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ORIGINAL RESEARCH

Resting Heartbeat Complexity Predicts  
All-Cause and Cardiorespiratory Mortality  
in Middle- to Older-Aged Adults From the 
UK Biobank
Lei Gao , MBBS; Arlen Gaba, BS; Longchang Cui, BS; Hui-Wen Yang, PhD; Richa Saxena, PhD;  
Frank A. J. L. Scheer, PhD; Oluwaseun Akeju, MD; Martin K. Rutter , MBChB; Men-Tzung Lo, PhD;  
Kun Hu, PhD*; Peng Li , PhD*

BACKGROUND: Spontaneous heart rate fluctuations contain rich information related to health and illness in terms of physiologi-
cal complexity, an accepted indicator of plasticity and adaptability. However, it is challenging to make inferences on complexity 
from shorter, more practical epochs of data. Distribution entropy (DistEn) is a recently introduced complexity measure that is 
designed specifically for shorter duration heartbeat recordings. We hypothesized that reduced DistEn predicted increased 
mortality in a large population cohort.

METHOD AND RESULTS: The prognostic value of DistEn was examined in 7631 middle-older–aged UK Biobank participants who 
had 2-minute resting ECGs conducted (mean age, 59.5 years; 60.4% women). During a median follow-up period of 7.8 years, 
451 (5.9%) participants died. In Cox proportional hazards models with adjustment for demographics, lifestyle factors, physical 
activity, cardiovascular risks, and comorbidities, for each 1-SD decrease in DistEn, the risk increased by 36%, 56%, and 73% 
for all-cause, cardiovascular, and respiratory disease–related mortality, respectively. These effect sizes were equivalent to the 
risk of death from being >5 years older, having been a former smoker, or having diabetes mellitus. Lower DistEn was most 
predictive of death in those <55 years with a prior myocardial infarction, representing an additional 56% risk for mortality com-
pared with older participants without prior myocardial infarction. These observations remained after controlling for traditional 
mortality predictors, resting heart rate, and heart rate variability.

CONCLUSIONS: Resting heartbeat complexity from short, resting ECGs was independently associated with mortality in mid-
dle- to older-aged adults. These risks appear most pronounced in middle-aged participants with prior MI, and may uniquely 
contribute to mortality risk screening.
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With the exponential growth in noninvasive, 
passive monitoring of physiological function, 
there is burgeoning interest in extracting prog-

nostic information from heart activity.1 Prior studies 
have relied on prolonged periods lasting hours2 to 
days,1 or depended on interventions such as exercise 
(heart rate recovery or exercise capacity) to derive 

prognostic information. However, exercise testing has 
not always been feasible because of contraindica-
tions in physical limitations or comorbidities. In fact, 
a meta-analysis of large randomized controlled trials 
found questionable improvement in the prediction of 
health outcomes using exercise ECGs.3 Thus, conve-
nient passive monitoring of resting heart activity that 
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is not tightly coupled to a patient’s effort is becoming 
increasingly desirable.

In the past 2 decades, novel analytic tools de-
rived from nonlinear dynamics have harnessed 
information imbedded in spontaneous physiolog-
ical fluctuations; these are usually not obtainable 
through traditional, nonlinear signal processing ap-
proaches such as means/medians or frequency- 
and time-domain analysis of heart rate variability 
(HRV). One of the predominant nonlinear methods 
is entropy, a measure of unpredictability or “com-
plexity” of signals.4–6 Many have observed a loss/
reduction of complexity in disease states,6–10 aging, 
frailty,5–7 and death.11,12 Population screening tools 
that can guide clinical decisions demand conve-
nience. Unfortunately, the study of complexity of 
physiological systems is data intensive. This is fur-
ther exacerbated by the short time available in most 

standard clinical measurements of the heart, eg, 
during routine screening ECGs at rest.

A recently introduced distribution entropy (DistEn) 
measure considers a more integrated feature in the 
fluctuation patterns, thus allowing a reliable assess-
ment of complexity from short recordings. It may 
fundamentally address the major limitation associ-
ated with short physiological recordings.13,14 Recent 
studies have demonstrated its performance in quan-
tifying the impact of diseases on physiological con-
trol.13–17 However, large-scale longitudinal studies are 
required to determine the prognostic value of DistEn. 
We tested for the first time the association between 
DistEn derived from short, 2-minute resting ECGs and 
mortality. We assessed whether this was independent 
of baseline comorbidities and traditional indicators of 
autonomic function, including RR interval (RRI), resting 
heart rate (RHR), conventional time-domain HRV, and 
mean arterial pressure (MAP), in a large cohort from 
the UK Biobank (UKB).18–20

METHODS
Study Participants
UKB is a large-scale biomedical database and research 
resource containing genetic, lifestyle, and health infor-
mation from half a million UK participants. Between 
late 2009 and 2010, 8039 participants from across 
the United Kingdom recruited to the UKB undertook a 
2-minute resting ECG.21 During this baseline assess-
ment, participants also reported their demographics, 
lifestyle, medical conditions, and medications taken. 
Individuals were followed up until early 2018, the most 
up-to-date recording for mortality before data analy-
sis on December 1, 2019. The UKB received National 
Research Ethics Approval and participants gave written 
informed consent. This study was conducted under the 
terms of UKB access for project 40556, and Partners 
HealthCare institutional review board approval. The 
data that support the findings of this study are available 
from the corresponding author on reasonable request.

Preprocessing and Quality Control of 
Resting ECGs
Resting ECG data collection lasted 2 minutes with the 
patient in a seated position. Preprocessing steps are 
summarized in Figure  1A. Under resting conditions, 
4 ECG electrodes were placed on the right and left 
antecubital fossa and wrist; a 3-lead (leads I, II, and 
III) ECG recording (AM-USB 6.5, Cardiosoft v6.51) at 
500 Hz was taken during 2 minutes at rest and stored 
in xml format by Cardiosoft. Normal R waves were de-
tected using the modified Aristotle algorithm of QRS 
detection.22,23 RRIs >2s or <0.428s [RHR in beats per 

CLINICAL PERSPECTIVE

What Is New?
• Distribution entropy—a measure of heartbeat 

complexity derived from a 2-minute, resting 
ECG—predicts mortality independently of rest-
ing heart rate and heart rate variability in mid-
dle- to older-aged adults.

