, or kinetic
rates. In the absence of such information, the probability that a
metabolite molecule Xk chosen uniformly at random from S is
produced by reaction Ri and consumed by reaction Rj is:

P onemolecule of Xk is produced by Ri and consumed by Rj
� � ¼ sþki

wþ
k

s�kj
w�
k

;

(6)

where wþ
k ¼P2m

h¼1 s
þ
kh and w�

k ¼P2m
h¼1 s

�
kh are the total number of

molecules of Xk produced and consumed by all reactions that
have been accounted for in S2m. Unlike models in that rely on
stochastic chemical kinetics,37 the probabilities in Eq. (6) do not
contain information on kinetic rate constants, which are typically
not available for genome-scale metabolic models.38 In our
formulation, the relevant probabilities contain only the stoichio-
metric information included in the matrix S2m and should not be
confused with the reaction propensity functions in Gillespie-type
stochastic simulations of biochemical systems.
We thus define the weight of the edge between reaction nodes

Ri and Rj as the probability that any metabolite chosen at random
is produced by Ri and consumed by Rj. Summing over all
metabolites and normalizing, we obtain the edge weights of the
adjacency matrix of the NFG:

Dij ¼ 1
n

Xn
k¼1

sþki
wþ
k

s�kj
w�

k

; (7)

in which
P

i;j Dij ¼ 1 (i.e., the probability that any metabolite is
consumed/produced by any reaction is 1). Rewritten compactly in
matrix form, we obtain the

Normalised FlowGraph ðNFGÞ : D ¼ 1
n

Wy
þS

þ
2m

� �T
Wy

�S
�
2m

� �
;

(8)

whereWy
þ ¼ diag Sþ2m12m

� �y
,Wy

� ¼ diag S�2m12m
� �y

, 12m is a vector
of ones, and † denotes the Moore-Penrose pseudoinverse. In Fig.
1c we illustrate the creation of the NFG for a toy network. The NFG
is a weighted, directed graph which encodes a blueprint of the
whole metabolic model, and provides a natural scaling of the
contribution of pool metabolites to flux transfer. We remark that
the NFG is distinct from directed analogues of the RAG
constructed from boolean production and consumption stoichio-
metric matrices, as shown in Sec. SI 1.
We now extend the construction of the NFG to accommodate

specific environmental contexts or growth conditions.

Mass flow graphs: incorporating information of the biological
context
Cells adjust their metabolic fluxes to respond to the availability of
nutrients and environmental requirements. Flux Balance Analysis
(FBA) is a widely used method to predict environment-specific flux
distributions. FBA computes a vector of metabolic fluxes v� that
maximise a cellular objective (e.g., biomass, growth or ATP
production). The FBA solution is obtained assuming steady state
conditions ( _x ¼ 0 in Eq. (2)) subject to constraints that describe
the availability of nutrients and other extracellular compounds.16

The core elements of FBA are briefly summarised in the Appendix
A.1.
To incorporate the biological information afforded by FBA

solutions into the structure of a metabolic graph, we again define
the graph edges in terms of production and consumption fluxes.
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Similarly to Eq. (4), we unfold the FBA solution vector v� into
forward and backward components: positive entries in the FBA
solution correspond to forward fluxes, negative entries in the FBA
solution correspond to backward fluxes. From the unfolded fluxes

v�2m ¼ v�þ

v��

� �
¼ 1

2

abs v�ð Þ þ v�

abs v�ð Þ � v�

� �
;

we compute the 2m × 1 vector of production and consumption
fluxes as

jðv�Þ ¼ Sþ2mv
�
2m ¼ S�2mv

�
2m: (9)

The k-th entry of jðv�Þ is the flux at which metabolite Xk is
produced and consumed; the equality of the production and
consumption fluxes follows from the steady state condition, _x ¼ 0
(i.e., the fluxes are balanced).
To construct the flow graph, we define the weight of the edge

between reactions Ri and Rj as the total mass flow of metabolites
produced by Ri that are consumed by Rj. Assuming that the
amount of metabolite produced by one reaction is distributed
among the reactions that consume it in proportion to their flux
(and respecting the stoichiometry), the flux of metabolite Xk from
reaction Ri to Rj is given by

Flow of Xk from Ri to Rj ¼ ðflow of Xk produced by RiÞ ´ flow of Xkconsumed by Rj
total consumptionf low of Xk

	 

:

(10)

For example, if the total flux of metabolite Xk is 10 mmol/gDW/
h, with reaction Ri producing Xk at a rate 1.5 mmol/gDW/h and
reaction Rj consuming Xk at a rate 3.0 mmol/gDW/h, then the flow
of Xk from Ri to Rj is 0.45 mmol/gDW/h.
Summing (10) over all metabolites, we obtain the edge weight

relating reactions Ri and Rj:

Mij v�ð Þ ¼
Xn
k¼1

sþki v
�
2mi ´

s�kj v
�
2mjP2m

j¼1 s
�
kj v

�
2mj

 !
: (11)

In matrix form, these edge weights are collected into the
adjacency matrix of the

