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Abstract

Many chemical routes have been proposed to immobilize peptides on biomedical device surfaces, 

and in particular, on dental implants to prevent peri-implantitis. While a number of factors affect 

peptide immobilization quality, an easily controllable factor is the chemistry used to immobilize 

peptides. These factors affect peptide chemoselectivity, orientation, etc., and ultimately control 

biological activity. Using many different physical and chemical routes for peptide coatings, 

previous research has intensely focused on immobilizing antimicrobial elements on dental 

implants to reduce infection rates. Alternatively, our strategy here is different and focused on 

promoting formation of a long-lasting biological seal between the soft tissue and the implant 

surface through transmembrane, cell adhesion structures called hemidesmosomes. For that 

purpose, we used a laminin-derived call adhesion peptide. However, the effect of different 

immobilization chemistries on cell adhesion peptide activity is vastly unexplored but likely 

critical. Here, we compared the physiochemical properties and biological responses of a 

hemidesmosome promoting peptide immobilized using silanization and copper-free click 

chemistry as a model system for cell adhesion peptides. Successful immobilization was confirmed 

with water contact angle and X-ray photoelectron spectroscopy. Peptide coatings were retained 

through 73 days of incubation in artificial saliva. Interestingly, the non-chemoselective 

immobilization route, silanization, resulted in significantly higher proliferation and 

hemidesmosome formation in oral keratinocytes compared to chemoselective click chemistry. Our 

results highlight that the most effective immobilization chemistry for optimal peptide activity is 

dependent on the specific system (substrate/peptide/cell/biological activity) under study. Overall, a 

better understanding of the effects immobilization chemistries have on cell adhesion peptide 

activity may lead to more efficacious coatings for biomedical devices.
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1. Introduction

A repertoire of chemical routes exists for immobilizing biomolecules on biomedical device 

surfaces. Peptide immobilization in particular has gained widespread investigation due to 

peptides’ functional diversity, ease of manufacture and derivation, and defined structures 

[1,2]. Given this popularity, a number of different peptide immobilization chemistries have 

been used to anchor peptides to a material surface [3,4]. Such peptide immobilization 

chemistries have been exploited to create a number of exciting peptide-based strategies for 

surface engineering of biomedical surfaces (among others): cell adhesion surfaces [5,6] 

using so called “cell adhesion peptides” [7,8], antimicrobial surfaces [9,10], combined 

antimicrobial and cell adhesion surfaces [11–13], biosensors [14], selective attachment of 

cells [15,16], tri-biomolecule surfaces [17], antifouling surfaces [18], and biomineralization 

[19,20].

A vast number of factors affect peptide immobilization quality such as environmental pH, 

surface topography, surface charge, surface polarity, peptide–peptide interactions, and 

immobilization chemistry [21,22]. These factors affect surface density, orientation/domain 

exposure, peptide intra- and intermolecular structure, and overall biological activity. One 

easily controllable factor in these systems is the immobilization chemistry [23]. In general, 

immobilization chemistries are divided into two classes based on whether they are 

chemoselective or not. Chemoselectivity is potentially important for peptide biological 

activity as a means to precisely control conformation vis-à-vis activity [24]. Silanization, a 

process which immobilizes an organofunctional alkoxysilane molecule via hydroxyl groups 

at the surface of the material which then reacts with peptides, is typically not chemoselective 

but is attractive because of its long history in biomaterials and relative ease of use [25,26]. 

On the other hand, strain-promoted, copper-free azide–alkyne click chemistry immobilizes 

azide or dibenzocyclooctyne (DIBO)-bearing peptides with chemoselectivity but requires 

additional expensive peptide synthesis steps [27,28]. Little attention has been paid to the 

comparison of biological outcomes from cell adhesion peptides immobilized with different 

chemistries despite decades of work immobilizing peptides on surfaces: this is in stark 

contrast to molecules other than peptides, like poly(ethylene) glycol (PEG) immobilization 

[29]. However, previous work has shown significant differences in antimicrobial activity 

between antimicrobial peptides immobilized with surface-initiated atom transfer radical 

polymerization (SI-ATRP) versus silanization [30].