What Are the Clinical Implications?
• These risks appear most pronounced in middle-

aged patients with prior myocardial infarction, 
and may uniquely contribute to routine mortality 
risk screening.

• Our findings have the potential to be scaled-up 
to remote monitoring in wearable devices, and 
opens up a new avenue of research for resting 
heartbeat complexity as a vulnerability marker 
for stress reactivity.

Nonstandard Abbreviations and Acronyms

DistEn distribution entropy
HRV heart rate variability
NHS National Health Service
RHR resting heart rate
RMSSD  root mean square of successive 

differences
RRI RR interval
TDI Townsend deprivation index
UKB UK Biobank
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minute [bpm] <30 or >140] recordings (n=62) were ex-
cluded from analysis. The majority of records tightly 
coalesced around the mean duration of 117 seconds 
(SD=6 seconds). We excluded a small number of re-
cords (n=78) that were >2 SDs from the mean length 
as they were found to have multiple gaps and/or ex-
cess noise. In keeping with prior studies using UKB 
ECG records,24,25 we further removed recordings with 
artifacts. Noise level was determined by calculating the 
overall SD of a moving SD with a window length of 3 
beats; an overall SD close to zero indicated minimal to 
no noise, whereas the 98th percentile of SDs was con-
sidered excessive and excluded (n=169). We excluded 
an additional 29 patients who were known to have had 
a pacemaker insertion procedure before ECG assess-
ment. In total, we inspected 1 in 20 raw ECG tracings 
or RRI profiles at random to ensure quality control and 
appropriate RRI detection. Data from 7631 partici-
pants were entered for analysis (Figure 1A).

RHR and Time-Domain HRV Analysis
RHR in bpm was calculated as the inverse of the mean 
RRI in milliseconds multiplied by the number of mil-
liseconds per minute (60×1000) for each recording. 
Using established criteria, the root mean square of 
successive differences (RMSSDs), SD of NN inter-
vals, and percentage >5, 10, and 20 milliseconds for 

differences between adjacent RRIs were calculated as 
measures of time-domain HRV.26,27

DistEn for Heartbeat Complexity Analysis
A host of entropy measures for assessing physiologi-
cal complexity have been established in the past dec-
ade; conceptually, they all share the same theoretical 
basis—the system is more complex (or unpredictable) 
if new information in its output (usually a time series) 
occurs at a higher rate. To assess such evolution of 
information in a time series, data are first reconstructed 
to a higher dimensional state space that is believed to 
best characterize the dynamic changes in the tempo-
ral structure of the fluctuations. A state, defined by a 
vector in the state space, renders new information if it 
appears far enough in distance from other states that 
already appear within the time series. With a thresh-
old parameter for distance, approximate entropy and 
sample entropy essentially measure the log conditional 
probability that such a new state emerges.28

For traditional entropy measures, data length of 
10 minutes to hours have been used.9,12,29,30 If time 
series were short (eg, 2 minutes in this study), not 
even a single state would meet this stringent thresh-
old criterion, resulting in a zero probability, and there-
fore an invalid result. This is a well-known limitation of 
parameter dependence where the number of states 

Figure 1. Flowchart of analytical approach and distribution of entropy (DistEn) distribution.
A, Analytic approach for R-wave selective and preprocessing of resting ECGs. B, DistEn with median (solid line) and 90th/10th 
percentiles (upper and lower dashed lines, respectively) by participant count. HRV indicates heart rate variability; PPM, permanent 
pacemaker; and RHR, resting heart rate.

A B
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that survive the threshold criterion can vary widely de-
pending on the threshold parameter chosen. DistEn 
was developed specifically to handle short time se-
ries.13,15 It takes full advantage of between-states dis-
tances by measuring the distribution pattern instead 
of hard-coding them as within or beyond the thresh-
old parameter. This strategy appears to be more nu-
anced because the distribution of the distance (but 
not the mean/median distance) clearly show different 
patterns among synthetic time series with different 
dynamical regimes.13 With its established statistical 
properties, and given the short length of these UKB 
resting ECGs, we decided to mainly utilize DistEn.

Algorithm for DistEn
For an RRI time series x=x(i), 1≤i≤N, its m-dimensional 
state space reconstruction can be obtained by:

where 1≤i≤N−mτ; τ and m represent the time delay 
parameter and the dimension parameter, respectively. 
The Chebyshev distance between a pair of states um(i), 
um( j) can be calculated by:

Next, a histogram approach with a fixed bin 
number B is used to estimate the empirical prob-
ability density function of the distance matrix 
d [um ( i ) , um ( j ) ] , 1 ≤ i, j ≤ N −m� except the main diag-
onal (i.e., i≠j). Using {pt, t=1,2,…,B} to denote the prob-
ability of each bin, DistEn is defined by the following 
formula:

Further graphical representation of these methods 
are shown in Figure S1. The parameters used were 
as follows: m=3, τ=1, and B=256 based on our prior 
studies using similar data.13–15 We tested DistEn using 
a variety of parameters within recommendations and 
did not see meaningful effects on our results. Figure 
S2 presents simulation results showing the stability 
and consistency of DistEn results across data length 
and parameter selection. DistEn ranges theoretically 
between 0 and 1, with larger values indicating higher 
complexity. Figure S2A and S2B show ECG strips over 
15 seconds for 2 participants with low and high DistEn 
but similar heart rate and mean RRI.