Mass FlowGraph MFGð Þ : M v�ð Þ ¼ Sþ2mV
�� �T

Jyv S�2mV
�� �
; (12)

where V� ¼ diag v�2m
� �

, Jv ¼ diagðjðv�ÞÞ and † denotes the matrix
pseudoinverse. The MFG is a directed, weighted graph with edge
weights in units of mmol/gDW/h. Self-loops describe the
metabolic flux of autocatalytic reactions, i.e., those in which
products are also reactants.
The MFG provides a versatile framework to create environment-

specific metabolic graphs from FBA solutions. In Fig. 1c, we
illustrate the creation of MFGs for a toy network under different
biological scenarios. In each case, an FBA solution is computed
under a fixed uptake flux with the remaining fluxes constrained to
account for differences in the biological environment: in scenario
1, the fluxes are constrained to be strictly positive and no larger
than the nutrient uptake flux, while in scenario 2 we impose a
positive lower bound on reaction R7. Note how the MFG for
scenario 2 displays an extra edge between reactions R4 and R7, as
well as distinct edge weights to scenario 1 (see Sec. SI 2 for
details). These differences illustrate how changes in the FBA
solutions translate into different graph connectivities and edge
weights.

Graphs for Escherichia coli core metabolism
To illustrate our framework, we construct and analyse the flow
graphs of the well-studied core metabolic model of E. coli.33 This
model (Fig. 2a) contains 72 metabolites and 95 reactions, grouped
into 11 pathways, which describe the main biochemical routes in
central carbon metabolism.39–41 We provide a Supplemental

Spreadsheet with full details of the reactions and metabolites in
this model, as well as all the results presented below.

The Normalised Flow Graph: the impact of directionality
To examine the effect of flux directionality on the metabolic
graphs, we compare the Reaction Adjacency Graph (A) and our
proposed Normalised Flow Graph Dð Þ for the same metabolic
model in Fig. 2. The A graph has 95 nodes and 1,158 undirected
edges, whereas the D graph has 154 nodes and 1,604 directed
and weighted edges. The increase in node count is due to the
unfolding of reversible reactions into forward and backward
reaction nodes. Unlike the A graph, where edges represent shared
metabolites between two reactions, the directed edges of the D
graph represent the flow of metabolites from a source to a target
reaction. A salient feature of both graphs is their high connectivity,
which is not apparent from the traditional pathway representation
in Fig. 2a.
The effect of directionality becomes apparent when comparing

the importance of reaction nodes in both graphs (Fig. 2b–d), as
measured with the PageRank score for node centrality.42,43 The
overall node hierarchy is maintained across both graphs:
exchange reactions tend to have low PageRank centrality scores,
core metabolic reactions have high scores, and the biomass
reaction has the highest scores in both graphs. Yet we also
observe substantial changes in several reactions. For example, the
reactions for ATP maintenance (ATPM, irreversible), phosphoenol-
pyruvate synthase (PPS, irreversible) and ABC-mediated transport
of L-glutamine (GLNabc, irreversible) drop from being among the
top 10% most important reactions in the A graph to the bottom
percentiles in the D graph. Conversely, reactions such as aconitase
A (ACONTa, irreversible), transaldolase (TALA, reversible) and
succinyl-CoA synthetase (SUCOAS, reversible), and formate trans-
port via diffusion (FORti, irreversible) gain substantial importance
in the D graph. For instance, FORti is the sole consumer of
formate, which is produced by pyruvate formate lyase (PFL), a
reaction that is highly connected to the rest of the network.
Importantly, in most of the reversible reactions, such as ATP
synthase (ATPS4r), there is a wide gap between the PageRank of
the forward and backward reactions, suggesting a marked
asymmetry in the importance of metabolic flows.
Community detection is frequently used in the analysis of

complex graphs: nodes are clustered into tightly related commu-
nities that reveal the coarse-grained structure of the graph,
potentially at different levels of resolution.44–46 The community
structure of metabolic graphs has been the subject of multiple
analyses.12,14,44 However, most community detection methods are
applicable to undirected graphs only, and thus fail to capture the
directionality of the metabolic graphs we propose here. To
account for graph directionality, we use the Markov Stability
community detection framework,46–48 which uses diffusion on
graphs to detect groups of nodes where flows are retained
persistently across time scales. Markov Stability is ideally suited to
find multi-resolution community structure45 and can deal with
both directed and undirected graphs46,49 (see “Menthods”
section). In the case of metabolic graphs, Markov Stability can
reveal groups of reactions that are closely interlinked by the flow
of metabolites that they produce and consume.
Figure 3 shows the difference between the community

structure of the undirected RAG and the directed NFG of the
core metabolism of E. coli. For the A graph, Markov Stability
reveals a partition into seven communities (Fig. 3b, see also
Supplementary Sec. SI 3), which are largely dictated by the many
edges created by shared pool metabolites. For example, commu-
nity C 1(A) is mainly composed of reactions that consume or
produce ATP and water. Yet, the biomass reaction (the largest
consumer of ATP) is not a member of C 1(A) because, in the
standard A graph construction, any connection involving ATP has
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equal weight. Other communities in A are also determined by
pool metabolites, e.g. C 2(A) is dominated by H+, and C 3(A) is
dominated by NAD+ and NADP+, as illustrated by word clouds of
the relative frequency of metabolites in the reactions within each
community. The community structure in A thus reflects the
limitations of the RAG construction due to the absence of
biological context and the large number of uninformative links
introduced by pool metabolites.
For the D graph, we found a robust partition into five