Here, we aim to compare the physical and chemical properties and biological responses of a 

cell adhesion peptide immobilized using both silanization and click chemistry. We selected 

peri-implantitis, or dental implant infection, as a model disease in need of biomedical device 

innovations. Peri-implantitis rates vary based on many factors but a recent meta-analysis 

reports an implant-based prevalence of 9.25% and a patient-based prevalence of 19.83% 

[31]. Other biomedical devices suffer a similar fate [32]; implantable auditory assist devices 

demonstrate a 26% failure rate [33] and infections occur in up to 77% of individuals with 

bone-anchored orthopaedic devices [34]. We have selected the peptide LamLG3 identified 

[35] from a globular module (LG3) of laminin332 (LM332) capable of inducing 

hemidesmosome (HD) formation from oral keratinocytes in the soft tissue surrounding 
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dental implants [5,36,37]. HDs are a transmembrane “link” or “rivet” between teeth and 

gingiva (Figure 1), as the gingiva forms a protective, physical barrier for the tooth, or dental 

implant, against biofilm invasion [38,39]. Enhanced HD formation on dental implants may 

contribute to enhanced soft tissue healing around implants and improve their longevity.

Expected effects of click chemistry’s chemoselectivity immobilization of the LamLG3 

peptides are homogeneous structural display of the tethered peptides on the surface and less 

restricted peptide interactions with cells than non-selective silanization. Thus, we 

hypothesized that coatings of LamLG3 immobilized via click chemistry (D-LamLG3) 

upregulate hemidesmosome formation more in comparison to coatings of LamLG3 

immobilized via silanization (S-LamLG3). Overall, a better understanding of immobilization 

chemistry effects on cell adhesion peptide activity may lead to more efficacious coatings for 

biomedical devices.

2. Materials and Methods

2.1. Surface Synthesis

LamLG3-modified peptides were produced by solid-phase peptide synthesis (AAPPTec, 

Louisville, KY, USA). The N-terminus of each LamLG3 domain was modified with three 

glycines, as a flexible spacer block, plus an azide-conjugated lysine (KN3-LamLG3, KN3-

GGG-PPFLMLLKGSTRFC, >95% purity) for click chemistry immobilization or two 

lysines (2K-LamLG3, KK-GGG-PPFLMLLKGSTRFC, >98% purity) to promote surface 

immobilization via silanization [21]. Mass spectrometry and high performance liquid 

chromatography of synthesized peptides is provided in Figures S1 and S2. Borosilicate glass 

disks (Yuanbo Engineering Co., Ltd., Hengshui, China) were activated by plasma cleaning 

(O2 for 20 min; PDC-32G, Harrick Plasma, Ithaca, USA) to expose reactive hydroxyl 

moieties. Plasma-activated disks (pGlass) were silanized as previously described by us [6]. 

Briefly, disks were placed under an N2-rich atmosphere and immersed in pentane containing 

0.05 M N,N-diisopropylethylamine and 0.5 M (3-chloropropyl)-triethoxysilane (all obtained 

from Sigma-Aldrich, St. Louis, MO, USA) overnight and rinsed. Silanized, plasma-activated 

glass (pGlass-sil) were then immersed in 0.1 mM dibenzocyclooctyne-amine (DIBO, Sigma-

Aldrich) in 0.1 M Na2CO3 buffer overnight and cleaned with solvents (pGlass-DIBO). 

These disks were then immersed in 0.1 mM KN3-LamLG3 solution in 0.1 M Na2CO3 buffer 

(pH = 9.5) overnight and again cleaned with solvents yielding D-LamLG3 surfaces. (It 

should be noted that this reaction is pH independent from pH = 2–12 [40].) A complete 

discussion of the reaction mechanism for this type of click chemistry is reviewed elsewhere 

[41]. Alternatively, disks were immersed in 0.1 mM 2K-LamLG3 solution immediately after 

reacting in pentane and rinsing to yield S-LamLG3 surfaces (i.e., disks).