Mortality Outcomes
Our primary outcome was all-cause mortality obtained 
from death certificates within the UK National Health 

Service (NHS) Information Center and the NHS Central 
Register for Scotland. All death certificate details were 
provided directly to the UKB. Primary cause of death 
was classified using International Classification of 
Diseases, Tenth Revision (ICD-10), codes by trained 
personnel. Secondary outcomes of cause-specific 
mortality were grouped into cardiovascular- (I00-I99), 
respiratory- (J00-J99), and cancer- (C00-D48) related 
primary causes of death.

Assessment of Covariates
Demographics included age, sex, ethnicity, and edu-
cation. Age at baseline assessment was calculated 
in years based on their dates of birth. Sex (men/
women) and ethnicity were self-reported. Since the 
majority of participants self-identified as British or 
“white” European descent (94%), we included eth-
nicity as European and non-European. Education 
was college-level (yes/no). For lifestyle factors, we 
included BMI (calculated as weight [kg] divided by 
height squared [m2]), alcohol use (<3 drinks per week, 
≥3 drinks per week), and smoking status (never, for-
mer, or current), physical activity (summed metabolic 
equivalent minutes per week for all activities derived 
by Cassidy et al31). Socioeconomic status was as-
sessed using the Townsend deprivation index (TDI), 
calculated immediately before the participant joined 
UKB based on the preceding national census output 
areas. Each participant was assigned a score corre-
sponding to the output area in which their postcode 
was located.

Comorbidities relevant to mortality were based on 
self-report and medications taken at baseline. These 
included cardiovascular diseases (CVDs), hyperten-
sion, high cholesterol, atrial fibrillation (AF)/arrhythmias, 
diabetes mellitus, angina, myocardial infarction (MI), 
and peripheral vascular disease. CVD risk was split 
into low (no risks factors) and high (≥3 risk factors) for 
comparison purposes. Other comorbidities indicative 
of health status included cancer (yes/no, in response 
to "has a doctor ever told you that you have had can-
cer?"), respiratory diseases (chronic obstructive pul-
monary disease, asthma, sleep apnea, or pulmonary 
fibrosis), psychiatric history (depression, anxiety, bi-
polar, schizophrenia, or suicidal intent), neurological 
disorders (dementia, Parkinson disease, ischemic/
hemorrhagic stroke, epilepsy, or multiple sclerosis 
head/spinal injuries), musculoskeletal disorders (os-
teoarthritis, rheumatoid arthritis, or other inflammatory 
arthropathies), gastrointestinal disorders (ulcers, liver 
disease, inflammatory bowel disease), renal disorders 
(kidney failure, dialysis, nephropathies, or pyelonephri-
tis), endocrine disorders (thyroid, parathyroid, hypo-
thalamic/pituitary, or adrenal disorders), hematological 
disorders (anemia, thrombocytopenia, hemophilia, 

(1)um ( i ) = {x ( i ) , x ( i + � ) ,…, x ( i + (m − 1)� )} ,

(2)d [um ( i ) , um ( j ) ] = max
0≤ k≤m−1

(|x ( i + k� ) − x ( j + k� ) |, 1 ≤ i, j ≤ N −m�) .

(3)DistEn(m, �,B ) = −
1

log2 (B )

∑
B
t=1

ptlog2 (pt )
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sickle cell, or thalassemia), and number of medications 
taken.

Statistical Analysis
The characteristics of patients who died versus those 
who survived during follow-up were assessed using t 
tests for continuous variables and chi-square tests for 
categorical variables. We determined the relationship 
between DistEn and dichotomized baseline variables 
(age >65 years versus ≤65 years), sex (men versus 
women), ethnicity (European versus non-European), 
college attendance (yes versus no), BMI (>35 versus 
≤35), TDI (fourth versus first quartiles), physical activ-
ity level (fourth versus first quartiles), CVD risk (high 
versus low), β-blocker usage, AF/arrhythmias, and 
pacemaker presence using multivariable regression. 
Cox proportional hazards models were used to assess 
the predictive value of DistEn for all-cause and cause-
specific mortality: (model A) a core model controlled 
for demographics; (model B) TDI and lifestyle factors; 
(model C) cardiovascular risks/diseases; (model D) 
other comorbidities; and (model E) final adjustment 
was made for autonomic measures (heart rate, MAP, 
and RMSSD). We also tested for interactions between 
DistEn and age, sex, and CVD risk factors. Hazards 
ratios (HRs) and corresponding 95% CIs represent a 
1-SD decrease in DistEn. The proportional hazards as-
sumption was assessed using the global chi-square 
test in R package cox.zph (survival) incorporating 
methods described by Grambsch and Therneau.32. 
Efron method was used to handle ties. All other statis-
tical analyses were performed using JMP Pro (version 
14, SAS Institute).

RESULTS
Participant Characteristics
Baseline characteristics of 7631 participants (mean 
age, 59.5 years [SD, 7.6 years]; 4610 [60.4%] women) 
are summarized in Table 1 based on survival or death 
from any cause. During a median follow-up of 7.8 years, 
the 451 participants (5.9%) who died were 3.3 years 
older at baseline (62.6 versus 59.3 years), more likely 
men (55% versus 39%), a current smoker (19.7% ver-
sus 11.9%), a former smoker (54.7% versus 47.7%), 
socioeconomically deprived (higher TDI, 0.03 versus 
−0.44), had lower college attendance (17.4% versus 
25.5%), and had more comorbidities and medication 
usage (5.8 versus 3.8).