communities (Fig. 3c, Supplementary Sec. SI 3), which comprise
reactions related consistently through biochemical pathways.
Community C1ðDÞ contains the reactions in the pentose
phosphate pathway together with the first steps of glycolysis
involving D-fructose, D-glucose, or D-ribulose. Community C2ðDÞ
contains the main reactions that produce ATP from substrate level
as well as oxidative phosphorylation and the biomass reaction.
Community C3ðDÞ includes the core of the citric acid cycle,
anaplerotic reactions related to malate syntheses, as well as the

intake of cofactors such as CO2. Community C4ðDÞ contains
reactions that are secondary sources of carbon (such as malate
and succinate), as well as oxidative phosphorilation reactions.
Finally, community C5ðDÞ contains reactions that are part of the
pyruvate metabolism subsystem, as well as transport reactions for
the most common secondary carbon metabolites such as lactate,
formate, acetaldehyde and ethanol. Altogether, the communities
of the D graph reflect metabolite flows associated with specific
cellular functions, as a consequence of including flux directionality
in the graph construction. As seen in Fig. 3c, the communities are
no longer exclusively determined by pool metabolites (e.g., water
is no longer dominant and protons are spread among all
communities). For a more detailed explanation and comparison
of the communities found in the A and D graphs, see
Supplementary Section SI 3. Full information about PageRank
scores and communities is provided in the Supplementary
Spreadsheet.

Fig. 2 Graphs for the core metabolism of Escherichia coli. a Map of the E. coli core metabolic model created with the online tool Escher.33,54 b
The standard Reaction Adjacency Graph A, as given by Eq. (3). The nodes represent reactions; two reactions are linked by an undirected edge
if they share reactants or products. The nodes are coloured according to their PageRank score, a measure of their centrality (or importance) in
the graph. c The directed Normalised Flow Graph D, as computed from Eq. (8). The reversible reactions are unfolded into two overlapping
nodes (one for the forward reaction, one for the backward). The directed links indicate flow of metabolites produced by the source node and
consumed by the target node. The nodes are coloured according to their PageRank score. d Comparison of PageRank percentiles of reactions
in A and D. Reversible reactions are represented by two triangles connected by a line; both share the same PageRank in A, but each has its
own PageRank in D. Reactions that appear above (below) the diagonal have increased (decreased) PageRank in D as compared to A
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Mass Flow Graphs: the impact of growth conditions and biological
context
To incorporate the impact of environmental context, we construct
the Mass Flow Graphs in Eq. (12) using FBA solutions of the core
model of E. coli metabolism in four relevant growth conditions:
aerobic growth in rich media with glucose; aerobic growth in rich
media with ethanol, anaerobic growth in glucose; and aerobic
growth in glucose but phosphate- and ammonium-limited. The
results in Fig. 4 show how changes in metabolite fluxes under
different biological contexts have a direct effect in the MFG. Note
that, in all cases, the MFGs have fewer nodes than the blueprint
graph D since the FBA solutions contain numerous reactions with
zero flux.
Next we summarise how the changes in the community

structure of the MFGs for the four conditions reflect the distinct
relationships of functional pathways in response to growth
requirements.

Aerobic growth in D-glucose (Mglc). We found a robust partition
into three communities with an intuitive biological interpretation
(Fig. 4a and Supplementary Fig. SI2A). C 1(Mglc) is the carbon-
processing community, comprising reactions that process carbon
from D-glucose to pyruvate including most of the glycolysis and
pentose phosphate pathways, together with related transport and
exchange reactions. C2(Mglc) harbours the bulk of reactions

related to oxidative phosphorylation and the production of
energy in the cell, including the electron transport chain of NADH
dehydrogenase, cytochrome oxidase, and ATP synthase, as well as
transport reactions for phosphate and oxygen intake and proton
balance. C2(Mglc) also includes the growth reaction, consistent
with ATP being the main substrate for both the ATP maintenance
(ATPM) requirement and the biomass reaction in this growth
condition. Finally, C3(Mglc) contains reactions related to the citric
acid cycle (TCA) and the production of NADH and NADPH (i.e., the
cell’s reductive power), together with carbon intake routes
strongly linked to the TCA cycle, such as those starting from
phosphoenolpyruvic acid (PEP).