2.2. Surface Characterization

2.2.1. X-ray Photoelectron Spectroscopy (XPS)—An X-ray photoelectron 

spectroscopy (XPS) spectrometer (PHI 5000 VersaProbe III, ULVAC Inc., Chigasaki, Japan) 

was used to assess the surface elemental composition with a monochromatic Al Kα X-ray 

source (45°, 50 W, 1486.6 eV, sampling area; 200 μm diameter spot) of the peptide-

immobilized surfaces and controls. Survey spectra were collected with a step size of 1.0 eV 
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and a pass energy of 280.0 eV with charge compensation. Spectra were calibrated to the C 

1s signal at 284.8 eV using the associated software (MultiPak, 9.6.0).

2.2.2. Water Contact Angle (WCA)—Water contact angles (WCAs) were obtained 

using the sessile-drop method (>18 MΩ deionized water; 2 μL droplet) to assess surface 

wettability using a contact angle goniometer (DM-CE1, Kyowa, Niiza, Japan). Dynamic 

contact angles were also determined for 60 s every 1 s. Three disks per group were analyzed.

2.2.3. Coating Durability—D-LamLG3 and S-LamLG3 coatings were incubated (37 

°C) in artificial saliva (1700–0305, Pickering Laboratories, Mountain View, CA, USA; pH = 

6.8) for up to 73 days to assess their simulated intra-oral durability. Disks were periodically 

removed, thoroughly rinsed in de-ionized (DI) water, and desiccated for subsequent analysis 

by XPS (as described before). Two disks with three XPS analysis spots were used per 

timepoint.

2.2.4. Relative Amount of Surface Peptide—In order to compare the amount of 

KN3-LamLG3 and 2K-LamLG3 peptides on D-LamLG3 and S-LamLG3, respectively, disks 

were rinsed in phosphate-buffered saline (PBS) five times and 1% Triton X-100 after coating 

synthesis. Relative peptide concentration was then determined using a commercially 

available micro bicinchoninic acid kit (BCA; 23235, Thermo-Fisher, Waltham, MA, USA) 

by reacting the washed, desorbed disk in BCA solution A standard curve of both D-LamLG3 

and S-LamLG3 was prepared and measured on a plate reader (Synergy HT, Biotek, 

Winooski, VT, USA) similar to past work [42,43]. Three disks per group were analyzed.

2.3. Oral Keratinocyte Response

Immortalized TERT-2/OKF-6 (BWH Cell Culture and Microscopy Core, Boston, MA, USA) 

oral keratinocytes from non-cancerous tissue from the floor of a human mouth were cultured 

in defined keratinocyte serum-free media (Gibco, Waltham, MA, USA) with 1% penicillin/

streptomycin (Gibco) under standard cell culture conditions [44].

2.3.1. Oral Keratinocyte Proliferation—Oral keratinocytes were seeded (6 × 104), 

cultured for one day, and then washed in PBS and incubated for four hours in CCK8 solution 

(Dojindo, Kumamoto, Japan; 9:1 CCK8: oral keratinocyte media). Optical density (OD; λ = 

450 nm) was obtained on a plate reader (Synergy HT, Biotek). OD values were blanked with 

virgin CCK8 solution similarly incubated (n = 8). The number of nuclei [based on 4′,6-

diamidino-2-phenylindole dihydrochloride (DAPI; Sigma-Aldrich) staining as described 

below] was also quantified per field of view (FOV) to complement metabolic activity (3 

FOVs per sample, n = 5).