DistEn, Baseline Comorbidities, and 
Cardiovascular Risk
The median value for DistEn was 0.853 (0.877 [SD, 
0.078]; range, 0.301–0.975) (Figure 1B). Differences in 

values for DistEn by patient characteristics and cardio-
vascular risk, adjusted for age, sex, ethnicity, and edu-
cation, where appropriate, are summarized in Table 2. 
DistEn was moderately lower (ie, lower complexity) in 
those aged >65 years (effect size −0.16 SD, P<0.0001), 
men (−0.12 SD, P<0.0001), non-Europeans (−0.18 SD, 
P<0.0001), low physical activity (lowest quartile; −0.20 
SD, P<0.0001), and high socioeconomic deprivation 
(TDI) (highest quartile; 0.25 SD, P<0.0001). The dif-
ference in DistEn was larger in patients with BMI >35 
(−0.41 SD, P<0.0001) and those with the highest car-
diovascular risk (≥3 risk factors; −0.46 SD, P<0.0001). 
DistEn was marginally lower in those taking β-blockers 
(0.07 SD, P=0.046), but was not different in those with 
previously reported AF/arrythmias (P=0.68).

Lower DistEn Independently Predicts 
Incident All-Cause Mortality
DistEn was associated with all-cause mortality using 
our core Cox proportional hazards model adjusted 
for demographics (age, sex, ethnicity, and college 
education) (Table 3; model A). Specifically, for each 
1-SD decrease in DistEn, the HR for mortality was 
1.36 (95% CI, 1.26–1.46; P<0.0001], equivalent to 
the effect of being 5.5 years older at baseline. After 
adjusting for lifestyle factors (BMI, deprivation level 
[TDI], physical activity, alcohol, and smoking), the HR 
for mortality remained similar (Table 2; model B) (HR, 
1.31; 95% CI, 1.21–1.41 [P<0.0001]). DistEn remained 
predictive of mortality after further adjustment for 
CVDs/risk factors (Table 2; model C) (HR, 1.27; 95% 
CI, 1.17–1.37 [P<0.0001]) and multiple comorbidi-
ties (Table 2; model D) (HR, 1.24; 95% CI, 1.14–1.34 
[P<0.0001]).

Relationship Between DistEn, Autonomic 
Variables, and Mortality
After controlling for autonomic-related variables 
(RHR, RMSSD, and MAP), DistEn still remained 
predictive of mortality (Table  2; model E: HR, 1.22 
[95% CI, 1.10–1.35], P<0.0001). Full model results are 
shown in Table S1. This was consistent regardless 
of which HRV variable was used. To put these re-
sults into context, we present fully adjusted model 
predictions for all-cause mortality for participants 
with DistEn <0.745 (10th percentile) compared with 
DistEn >0.925 (90th percentile) in Figure 2A. The low-
est decile had a 55% increased risk of all-cause mor-
tality compared with the highest decile; equivalent to 
being almost 9 years older at baseline, being a for-
mer smoker, or having diabetes mellitus at baseline 
(Table S1).
The mean RHR was 71.3 bpm (SD, 12.6) and signifi-
cantly lower in those taking β-blockers (58 versus 
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66 bpm, P<0.0001). We found DistEn to be negatively 
correlated with RHR (r2=0.11, P<0.0001) and positively 
correlated with RMSSD (r2=0.36, P<0.0001), but had 
no relationship with MAP (P>0.05). A 10-bpm increase 

in RHR (HR, 1.14; 95% CI, 1.06–1.22 [P=0.0002]), and 
a 1-SD decrease in RRI (HR, 1.20; 95% CI, 1.09–1.32 
[P=0.0002]) or RMSSD (HR, 1.22; 95% CI, 1.09–1.35 
[P=0.0003]), were separately predictive of mortality, but 

Table 1. Demographics, Lifestyle, and Clinical Comorbidities at Baseline

Alive Died

P Value

(n=7180) (n=451)

Mean (SD) or n (%) Mean (SD) or n (%)

Demographics

Age at baseline, y 59.3 (7.7) 62.6 (5.9) <0.0001

Men, % 38.6 55.0 <0.0001

College attendance, % 25.5 17.3 0.0001

Townsend deprivation index −0.44 (3.2) 0.03 (3.3) 0.003

Ethnic background (European), % 86.7 92.3 0.0006

Lifestyle

BMI, kg/m2 29.4 (5.9) 29.9 (6.3) 0.16

Smoking (current), % 12.1 20.1 <0.0001

Smoking (former), % 47.7 54.7 <0.0001

Physical activity (MET-min)* 40.3 (0.3) 36.2 (1.0) <0.0001

Alcohol (≥3 drinks per wk), % 32.4 32.2 0.90

Cardiovascular disease, %

Hypertension 47.7 60.5 <0.0001

High cholesterol 18.8 23.1 0.02

Angina 8.9 15.5 <0.0001

Myocardial infarction 4.9 10.9 <0.0001

Diabetes mellitus 9.9 23.5 <0.0001

AF/arrythmias 2.5 3.8 0.09

Clinical comorbidities

Medications taken 3.8 (3.4) 5.8 (4.2) <0.0001

Cancer, % 9.7 26.4 <0.0001

Respiratory, % 30.2 38.8 0.0002

Gastrointestinal, % 9.7 9.4 0.93

Renal, % 1.6 0.4 0.05

Endocrine, % 6.4 4.7 0.14

Musculoskeletal, % 7.6 13.2 0.09

Psychiatric 17.1 18.9 0.34

Neurological, % 7.5 15.7 <0.0001

Hematological, % 1.6 3.1 0.011

Derived ECG metrics

DistEn 0.856 (0.08) 0.819 (0.11) <0.0001

RRI, ms 865 (148) 834 (170) <0.0001

RHR, bpm 71.2 (12.4) 73.7 (15.0) <0.0001

RMSSD** 2.59 (0.65) 2.36 (0.79) <0.0001

MAP, mm Hg 105.6 (15.3) 104.5 (15.5) 0.17

UK Biobank participant characteristics at baseline expressed as mean (SD) for continuous variables or percentage for presence of categorical variables. 
Participants were compared based on survival status (alive/died). Categorical data are presented as percentage of participants present. P values from 1-way 
ANOVA tests for continuous measures and Pearson chi-square tests for categorical data. Physical activity: summed metabolic equivalent (MET) minutes per 
week for all activities. AF indicates atrial fibrillation; BMI, body mass index; bpm, beats per minute; DistEn, distribution entropy; MAP, mean arterial pressure; 
RHR, resting heart rate; RMSSD, root mean square of successive differences between normal heartbeats; and RRI, RR interval.