Aerobic growth in ethanol (Metoh). The robust partition into three
communities that we found for this scenario resembles the
structure of Mglc with subtle, yet important, differences (Fig. 4b
and Supplementary Fig. SI 2B). Most salient are the differences in
the carbon-processing community C1(Metoh), which reflects the
switch from D-glucose to ethanol as a carbon source. C1(Metoh)
contains gluconeogenic reactions (instead of glycolytic), due to
the reversal of flux induced by the change of carbon source, as
well as anaplerotic reactions and reactions related to glutamate
metabolism. In particular, the reactions in this community are
related to the production of precursors such as PEP, pyruvate, 3-
phospho-D-glycerate (3PG), glyceraldehyde-3-phosphate (G3P),
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Fig. 4 Mass Flow Graphs for Escherichia coli in different growth conditions. The MFGs are computed from Eq. (12) and the FBA solutions in four
different environments: a Aerobic growth in D-glucose, b aerobic growth in ethanol, c anaerobic growth in D-glucose, and d aerobic growth in
D-glucose but with limited ammonium and phosphate. Each subfigure shows: (left) flux map obtained with Escher,54 where the increased red
colour of the arrows indicates increased flux; (centre) Mass Flow Graph with nodes coloured according to their PageRank (zero flux reactions
are in grey; thickness of connections proportional to fluxes); (right) community structure computed with the Markov Stability method
together with Sankey diagrams showing the correspondence between biochemical pathways and MFG communities
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D-fructose-6-phosphate (F6P), and D-glucose-6-phosphate, all of
which are substrates for growth. Consequently, the biomass
reaction is also grouped within C1(Metoh) due to the increased
metabolic flux of precursors relative to ATP production in this
biological scenario. The other two reaction communities (energy-
generation C2(Metoh) and citric acid cycle C3(Metoh)) display less
prominent differences relative to the Mglc graph, with additional
pyruvate metabolism and anaplerotic reactions as well as subtle
ascriptions of reactions involved in NADH/NADPH balance and the
source for acetyl-CoA.

Anaerobic growth in D-glucose (Manaero). The profound impact of
the absence of oxygen on the metabolic balance of the cell is
reflected in drastic changes in the MFG (Fig. 4c and Supplemen-
tary Fig. SI 2C). Both the connectivity and reaction communities in
the MFG are starkly different from the aerobic scenarios, with a
much diminished presence of oxidative phosphorylation and the
absence of the first two steps of the electron transport chain
(CYTBD and NADH16). We found that Manaero has a robust
partition into four communities. C1(Manaero) still contains carbon
processing (glucose intake and glycolysis), yet now decoupled
from the pentose phosphate pathway. C3(Manaero) includes the
pentose phosphate pathway grouped with the citric acid cycle
(incomplete) and the biomass reaction, as well as the growth
precursors including alpha-D-ribose-5-phosphate (r5p), D-ery-
throse-4-phosphate (e4p), 2-oxalacetate and NADPH. The other
two communities are specific to the anaerobic context: C2(Manaero)
contains the conversion of PEP into formate (more than half of the
carbon secreted by the cell becomes formate50); C4(Manaero)
includes NADH production and consumption via reactions linked
to glyceraldehyde-3-phosphate dehydrogenase (GAPD).

Aerobic growth in D-glucose but limited phosphate and ammonium
(Mlim). Under growth-limiting conditions, we found a robust
partition into three communities (Fig. 4d and Supplementary Fig.
SI 2D). The community structure reflects overflow metabolism,51

which occurs when the cell takes in more carbon than it can
process. As a consequence, the excess carbon is secreted from the
cell, leading to a decrease in growth and a partial shutdown of the
citric acid cycle. This is reflected in the reduced weight of the TCA
pathway and its grouping with the secretion routes of acetate and
formate within C3(Mlim). Hence, C3(Mlim) comprises reactions that
are not strongly coupled in favourable growth conditions, yet are
linked together by metabolic responses to limited ammonium and
phosphate. Furthermore, the carbon-processing community C1
(Mlim) contains the glycolytic pathway, yet detached from the
pentose phosphate pathway (as in Manaero), highlighting its role in

precursor formation. The bioenergetic machinery, contained in
community C2(Mlim), includes the pentose phosphate pathway,
with a smaller role for the electron transport chain (21.8% of the
total ATP as compared to 66.5% in Mglc).
In addition to the effect on community structure, Fig. 4 also

shows the changes induced by the environment on the MFG
connectivity and relative importance of reactions, as measured by
their PageRank score. To provide a global snapshot of the effect of
growth conditions on cellular metabolism, Fig. 5 shows the
cumulative PageRank of each pathway for each of the MFGs. The
cumulative PageRank quantifies the relative importance of path-
ways, and how their importance changes upon environmental
shifts.
In aerobic growth, a shift from glucose to ethanol (Mglc→Metoh)

as carbon source decreases the importance of pyruvate metabo-
lism and oxidative phosphorylation, while increasing the impor-
tance of the pentose phosphate pathway. A shift from aerobic to
anaerobic growth in glucose (Mglc→Manaero) sees a large
reduction in the importance of oxidative phosphorylation and
the citric acid cycle, coupled with a large increase in the
importance of gluconeogenesis, pyruvate metabolism, and trans-
port and exchange reactions. The effect of growth-limiting
conditions in aerobic growth under glucose (Mglc→Mlim) is
reflected on the increased importance of pyruvate metabolism
and a reduction in the importance of oxidative phosphorylation,
citric acid cycle, and the pentose phosphate pathway. The
importance of transport and exchange reactions is also increased
under limiting conditions. Such qualitative relations between
growth conditions and the importance of specific pathways
highlights the utility of the MFGs to characterise systemic
metabolic changes in response to environmental conditions.
A more detailed discussion of the changes in pathways and

reactions can be found in Section SI 4 and Fig. SI 2 in the
Supplementary Information, with full details of all the results in the
Supplemental Spreadsheet.