2.3.2. Lactase Dehydrogenase (LDH) Release—Initial cell viability was 

determined through lactate dehydrogenase (LDH) release. Cells were seeded as previously 

described. Disks were then transferred to a new wellplate. A CyQUANT colorimetric assay 

(C20300, Thermo-Fisher) was used to quantify the amount of LDH in solution, per the 

manufacturer’s instructions (n = 8).
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2.3.3. Immunofluorescence and Oral Keratinocyte Hemidesmosome 
Formation—Oral keratinocytes were seeded and cultured for one day as described and 

then fixed for ten minutes in 4% paraformaldehyde or ice-cold methanol (both Fisher 

Scientific, Waltham, MA, USA). Disks laden with cells were immersed in 5% bovine serum 

albumin (BSA) in PBS and then probed with a primary mouse monoclonal antibody 

(paraformaldehyde fixed) for integrin β4 [critical early marker for HD assembly [45]) 

NB10065599; Novus Biologicals, Littleton, CO, USA; 1:500] or primary rabbit polyclonal 

antibody (methanol fixed) for collagen XVII [(important late marker for HD assembly [46]) 

ab28440; Abcam, Cambridge, UK; 1:500] for 1 h at room temperature. Samples were 

immersed in an antimouse (A-11005; Invitrogen; 1:500) or antirabbit secondary (ab97037; 

abcam; 1:500) after extensive washing for 3 h. Samples were counterstained with DAPI. 

Total fluorescent intensity in each field was quantified after accounting for secondary-only 

controls at constant microscope settings across all samples (n = 5, 3 FOVs each). 

Micrographs (×10) Micrographs were obtained with an upright fluorescent microscope (DM 

6B, Leica, Wetzlar, Germany) and analyzed in ImageJ (NIH, 2.0.0).

2.4. Statistical Analysis

Arithmetic mean values with one standard deviation on the mean are reported. Differences in 

mean between groups were assessed with a one-way analysis of variance (ANOVA) table 

followed by a Tukey’s HSD (honest significant difference) post hoc test. A p value of <0.05 

was considered statistically significant. GraphPad Prism 8.3.0 (GraphPad Software) was 

used for statistical calculations. Figures were partially created with BioRender.

3. Results

3.1. Physical and Chemical Characterization of Peptide Coatings

Water contact angle measurements were performed (Figure 2A,C) after each iterative 

synthesis step for synthesizing surfaces immobilized with 2K-LamLG3 and KN3-LamLG3 

peptides using silanization (S-LamLG3) and click chemistry (D-LamLG3). Marked 

differences were noted in the WCAs at equilibrium between S-LamLG3 (ca. 40°) and D-

LamLG3 (ca. 60°) likely due to the differences in underlying chemistry (CPTES vs. CPTES 

and DIBO, respectively; shown in Figure 2B) or peptide conformation differences. The 

differences in peptide ability to restructure on the surface when in contact with water are 

also highlighted by the higher dynamic response (larger change in contact angle over time) 

for the D-LamLG3 surfaces compared to S-LamLG3 surfaces. In addition, a longer period to 

reach equilibrium in D-LamLG3 compared to S-LamLG3 was noted. The approximately 22 

nmol per disk detected in both groups is similar to previous reports by other groups [47,48]. 

Despite these difference in WCAs, no differences were seen in the amount of peptide on the 

surfaces via a BCA assay (Figure 2D). XPS results (Figure 3A) further confirmed the 

formation of a LamLG3 coating through detection of Nitrogen (N 1s peak) from the amino 

acid backbone of the peptide on S-LamLG3 and D-LamLG3 surfaces. Silicon (Si 2p) was 

also present, likely from the underlying glass substrate [49].
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3.2. Durability of Peptide Coatings

In order to determine the simulated oral cavity durability of our immobilized peptides, we 

incubated our coatings in simulated saliva for up to 73 days and then periodically performed 

XPS [Figure 3B (D-LamLG3) and Figure 3C (S-LamLG3)]. In both cases, the N 1s/C 1s 
signal significantly decreased following 28 days of incubation compared to day 0. However, 

this decrease in N 1s/C 1s signal was less pronounced in D-LamLG3 compared to S-

LamLG3. No statistically significant differences were seen when comparing N 1s/C 1s 
between S-LamLG3 and D-LamLG3 at each timepoint (Figure S3). The underlying, more 

hydrophobic DIBO molecules than the CPTES molecules, and its associated hindrance of 

interactions with water molecules, are a plausible cause for the higher resistance to coating 

degradation of the D-LamLG3 surfaces. The CPTES molecules in S-LamLG3 surfaces are 

susceptible for hydrolysis and, thus, detachment from the surface [50]. Despite this, a 

notable peptide-associated signal remained after 73 days in both peptide-coated surfaces.