*Square root transformation.
**Log-transformed.



J Am Heart Assoc. 2021;10:e018483. DOI: 10.1161/JAHA.120.018483 7

Gao et al Resting Heartbeat Complexity and Mortality

none of these associations remained after inclusion of 
DistEn (all P>0.05). Table S2 shows model results with 
all time-domain HRV measures. In a direct comparison 
between DistEn and RRI survival models (adjusting for 
age, sex, and education), DistEn was superior across 
follow-up years. Figure S3C presents concordance 
index (c-statistic) differences.

DistEn and Cause-Specific Mortality
Of 451 deaths, the following primary causes 
were seen: 13.3% (60) cardiovascular, 10.0% (44) 

respiratory, and 42.8% (193) cancer. In Table 3, the 
increased risk from low DistEn was highest in model 
A where the primary cause of death was cardiovas-
cular- (HR, 1.56; 95% CI, 1.30–1.87 [P<0.0001]) or 
respiratory (HR, 1.73; 95% CI, 1.41–2.11 [P<0.0001]) 
disease–related; and remained after adjustment for 
confounders (model B–E, Table 3). DistEn was weakly 
predictive for cancer-related deaths in our penulti-
mate model (model D: HR, 1.19; 95% CI, 1.03–1.36 
[P=0.01]), but this was fully accounted for by inclu-
sion of RHR and HRV measures (model E: HR, 1.06; 
95% CI, 0.52–1.27 [P=0.55]).

Table 2. DistEn Differences by Patient Characteristics

Present Absent

Difference (SD) P ValueMean (SD) Mean (SD)

Age >65 y 0.840 (0.002) 0.854 (0.001) 0.014 (−0.16) <0.0001

Men 0.843 (0.002) 0.852 (0.002) 0.009 (−0.12) <0.0001

European ancestry* 0.855 (0.001) 0.840 (0.003) 0.015 (+0.18) <0.0001

College attendance 0.849 (0.002) 0.846 (0.001) 0.003 (+0.04) 0.10

BMI >35 kg/m2 0.819 (0.003) 0.852 (0.001) 0.033 (−0.41) <0.0001

High deprivation** 0.861 (0.002) 0.841 (0.002) 0.020 (−0.25) <0.0001

Low physical activity*** 0.840 (0.002) 0.856 (0.002) 0.015 (−0.20) <0.0001

High CVD risk**** 0.822 (0.003) 0.859 (0.002) 0.037 (−0.46) <0.0001

β-Blocker usage 0.843 (0.003) 0.849 (0.001) 0.006 (−0.07) 0.046

AF/arrhythmias 0.850 (0.006) 0.848 (0.001) 0.002 (+0.03) 0.68

Pacemaker 0.852 (0.008) 0.848 (0.001) 0.004 (+0.05) 0.64

The difference in mean distribution entropy (DistEn) values and expressed in SDs by the presence/absence of covariates (adjusted for age, sex, ethnicity, and 
education from body mass index [BMI] onwards). AF indicates atrial fibrillation.

*European vs non-European ancestry.
**Townsend deprivation index (TDI) fourth and first quartiles.
***Metabolic equivalents–minutes first vs fourth quartile.
****Cardiovascular disease (CVD) risk was determined as the sum of the binary covariates hypertension, cholesterol, diabetes mellitus, current smoker, and/

or angina or myocardial infarction at baseline; if ≥3, CVD was considered high and if zero, CVD was considered low.

Table 3. Distribution Entropy of Resting Heartbeats and Risk for All-Cause Mortality and CVD-, Respiratory Disease–, and 
Cancer-Related Mortality

Model DistEn* All-Cause CVD Respiratory Cancer

A 
(Core)

1.36 (1.26–1.46) 
<0.0001

1.56 (1.29–1.86) 
<0.0001

1.73 (1.41–2.11) 
<0.0001

1.24 (1.10–1.41) 
<0.0001

B 
(A+lifestyle)

1.31 (1.21–1.41) 
<0.0001

1.43 (1.17–1.74) 
0.0004

1.80 (1.46–2.21) 
<0.0001

1.22 (1.07–1.39) 
0.003

C 
(B+CVD)

1.27 (1.17–1.37) 
<0.0001

1.37 (1.12–1.68) 
0.003

1.74 (1.41–2.15) 
<0.0001

1.19 (1.04–1.36)  
0.01

D 
(C+comorbidities)

1.24 (1.14–1.34) 
<0.0001

1.35 (1.10–1.65)  
0.004

1.70 (1.38–2.11)  
<0.0001

1.19 (1.03–1.36)  
0.01

E 
(D+ANS measures)

1.22 (1.10–1.35) 
<0.0001

1.46 (1.11 −1.91) 
0.007

1.75 (1.35–2.26) 
<0.0001

1.06 (1.13–1.26) 
0.55

Cox proportional hazards models. Model A is our core model adjusting for demographics (age, sex, education, and ethnic background). Model B additionally 
includes lifestyle covariates—alcohol usage, smoking, body mass index, Townsend deprivation index, and summed active metabolic minutes per week. Model 
C builds on model B by including cardiovascular risks/disease—hypertension, cholesterol, peripheral vascular disease, diabetes mellitus, chronic heart failure, 
prior myocardial infarction, and arrhythmias. Model D builds on model C by including comorbidities—neurological disease, respiratory diseases, cancer, 
psychiatric disease, gastrointestinal/hepatic disease, musculoskeletal disorder, endocrine disorders, and hematological disease. Model E builds on model D 
by including autonomic nervous system (ANS) function indicators—resting heart rate, root mean square of successive differences between normal heartbeats, 
and mean arterial pressure. CVD indicates cardiovascular disease.