Multiscale organisation of mass flow graphs
The definition of the MFGs as directed graphs opens up the
application of network-theoretic tools for detecting modules of
reaction nodes and the hierarchical relationships among them.
In contrast with methods for undirected graphs, the Markov

Stability framework47,52 can be used to detect multi-resolution
community structure in directed graphs (Sec. 4.2), thus allowing
the exploration of the multiscale organisation of metabolic
reaction networks. The modules so detected reflect subsets of
reactions where metabolic fluxes tend to be contained.
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Fig. 5 Pathway centrality (PageRank) computed from the MFG of different growth conditions. The cumulative pathway PageRank reflects the
relative importance of metabolic pathways in each MFG. Changes in pathway centrality indicate the overall rearrangement of fluxes within the
pathways in response to environmental shifts: a from aerobic glucose-rich to aerobic ethanol-rich; b from aerobic glucose-rich to anerobic
glucose-rich; c from aerobic glucose-rich to a similar medium with limited phosphate and ammonium. Variations in cumulative Pagerank
highlight changes across most cellular pathways
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Figure 6 illustrates this multiscale analysis on Mglc, the MFG of E.
coli under aerobic growth in glucose. By varying the Markov time t,
a parameter in the Markov Stability method, we scanned the
community structures at different resolutions. Our results show
that, from finer to coarser resolution, the MFG can be partitioned
into 11, 7, 5, 3, and 2 communities of high persistence across
Markov time (extended plateaux over t, as shown by low values of
VI(t, t′)) and high robustness under optimisation (as shown by dips
in VI(t)). For further details, see Section 4.2 and Refs.45–47,52

The Sankey diagram in Fig. 6 visualises the pathway composi-
tion of the graph partitions and their relationships across different
resolutions. As we decrease the resolution (longer Markov times),
the reactions in different pathways assemble and split into
different groupings, reflecting both specific relationships and
general organisation principles associated with this growth
condition. A general observation is that glycolysis is grouped
together with oxidative phosphorylation across most scales,
underlining the fact that those two pathways function as cohesive
metabolic sub-units in aerobic conditions. In contrast, the

exchange and transport pathways appear spread among multiple
partitions across all resolutions. This is expected, as exchange/
transport are enabling functional pathways, in which reactions do
not interact amongst themselves but rather feed substrates to
other pathways.
Other reaction groupings reflect more specific relationships. For

example, the citric acid cycle (always linked to anaplerotic
reactions) appears as a cohesive unit across most scales, and only
splits in two in the final grouping, reflecting the global role of the
TCA cycle in linking to both glycolysis and oxidative phosphoryla-
tion. The pentose phosphate pathway, on the other hand, is split
into two groups (one linked to glutamate metabolism and another
one linked to glycolysis) across early scales, only merging into the
same community towards the final groupings. This suggests a
more interconnected flux relationship of the different steps of the
penthose phosphate pathway with the rest of metabolism. In
Supplementary Figure SI2, we present the multiscale analyses of
the reaction communities for the other three growth scenarios
(Metoh, Manaero, Mlim).

Fig. 6 Community structure of flow graphs across different scales. We applied the Markov Stability method to partition the mass flow graph
for E. coli aerobic growth in glucose (Mglc) across levels of resolution. The top panel shows the number of communities of the optimal partition
(blue line) and two measures of its robustness (VI(t) (green line) and VI(t,t′) (colour map)) as a function of the Markov time t (see text and
“Methods” section). The five Markov times selected correspond to robust partitions of the graph into 11, 7, 5, 3, and 2 communities, as
signalled by extended low values of VI(t,t′) and low values (or pronounced dips) of VI(t). The Sankey diagram (middle panel) visualises the
multiscale organisation of the communities of the MFG across Markov times, and the relationship of the communities with the biochemical
pathways. The bottom panel shows the five partitions at the selected Markov times. The partition into 3 communities corresponds to that in
Fig. 4A
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Using MFGs to analyse hepatocyte metabolism in wild type and
PH1 mutant human cells
To showcase the applicability of our framework to larger
metabolic models, we analyse a model of human hepatocyte
(liver) metabolism with 777 metabolites and 2589 reactions,34

which extends the widely used HepatoNet1 model53 with an
additional 50 reactions and 8 metabolites. This extended model
was used in Ref.34 to compare wild-type cells (WT) and cells
affected by the rare disease Primary Hyperoxaluria Type 1 (PH1),
which lack alanine:glyoxylate aminotransferase (AGT) due to a
genetic mutation. AGT is an enzyme found in peroxisomes and its
mutation decreases the breakdown of glyoxylate, with subsequent
accumulation of calcium oxalate that leads to liver damage.

Following,34 we first obtain 442 FBA solutions for different sets
of metabolic objectives for both the wild-type (WT) model and the
PH1 model lacking AGT (reaction r2541). We then generate the
corresponding 442 MFGs for each WT and PH1, and obtain the
averages over each ensemble: MWT and MPH1. Of the 2589
reactions in the model, 2448 forward and 1362 reverse reactions
are present in at least one of the FBA solutions. Hence the average
MFGs have 3810 nodes each (see Supplementary Spreadsheet for
full details about the reactions).
Figure 7a shows the MFG for the wild-type MWT

� �
coloured

according to a robust partition into 7 communities obtained with
Markov Stability. The seven communities are broadly linked to
amino acid metabolism (C0), energy metabolism (C1 and C5),
glutathione metabolism (C2), fatty acid and bile acid metabolism