3.3. Keratinocytes Reponse on Peptide Coatings with Different Peptide Immobilization 
Chemistry

Oral keratinocytes were cultured on our coatings to determine the differences between S-

LamLG3 and D-LamLG3 in promoting keratinocyte proliferation (Figure 4) and 

hemidesmosome formation (Figure 5). After one day of culture, proliferation was increased 

in terms of both increased numbers of cells (Figure 4A) and metabolic activity (Figure 4B) 

for both S-LamLG3 and D-LamLG3 compared to controls (pGlass, pGlass-sill, and pGlass-

DIBO). No differences were seen in cytotoxicity (LDH release; Figure 4C). However, 

proliferation was nearly significant (p = 0.06; number of cells) or significantly (metabolic 

activity) increased on S-LamLG3 compared to D-LamLG3, suggesting that differences in 

immobilization methods affect resulting cellular behavior. An interesting observation was 

the marked reduction in keratinocyte proliferation on DIBO control surfaces compared to all 

other groups, which has not been previously reported.

Our targeted biological activity, hemidesmosome formation on dental implant surfaces 

(summarized in Figure 1), was finally evaluated. Semi-quantitative immunofluorescence was 

performed for both collagen XVII (Figure 5A,B; representative micrographs in Figure S4) 

and integrin β4 (Figure 5C,D; representative micrographs in Figure S5). Similar to 

proliferation, HD formation was significantly increased on both S-LamLG3 and D-LamLG3 

compared to all controls. However, HD formation was significantly higher on S-LamLG3 

compared to D-LamLG3, further emphasizing differences in immobilization methods affect 

resulting cellular behavior.

4. Discussion

Our specific aim was to compare the physiochemical properties and biological responses of 

LamLG3 peptide immobilized using silanization and click chemistry for improving dental 

implant outcomes through the upregulation of hemidesmosome formation in the soft tissue 

surrounding dental implants. The broader goal of this work was to use LamLG3 as a model 

peptide to study the effects of immobilization chemistry on cell adhesion peptide activity to 

engineer more efficacious coatings for biomedical devices. Our results show that the non-
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chemoselective route (silanization) resulted in increased keratinocyte proliferation and 

hemidesmosome formation compared to the chemoselective route (click chemistry).

Chemoselectivity of peptide immobilization for biological responses is an oft-cited design 

criteron to improve effectiveness for the desired biological activity with the selected peptides 

[51]. However, rationalization under the specific experimental conditions studied is rarely 

offered. Here, we show that this design criterion does not hold true under all conditions; 

indeed, here, the non-chemoselective route for immobilizing the LamLG3 peptides resulted 

in better biological outcomes (proliferation and HD formation). In some other systems, for 

example sensors [52] and antimicrobial surfaces [53], chemoselective immobilization results 

in better peptide activity. The ca. 20° difference in WCA between S-LamLG3 and D-

LamLG3 and the longer time period for D-LamLG3 to reach equilibrium suggests that either 

underlying surfaces chemistry differences (presence of DIBO or not) and/or differences in 

number of residues where the peptide may be anchored (three for S-LamLG3 vs. one for D-

LamLG3) may result in differences in peptide conformation, flexibility/mobility and/or 

orientation and subsequent cellular engagement. For example, recent work [54] has shown 

differences in osteogenic differentiation outcomes mediated by the identical osteogenic 

peptide immobilized through either amines or carboxyls on carbon nanotube surfaces. One 

potential cause for the differences we observed here is that KN3-LamLG3 peptides only 

provide one reactive site with the DIBO-modified surfaces, whereas 2K-LamLG3 peptides 

provide up to four (three free amines plus N-terminus) reactive sites with the CPTES-

modified surfaces. As shown by dynamic WCAs, this can produce a more rigid molecular 

coating in the case of S-LamLG3 surfaces that might have facilitated appropriate cellular 

interactions. In spite of the speculative nature of this discussion, our results and results by 

others support that chemoselective peptide immobilization, in some but not all 

circumstances, can result in reduced peptide activity.