*Results for 1-SD decrease in distribution entropy (DistEn) are presented as hazard ratio (95% CI) and P value.
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Subgroup Analysis and Interactions With 
DistEn
We did find a significant interaction effect between 
DistEn and age (P=0.006 for interaction) and prior 
MI (P=0.01 for interaction; Figure  2B). For every 
1-SD decrease in DistEn in those aged <55  years, 
there was a higher risk for death (HR, 1.61; 95% CI, 
1.32–1.92 [P<0.0001]) than those >65 years (HR, 1.17, 
95% CI, 1.03–1.33 [P=0.02]). Similarly, those with a 
prior MI (HR, 1.66; 95% CI, 1.38–1.99 [P<0.0001]) 
had a larger risk from every 1-SD decrease in DistEn 
than those with none (HR, 1.31; 95% CI, 1.21–1.42 
[P<0.0001]). Taken together, these interactions rep-
resented a 56% enhanced risk when comparing 
those <55  years with a history of MI, versus those 
>65 years without prior MI.

DISCUSSION
To the best of our knowledge, this is the first large-
scale implementation of heartbeat complexity in 
beat-to-beat recordings to explore its link to incident 
mortality, after almost a decade of follow-up. The 
key novel finding from this current study is the ability 
to derive prognostic information related to mortality 
using only a 2-minute resting ECG with DistEn, inde-
pendently of clinically relevant risk factors and auto-
nomic indices such as RHR, HRV, and MAP; this has 
traditionally not been feasible using other complex-
ity measures.13,15,29 In a direct comparison between 
DistEn and RRI Cox models (adjusting for age, sex, 

and education), DistEn was superior across follow-
up years. Moreover, DistEn was significantly more 
predictive of death in younger patients and in those 
who had already experienced an MI at the time of re-
cording. The observed risks for mortality are clinically 
meaningful given that these independent findings are 
readily obtained from resting ECGs, where the effect 
sizes are comparable to being up to a decade older, 
having been a former smoker, or having diabetes 
mellitus.

We should note that complexity is an umbrella 
term that lacks a clear scientific definition. A variety 
of algorithms have been established in the past de-
cades, each of which is believed to capture some 
aspects of this dynamical property. Entropy mea-
sures have been widely used in assessing physiolog-
ical complexity, partially because of their capability in 
handling limited length data.33 However, it is generally 
accepted that many established entropy measures, 
in fact, quantitate the degree of randomness of a 
temporal process, which is related to, but is distinct 
from, complexity. Neither an increase in the random-
ness nor an increase in regularity necessarily implies 
an increase in the complexity. In outputs of healthy 
physiological systems, complexity is characterized 
by temporal structures that represent a certain op-
timal balance between variability (randomness) and 
order (regularity). To demonstrate the conceptual 
differences between randomness and complexity, 
a multiscale entropy analysis has been proposed to 
quantify the profile of entropy as a function of time 
scale.34 Although the method successfully explained 

Figure 2. Survival function and subgroup analysis.
A, Survival over time from Cox proportional hazards model for all-cause mortality (model E: fully adjusted) based on those in the 
90th (dotted line) and 10th (solid line) percentiles for distribution of entropy (DistEn) from 2 minutes of ECG at rest. B, Forrest plot of 
hazard ratios with 95% CIs for DistEn predicting all-cause mortality based on subgroups of patients. Results presented on logarithmic 
scale. Cardiovascular disease (CVD) risk was determined high if there were ≥3 risk factors and low if there were no risk factors. Prior 
myocardial infarction (MI) as documented by date of International Classification of Diseases, Tenth Revision (ICD) diagnosis before 
UK Biobank assessment.
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the seemingly controversial higher entropy values in 
some diseased states, its application to clinical re-
cordings has been limited because the method also 
requires longer data for properly profiling the entropy 
results. Taking full advantage of the state-space char-
acteristic of a temporal process, DistEn can reconcile 
this complexity-randomness paradox by unravelling 
the spatial structure of the state space, thus being 
different from previously established single-scale en-
tropy analyses.13

The physiological interpretation of DistEn in heart-
beat fluctuations may be partially linked to the auto-
nomic control on the circulatory system. Supporting this 
hypothesis, we find that DistEn is correlated with RHR 
and HRV that are known to be influenced by the au-
tonomic nervous system. In particular, RMSSD mostly 
reflects respiration-related beat-to-beat changes that 
are measures of parasympathetic involvement in circu-
latory control, also referred to as respiratory sinus ar-
rhythmia.35 However, at the 2-minute level, RHR is likely 
influenced by both sympathetic and parasympathetic 
inputs, and the nonrespiratory sinus arrhythmia aspect 
may also contribute to beat-to-beat HRV. Therefore, 
the relationship between RMSSD and aging/disease 
may be more nuanced than simply a decline in para-
sympathetic function.36 This may be relevant to our ob-
servation that DistEn was lowest in patients with BMI 
>35 and high CVD risk profile, where there has been a 
substantial body of evidence supporting the role of the 
sympathetic/parasympathetic nervous system balance 
in obesity,37,38 hypertension,39,40 diabetes mellitus,41,42 
or a combination in metabolic syndrome.37,38 The sym-
pathetic predominance seen in CVD is likely only par-
tially reflected in higher RHR and lower HRV, whereas 
DistEn’s independent predictive value may be indica-
tive of broader mechanisms. For example, DistEn may 
capture aspects beyond autonomic nervous system 
activity such as structural8,43 and/or electrophysiologi-
cal properties13,15,44 of the heart, metabolic,45 or endo-
crine/neurohormonal factors.46,47