Fig. 7 MFG analysis of a model of human hepatocyte metabolism and the genetic condition PH1. a Average MFG of wild-type hepatocytes
cells over 442 metabolic objectives. The reaction nodes are coloured according to communities in a 7-way partition obtained with Markov
Stability. The Sankey diagramme shows the consistency between the communities in the wild-type MFG and the communities independently
found in the MFG of the mutated PH1 cells. Word clouds of the most frequent metabolites in the reactions of the WT communities reveal
functional groupings (see text). Under the PH1 mutation, the only large change relates to metabolites that join C3’ from community C0 in WT.
b Comparison of the PageRank percentiles in the WT and PH1 MFGs, with reactions whose rank changes by more than 20 percentiles labelled.
c Difference in FBA flux between WT and PH1 vs difference in PageRank percentile between WT and PH1. Reactions whose flux difference is
greater than 100mmol/gDW/h (italics) or whose change in PageRank percentile is greater than 20 are labelled. The differences in centrality
(PageRank) provide complementary information, revealing additional important reactions affected by the PH1 mutation that knocks out
reaction r2541
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(C3 and C4) and cholesterol metabolism and lipoprotein particle
assembly (C6). As expected, the network community structure of
the MFG is largely preserved under the AGT mutation: the Sankey
diagramme in Fig. 7b shows a remarkable match between the
partitions of MWT and MPH1 found independently with Markov
Stability. Despite this similarity, our method also identified subtle
but important differences between the healthy and diseased
networks. In particular, C3′ inMPH1 receives 60 reactions, almost all
taking place in the peroxisome and linked to mevalonate and iso-
pentenyl pathways, as well as highly central transfer reactions of
PPi, O2 and H2O2 between the peroxisome and the cytosol (r1152,
r0857, r2577).
Overall, the centrality (PageRank) of most reactions in the MFG

is relatively unaffected by the PH1 mutation, as shown by the
good correlation between the PageRank percentiles in MWT and
MPH1 in Fig. 7c. Yet, there are notable exceptions, and the
reactions that exhibit the largest change in PageRank centrality
(labelled in Fig. 7b) provide biological insights into the disease
state. Specifically, the four reactions (r0916, r1088, r2384, r2374)
that undergo the largest increase in centrality from MWT to MPH1
are related to the transfer of citrate out of the cytosol in exchange
for oxalate and PEP; whereas those with the largest decrease of
PageRank from MWT to MPH1 are related to VLDL-pool reactions
(r1228, r1195, r1220) and to transfers of hydroxypyruvate and
alanine from peroxisome to cytosol (r2581, r2543).
It is worth remarking that although oxalate and citrate reactions

are directly linked to metabolic changes associated with the PH1
diseased state, none of them exhibits large changes in their flux
predicted by FBA, yet they show large changes in PageRank
centrality.
These observations underscore how the information provided

by our network analysis provides complementary information to
the results from FBA. As shown in Fig. 7d, there is a group of
reactions (labelled with italics in the Figure) that exhibit large
gains or decreases in their flux under the PH1 mutation, yet they
only undergo relatively small changes in their PageRank scores.
Closer inspection reveals that most of these reactions are close to
the AGT reaction (r2541, highlighted in the Figure) in the pathway
and involve the conversion of glycolate, pyruvate, glycine, alanine
and serine. Hence the changes in flux follow from the local
rearrangement of flows as a consequence of the deletion of
reaction r2541. On the other hand, the citrate and oxalate
reactions (r0916, r1088, r2384, r2374) with large changes in their
centrality yet undergo small changes in flux, thus reflecting global
changes in the flux structure of the network. Importantly, the
transport reactions of O2, H2O2, serine and hydroxypyruvate
between cytosol and peroxisome (r0857, r2577, r2583, r2543) all
undergo large changes both in centrality and flux, highlighting the
importance of peroxisome transfer reactions in PH1. We provide a
full spreadsheet with these analyses as Supplementary Material for
the interested reader.

DISCUSSION
Metabolism is commonly understood in terms of functional
pathways interconnected into metabolic networks,54 i.e., metabo-
lites linked by arrows representing enzymatic reactions between
them as in Fig. 2a. However, such standard representations are not
amenable to rigorous graph-theoretic analysis. Fundamentally
different graphs can be constructed from such metabolic reactions
depending on the chosen representation of species/interactions
as nodes/edges, e.g., reactions as nodes; metabolites as nodes; or
both reaction and metabolites as nodes.16 Each of those graphs
can be directed or undirected and with weighted links computed
according to different rules. The choices and subtleties in graph
construction are crucial both to capture the relevant metabolic
information and to interpret their topological properties.10,17