One design parameter for chemically immobilizing peptides is the spacer (or linker) design 

between the bioactive domain and the chemical domains necessary for anchorage. An ideal 

spacer maintains an independent structure and does not affect function of adjacent peptide 

domains; spacer type, length, and flexibility are generally tunable to achieve this goal [55]. 

While PEG spacers are very well studied for peptide immobilization, they require additional 

synthesis steps compared to amino acid-based spacers [10,56]. Previous research compared 

a classic amino acid spacer (GGG) and a novel spacer (GSGGG) with a “backbone bend” to 

separate an antimicrobial peptide domain from the surface. This novel GSGGG spacer 

showed enhanced antimicrobial activity compared to the classic spacer we used here [57,58]. 

Other work has compared a rigid spacer [(EAAAK)4] against a flexible spacer [(GGGGS)4]; 

the flexible spacer design showed more effective eukaryotic cell signaling but less effective 

antimicrobial activity [36,59]. Others have shown that flexibility per se is not the requisite 

design criteria but rather matching hydrophobicity/philicity of surrounding residues leads to 

maximal eukaryotic response [60]. While such general design principles are useful, fully 

optimized spacer design is likely system dependent.

Peptide orientation is another commonly cited design parameter when chemically 

immobilizing peptides. This is commonly modulated through changes in different chain 

positions, such as C-terminal, N-terminal and/or N-side-chain [10]. Our own work with the 
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antimicrobial peptide GL13K has shown that orientation does not affect antimicrobial 

activity [61]. GL13K is antimicrobial both when 

immobilizedusingsilanizationandwhenrecombinantlyincorporatedintotheterminusofanelastin

-like recombinamer [62]. On the other hand, LL37—another well-studied antimicrobial 

peptide for biomedical coatings—is sensitive to orientation [63]. Other work has shown that 

when an alpha-helical antimicrobial peptide is “standing” (helix z-axis perpendicular to 

surfaces), it interacts with bacterial cells faster than identical peptides “lying down” (helix z-

axis parallel to surface) [64]. Similar orientation effects are well known for enzyme and the 

vastly explored RGD peptide immobilization [65,66]. Other factors such as the specific 

residue anchoring point (and number of them) affect activity as well, including peptide 

density [67,68]. Previous work has shown that peptide density, which we did not control 

here, can affect cell adhesion, differentiation, and focal adhesion formation [48,69,70]. 

Whether peptide density affects HD formation is unexplored to date. A number of strategies 

not discussed such as electric fields or chemical vapor deposition may also be viable for 

controlling peptide orientation [71–73]. On the whole, judicious selection of orientation is, 

again, likely system dependent. In particular for our D-LamLG3 system, future experiments 

are necessary to directly compare biological activity resulting from N - vs. C-terminus 

addition of the reactive azide.

An unexpected result of this work was the significantly reduced keratinocyte proliferation on 

pGlass-DIBO compared to all other groups; this result was reproducible under a number of 

different cell seeding schemes and we have seen this same trend with other cell types 

(unpublished observation). Others have reported the cytocompatibility of DIBO [74–76] 

under various conditions with various cells. Further work is necessary to discern this 

mechanism.

Overall, our results show that biological effects from cell adhesion peptides—LamLG3 in 

this case for dental implants—are dependent on the immobilization chemistry used. 