Another interpretation of our results is that complex-
ity, as quantified by DistEn, may be a marker of frailty; 
it may reflect declines in physiological reserve across 
multiorgan systems, thus increasing vulnerability to 
stressors. DistEn applied to short screening ECGs may 
provide additional information regarding cardiac stress 
reactivity above that provided by traditional measures 
of cardiac autonomic function. For example, it has 
been shown that time domain HRV reflects respiratory 
sinus arrythmia, which is predominantly mediated by 
cardiac vagal outflow at rest.35 In heart failure, myocar-
dial infarction, and stroke, respiratory sinus arrhythmia 
is usually either blunted or absent. This may partially 
explain our observation that DistEn is most predic-
tive of cause-specific cardiovascular- and respirato-
ry-related mortality (Table 3). Interestingly, in keeping 

with prior studies,48,49 RHR and HRV were individually 
predictive of cancer-related mortality, as was DistEn 
(Table S2). However, only RHR remained predictive 
when all 3 measures were included in the same model. 
Given their shared overlap in reflecting autonomic ner-
vous system output, further studies are needed to un-
derstand the role of these measures in cancer-related 
mortality.

In an effort to understand DistEn in patient sub-
groups, clinical factors of interest that may influence 
its value were examined and taken into account. 
Unsurprisingly, RHR was significantly lower in patients 
taking β-blockers even after adjustment for demo-
graphics, yet there was only a weak effect of β-blocker 
usage on DistEn (Table  2). History of AF/arrythmias 
did not have a significant effect on DistEn. Taken to-
gether, this suggests that DistEn is relatively robust to 
the effects of medications and/or conditions that may 
affect heartbeats. However, it is unlikely that patients 
were actively in AF/arrythmia during the recording pe-
riod given their paroxysmal nature.50 Further work is 
needed to examine the effects of pacemaker devices 
and chronic AF on the predictive ability of DistEn for 
mortality.

Our observation that lower resting heartbeat 
complexity confers a greater risk of death in younger 
participants (<55  years), and those having already 
experienced an MI, is also particularly intriguing. We 
do note that a similar pattern was also observed for 
RHR48 and HRV during a 2-minute ECG strip analy-
sis.45 For example, Goldberger et al6 noted in their 
large, prospective cohort of 30,000 that mortality risk 
was more pronounced in patients 59  years (similar 
cutoff to ours) and even in patients <38 years (relative 
risks between 1.11 and 1.27). Even though complex-
ity is known to decrease with age, it remains unclear 
whether DistEn observations attenuate with age 
because of changes in biology or simply because 
of smaller numbers of older people in our cohort. 
Complexity changes in heartbeat fluctuations with 
aging may be masked by increased underlying dis-
eases and medications taken,51 which was not fully 
accounted for in this study as well as many other en-
tropy studies. Nevertheless, these observations may 
be further evidence that hidden mechanisms related 
to poor health are better captured by low DistEn in 
younger patients. We postulate that cardiac reactiv-
ity to stress, which has an adverse effect on future 
cardiovascular risk,52,53 is perhaps better reflected by 
DistEn in an age group where there are fewer co-
morbidities, extrinsic influences of medication, or bi-
ological interactions with disease associated with the 
aging process that attenuate the signal. Those with 
potential heart damage (eg, post-MI) may exagger-
ate this response and is better reflected by heartbeat 
complexity.
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Others have begun to explore heartbeat complex-
ity as a novel approach to assessing cardiac stress 
reactivity,54 but more remains to be done to verify 
these observations and before clinical applications 
either for screening or risk stratification of patients. 
For example, validating the DistEn measure with 
echocardiographic evidence for post-MI structural 
changes to the heart may shed mechanistic light on 
why there is such a strong link to mortality. Given 
the interaction results, one testable hypothesis is 
that cardiac rehabilitation post-MI in middle age can 
be tracked using serial DistEn measures alongside 
multimodal trackers such as motor activity,55 with 
the goal to maintain cardiovascular well-being and 
increase life expectancy.

Limitations
Despite the strengths of this study, several limitations 
exist. The interpretation of these results from a clinically 
meaningful and statistically robust standpoint must be 
taken. With a large sample size, it can lead to tight CIs, 
so we have chosen not to make reference only to P val-
ues, which become less informative in these situations. 
The resting ECGs are readily obtained and effect sizes 
are significant, but whether DistEn can be influenced to 
make a clinical meaningful impact has yet to be tested. 
While all participants were conducting similar activities in 
answering questionnaires before their protocolized ECG 
recordings, we cannot control for the physical and men-
tal state of the participant, in response to the multitude 
of mental tasks and recall requested of the participants 
by the UKB.18,20 For example, respiratory patterns are 
known to heavily influence cardiac dynamics.56 Patients 
excluded were of similar age and demographics but they 
did have slightly more risk factors than those who were 
included per ECG criteria. This was, however, a relatively 
small portion (4.2% or 338/7969). While we cannot defini-
tively exclude the possibility that other hidden differences 
existed in the patients excluded, we are reassured that, if 
anything, inclusion of participants with potentially slightly 
more risk factors would likely strengthen the signal from 
DistEn for mortality, given that DistEn was significantly 
different in groups separated by the presence/absence 
of risk factors related to mortality (Table  2). Using the 
primary cause of death is most definitive, but may miss 
other contributing diseases that lends caution when in-
terpreting results of the cause-specific models. Finally, 
the UKB is a single population of mostly Caucasian of 
European descent, limiting the generalizability of these 
results to certain parts of the world.

CONCLUSIONS
Resting heartbeat complexity from short, resting 
ECGs was independently associated with mortality 

in middle- to older-aged adults. These risks appear 
most pronounced in middle-aged patients with prior 
MI, and may uniquely contribute to routine mortality 
risk screening. Our findings have the potential to be 
scaled-up to remote monitoring in smartwatch appli-
cations of beat-to-beat heart activity and opens up a 
new avenue of research for resting heartbeat complex-
ity as a vulnerability marker for stress reactivity.
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SUPPLEMENTAL MATERIAL 



Table S1. Full Cox proportional hazards models for DistEn and all-cause mortality. 
 