Here we have presented a flux-based strategy to build graphs
for metabolic networks. Our graphs have reactions as nodes and
directed weighted edges representing the flux of metabolites
produced by a source reaction and consumed by a target reaction.
This principle is applied to build both ‘blueprint’ graphs (NFG),
which summarise probabilistically the fluxes of the whole
metabolism of an organism, as well as context-specific graphs
(MFGs), which reflect specific environmental conditions. The
blueprint Normalised Flow Graph has edge weights equal to the
probability that source/target reactions produce/consume a
molecule of a metabolite chosen at random from the stoichio-
metric matrix in the absence of any other information, and can
thus be used when this matrix is the only information available.
The NFG construction naturally tames the over-representation of
pool metabolites without the need to remove them from the
graph arbitrarily, as often done in the literature.26,28–30 Context-
specific Mass Flow Graphs (MFGs) can incorporate the effect of the
environment, e.g., with edge weights corresponding to the total
flux of metabolites between reactions as computed by Flux
Balance Analysis (FBA). FBA solutions for different environments
can then be used to build different metabolic graphs in different
growth conditions.
The proposed graph constructions provide complementary

tools for studying the organisation of metabolism and can be
embedded into any FBA-based modelling pipeline. Specifically,
the NFG relies on the availability of a well-curated stoichiometric
matrix, which is produced with metabolic reconstruction techni-
ques that typically precede the application of FBA. The MFG, on
the other hand, explicitly uses the FBA solutions in its construc-
tion. Both methods provide a systematic framework to convert
genome-scale metabolic models into a directed graph on which
analysis tools from network theory can be applied.
To exemplify our approach, we built and analysed NFG and

MFGs for the core metabolism of E. coli. Through the analysis of
topological properties and community structure of these graphs,
we highlighted the importance of weighted directionality in
metabolic graph construction, and revealed the flow-mediated
relationships between functional pathways under different
environments. In particular, the MFGs capture specific metabolic
adaptations such as the glycolytic-gluconeogenic switch, overflow
metabolism, and the effects of anoxia. The proposed graph
construction can be readily applied to large genome-scale
metabolic networks.12,19,21,22,39

To illustrate the scalability of our analyses to larger metabolic
models, we studied a genome-scale model of a large metabolic
model of human hepatocytes with around 3000 reactions in which
we compared the wild-type and a mutated state associated with
the disease PH1 under more than 400 metabolic conditions.34 Our
network analysis of the MFGs revealed a consistent organisation of
the reaction graph, which is highly preserved under the mutation.
Our analysis also identified notable changes in the network
centrality score and community structure of certain reactions,
which is linked to key biological processes in PH1. Importantly,
network measures computed from the MFGs reveal complemen-
tary information to that provided by the sole analysis of perturbed
FBA fluxes.
Our flow graphs provide a systematic connection between

network theory and constraint-based methods widely employed
in metabolic modelling,21,22,25,32 thus opening avenues towards
environment-dependent, graph-based analyses of cell metabo-
lism. An area of interest for future research is the use of MFGs to
study how network measures of flow graphs can help characterise
metabolic conditions that maximise the efficacy of drug treat-
ments or disease-related distortions, e.g., cancer-related metabolic
signatures.55–58 In particular, MFGs can quantify metabolic
robustness via graph statistics upon removal of reaction nodes.22

The proposed framework for graph construction for metabolic
networks can be extended in different directions. The core idea is
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the distinction between production and consumption fluxes (5),
and how to encode the relationship between produced and
consumed mass flows in the weighted links of a graph. This
general principle can also be used to build other potentially useful
graphs. For example, two other graphs that describe relationships
between reactions are:

Competition graph : Dc ¼ 1
n
S� T
2m Wy

�
� �2

S�2m (13)

Synergy graph : Ds ¼ 1
n
Sþ T
2m Wy

þ
� �2

Sþ2m: (14)

The competition and synergy graphs are undirected and their
edge weights represent the probability that two reactions
consume Dcð Þ or produce Dsð Þ metabolites chosen uniformly at
random. Similarly to the MFG construction, we can also create the
corresponding FBA versions of competition and synergy mass flow
graphs, which follow directly from (12–14). These additional
graphs could help reveal further relationships between metabolic
reactions in the cell, and will be the subject of future studies.
The framework can also be extended to include dynamic

adaptations of metabolic activity in different ways: by using
dynamic extensions of FBA;59,60 by incorporating static61 or time-
varying62 enzyme concentrations; or by considering kinetic
models (with kinetic constants when available) to generate
probabilistic reaction fluxes in the sense of stochastic chemical
reaction networks.37,63 Of particular interest to metabolic model-
ling, we envision that MFGs could provide a route to evaluate the
robustness of FBA solutions25,64 by exploiting the non-uniqueness
of the MFG from each FBA solution in the space of graphs. Such
results could enhance the interface between network science and
metabolic analysis, allowing for the systematic exploration of the
system-level organisation of metabolism in response to environ-
mental constraints and disease states.

METHODS
Flux balance analysis
Flux Balance Analysis (FBA)25,32 is a widely-adopted approach to analyse
metabolism and cellular growth. FBA calculates the reaction fluxes that
optimise growth in specific biological contexts. The main hypothesis
behind FBA is that cells adapt their metabolism to maximise growth in
different biological conditions. The conditions are encoded as constraints
on the fluxes of certain reactions; for example, constraints reactions that
import nutrients and other necessary compounds from the exterior.
The mathematical formulation of the FBA is described in the following

constrained optimisation problem:

maximise : cTv

subject to
Sv ¼ 0

vlb � v � vub;