Additionally, the most effective immobilization chemistry for optimal peptide activity is 

heavily system dependent. Future work will include longer culture periods as HDs continue 

to form and mature and monitoring peptide degradation in human-isolated saliva with active 

enzymes. Despite the importance of early cell–peptide interactions dictating later cell fate, 

hemidesmosome formation does continue after one day of culture and later timepoints may 

provide additional data for better design of peptide coatings. Human saliva contains at least 

1515 unique proteins [77], including enzymes, that made degrade immobilized peptides and 

render them less active or completely inactive. A more fundamental understanding of the 

many factors that go into cell adhesion peptide immobilization may result in faster 

translation of such proposed therapies through the reduction in variability and a better 

understanding of the entire system to enable industrial scale manufacturing.

5. Conclusions

We immobilized a cell adhesion peptide, LamLG3, on model surfaces to upregulate 

hemidesmosome formation by oral keratinocytes with the ultimate goal of reducing dental 

implant peri-implantitis. The non-chemoselective immobilization route, silanization, 

produced LamLG3 coatings that induced significantly higher proliferation and 
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hemidesmosome formation in oral keratinocytes compared to LamLG3 coatings obtained 

using chemoselective copper-free click chemistry. Our results emphasize that the chemical 

route to immobilize peptides on biomedical surfaces has significant effects on cell adhesion 

and that chemoselectivity of the immobilization route is not always beneficial for enhancing 

the biological effects of the immobilized peptides. A deeper understanding of the effects of 

the selected chemical route of immobilization on biological activity, which has to be tested 

for the specific combination of peptide and targeted cellular response, is needed to develop 

more effective biomedical device peptide coatings
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Figure 1. 
Schematic of hemidesmosome formation by keratinocytes at the junctional epithelium of the 

oral mucosa (gum) to attach to the tooth.
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Figure 2. 
Dynamic water contact angles for LamLG3-coated and non-coated, control surfaces (A); 

schematic illustrating immobilization site(s) and chemistries of D-LamLG3 (B, left) and S-

LamLG3 (B, right); water contact angles at equilibrium (C); and amount of peptide on D-

LamLG3 and S-LamLG3 surfaces using a BCA assay (D). Differences in mean between 

groups were assessed with a one-way analysis of variance (ANOVA) table followed by a 

Tukey’s HSD (honest significant difference) post hoc test. A p value of <0.05 was 

considered statistically significant. Dissimilar letters denote statistically significant 

differences between groups.
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Figure 3. 
X-ray photoelectron spectroscopy spectra of peptide-coated (D-LamLG3, S-Lam-LG3) and 

non-coated, control surfaces. Full survey spectra of each coated and non-coated, control 

surface (A) and the ratio of N 1s X-ray photoelectron spectroscopy counts to C 1s counts (N 

1s:C 1s) for D-LamLG3 (B) and S-LamLG3 (C) following up to 73 days in artificial saliva 

(37 °C). Differences in mean between groups were assessed with a one-way analysis of 

variance (ANOVA) table followed by a Tukey’s HSD (honest significant difference) post hoc 

test. A p value < 0.05 was considered statistically significant. The asterisk (*) denotes when 

the N 1s/C 1s signal was statistically significantly reduced compared to day 0.
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Figure 4. 
Oral keratinocyte proliferation [number of cells (A) and metabolic activity (B)] and 

cytotoxicity [LDH release (C)] of LamLG3-coated and non-coated, control surfaces after 1 

day of culture. Differences in mean between groups were assessed with a one-way analysis 

of variance (ANOVA) table followed by a Tukey’s HSD (honest significant difference) post 

hoc test. A p value of <0.05 was considered statistically significant. Dissimilar letters denote 

statistically significant differences between groups.
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Figure 5. 
Oral keratinocyte hemidesmosome formation [total collagen XVII intensity (A), collagen 

XVII intensity normalized to number of cells (B), total integrin β4 intensity (C), and integrin 

β4 intensity normalized to number of cells (D)] of coated and non-coated, control surfaces at 

1 day. Differences in mean between groups were assessed with a one-way analysis of 

variance (ANOVA) table followed by a Tukey’s HSD (honest significant difference) post hoc 

test. A p value of <0.05 was considered statistically significant. Dissimilar letters denote 

statistically significant differences between groups.
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