�
(15)

where S is the stoichiometry matrix of the model, v the vector of fluxes, c is
an indicator vector (i.e., c(i)= 1 when i is the biomass reaction and zero
everywhere else) so that cTv is the flux of the biomass reaction. The
constraint Sv= 0 enforces mass-conservation at stationarity, and vlb and
vub are the lower and upper bounds of each reaction’s flux. Through these
vectors, one can encode a variety of different scenarios.33 The biomass
reaction represents the most widely-used flux that is optimised, although
there are others can be used as well.31,65

In our simulations, we set the individual carbon intake rate to 18.5
mmol/gDW/h for every source available in each scenario. We allowed
oxygen intake to reach the maximum needed in to consume all the carbon
except in the anaerobic condition scenario, in which the upper bound for
oxygen intake was 0 mmol/gDW/h. In the scenario with limited phosphate
and ammonium intake, the levels of NH4 and phosphate intake were fixed
at 4.5 mmol/gDW/h and 3.04 mmol/gDW/h respectively (a reduction of
50% compared to a glucose-fed aerobic scenario with no restrictions).

Markov Stability community detection framework
We extract the communities in each network using the Markov Stability
community detection framework.47,48 This framework uses diffusion
processes on the network to find groups of nodes (i.e., communities) that
retain flows for longer than one would expect on a comparable random
network; in addition, Markov Stability incorporates directed flows
seamlessly into the analysis.46,49

The diffusion process we use is a continuous-time Markov process on
the network. From the adjacency matrix G of the graph (in our case, the
RAG, NFG or MFG), we construct a rate matrix for the process: M ¼ K�1

outG,
where Kout is the diagonal matrix of out-strengths, kout;i ¼

P
j gi;j . When a

node has no outgoing edges then we simply let kout,i= 1. In general, a
directed network will not be strongly-connected and thus a Markov
process on M will not have a unique steady state. To ensure the
uniqueness of the steady state we must add a teleportation component to
the dynamics by which a random walker visiting a node can follow an
outgoing edge with probability λ or jump (teleport) uniformly to any other
node in the network with probability 1−λ.42 The rate matrix of a Markov
process with teleportation is:

B ¼ λMþ 1
N

1� λð ÞIN þ λdiagðaÞ½ �11T ; (16)

where the N × 1 vector a is an indicator for dangling nodes: if node i has no
outgoing edges then ai= 1, and ai= 0 otherwise. Here we use λ= 0.85.
The Markov process is described by the ODE:

_x ¼ �LTx; (17)

where L= IN− B. The solution of (17) is xðtÞ ¼ e�tLT xð0Þ and its stationary
state (i.e., _x ¼ 0) is x= π, where π is the leading left eigenvector of B.
A hard partition of the graph into C communities can be encoded into

the N × C matrix H, where hic= 1 if node i belongs to community c and
zero otherwise. The C × C clustered autocovariance matrix of (17) is

Rðt;HÞ ¼ HT Πe�tLT � ππT
� �

H; (18)

and the entry (c,s) of R(t, H) measures how likely it is that a random walker
that started the process in community c finds itself in community s after
time t when at stationarity. The diagonal elements of R(t,H) thus record
how good the communities in H are at retaining flows. The Markov stability
of the partition is then defined as

rðt;HÞ ¼ trace Rðt;HÞ: (19)

The optimised communities are obtained by maximising the cost
function (19) over the space of all partitions for every time t to obtain an
optimised partition bPðtÞ. This optimisation is NP-hard; hence, with no
guarantees of optimality. Here we use the Louvain greedy optimisation
heuristic,66 which is known to give high quality solutions bPðtÞ in an
efficient manner. The value of the Markov time t, i.e. the duration of the
Markov process, can be understood as a resolution parameter for the
partition into communities.45,47 In the limit t→ 0, Markov stability will
assign each node to its own community; as t grows, we obtain larger
communities because the random walkers have more time to explore the
network.48 We scan through a range of values of t to explore the multiscale
community structure of the network. The code for Markov Stability can be
found at http://wwwf.imperial.ac.uk/mpbara/Partition_Stability/.
To identify the important partitions across time, we use two criteria of

robustness.45 Firstly, we optimise (19) 100 times for each value of t and we
assess the consistency of the solutions found. A relevant partition should
be a robust outcome of the optimisation, i.e., the ensemble of optimised
solutions should be similar as measured with the normalised variation of
information:67

VI P;P0ð Þ ¼ 2Ω P;P0ð Þ � Ω Pð Þ � Ω P0ð Þ
logðnÞ ; (20)

where ΩðPÞ ¼ �PC pðCÞlog pðCÞ is a Shannon entropy and pðCÞ is the
relative frequency of finding a node in community P in partition P. We
then compute the average variation of information of the ensemble of
solutions from the ‘ ¼ 100 Louvain optimisations P iðtÞ at each Markov
time t:

VIðtÞ ¼ 1
‘ ‘� 1ð Þ

X
i≠j

VI PiðtÞ;P jðtÞ
� �

: (21)

If all Louvain runs return similar partitions, then VI(t) is small, indicating
robustness of the partition to the optimisation. Hence we select partitions
with low values (or dips) of VI(t). Secondly, relevant partitions should also
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be optimal across Markov time, as indicated by a low values of the cross-
time variation of information:

VI t; t0ð Þ ¼ VI P̂ tð Þ; P̂ t0ð Þ� �
: (22)

Therefore, we also search for partitions with extended low value
plateaux of VI(t, t′).45,46,52
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