 

  Model 1 
Core 

Model 2 
Lifestyle 

Model 3 
CVD 

Model 4 
Comorbidities 

Model 5 
Autonomic 
Function 

 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 

DistEn a  1.36 (1.26 - 1.46) 
<0.0001  

1.31 (1.21 – 1.41) 
<0.0001 

1.27 (1.17 – 1.37) 
<0.0001 

1.24 (1.14 – 1.34) 
<0.0001 

1.22 (1.10 – 1.35) 
<0.0001 

Age b 1.06 (1.04 – 1.08)  
<0.0001 

1.07 (1.05 – 1.08)  
<0.0001 

1.06 (1.05 – 1.08)  
<0.0001 

1.05 (1.03 – 1.07) 
<0.0001 

1.05 (1.03 – 1.07)  
<0.0001 

Male 1.81 (1.50 – 2.18)  
<0.0001 

1.69 (1.39 – 2.06)  
<0.0001 

1.53 (1.25 – 1.87)  
<0.0001 

1.67 (1.36 – 2.04) 
<0.0001 

1.69 (1.39 – 2.07)  
<0.0001 

European 1.48 (1.04 – 2.12)  
0.023 

1.51 (1.03 – 2.21)  
0.034 

1.60 (1.09 – 2.34)  
0.008 

0.79 (0.61 – 1.01) 
0.06 

0.78 (0.60 – 1.00)  
0.05 

Education (College) 0.69 (0.54 – 0.89) 
0.002 

0.73 (0.57 – 0.94)  
0.016 

0.76 (0.59- 0.98) 
0.033 

1.46 (1.00 – 2.14) 
0.04 

1.47 (1.02 – 2.17)  
0.04 

BMI (kg/m2)  0.99 (0.98 – 1.01)  
0.497 

0.99 (0.97 – 1.00) 
0.075 

0.99 (1.00 – 1.01) 
0.12 

0.98 (0.97 – 1.00)  
0.09 

Townsend Deprivation Index  1.04 (1.01 – 1.07)  
0.016 

1.04 (1.00 – 1.07)  
0.024 

1.03 (1.00 – 1.06) 
0.06 

1.04 (1.01 – 1.07)  
0.02 

Physical Activity  0.99 (0.99 – 1.00) 
0.0004 

0.99 (0.99 - 1.00)  
0.001 

0.99 (0.99 – 1.00) 
0.02 

0.93 (0.91 – 0.97) 
0.02 

Smoking (Current)  2.13 (1.59 – 2.86)  
<0.0001 

2.11 (1.58 – 2.84)  
<0.0001 

2.07 (1.54 – 2.78) 
<0.0001 

2.00 (1.51 – 2.63)  
0.0001 

Smoking (Former)  1.49 (1.19 – 1.88)  
0.0006 

1.43 (1.14 – 1.80)  
0.002 

1.42 (1.13 – 1.79)  
0.003 

1.43 (1.13 – 1.80)  
0.003 

Alcohol (>3 Drinks per Week)   0.89 (0.68 – 1.16) 
0.337  

0.94 (0.72 – 1.23)  
0.668 

1.07 (0.81 – 1.40) 
0.89 

1.02 (0.82 – 1.25) 
0.89 

Hypertension   1.04 (0.84 – 1.29)  
0.726 

0.89 (0.71 – 1.12)  
0.32 

0.89 (0.71 – 1.12) 
0.34 

Cholesterol   0.86 (0.69 – 1.09)  
0.207 

0.78 (0.62 – 0.98)  
0.13 

0.78 (0.62 – 0.98)  
0.03 



 Model 1 
Core 

Model 2 
Lifestyle 

Model 3 
CVD 

Model 4 
Comorbidities 

Model 5 
Autonomic 
Function 

 HR (95% CI) 
p-value 

HR (95% CI) 
p-value 

HR (95% CI) 
p-value 

HR (95% CI) 
p-value 

HR (95% CI) 
p-value 

      
Peripheral Vascular Disease    1.40 (0.52 – 3.80)  

0.506 
1.52 (0.56 – 4.11) 

0.44 
1.58 (0.58 – 4.27)  

0.37 

Diabetes Mellitus   1.86 (1.46 – 2.39)  
<0.0001 

1.59 (1.23 – 2.06)  
<0.0005 

1.54 (1.19 – 1.99)  
0.0009 

Chronic Heart Failure   2.97 (0.94 – 9.37)  
0.064 

3.01 (0.94 – 9.67) 
0.11 

2.84 (0.88 – 9.17) 
0.08 

AF/Arrhythmia   1.34 (0.82 – 2.19)  
0.240 

1.19 (0.73 – 1.95)  
0.49 

1.11 (0.67 – 1.84) 
0.69 

Myocardial Infarction   1.38 (1.00 – 1.90)  
0.046 

1.13 (0.82 – 1.57)  
0.46 

1.19 (0.86 – 1.65)  
0.28 

Respiratory Diseases     1.17 (0.96– 1.43) 
0.12 

1.14 (0.93 – 1.39) 
0.20 

Neurological Diseases     1.65 (1.27 – 2.14) 
<0.0004 

1.59 (1.23 – 2.07)  
0.0005 

Cancer    2.92 (2.35 – 3.62) 
<0.0001 

2.86 (2.31 – 3.54) 
<0.0001 

Psychiatric Disorders    0.75 (0.58 – 0.98) 
0.030 

0.76(0.59 – 0.99) 
0.04 

Gastrointestinal Diseases     0.99 (0.72 – 1.36) 
0.962 

0.99 (0.72 - 1.36) 
0.95 

Musculoskeletal Disorders    1.05 (0.79 - 1.39) 
0.748 

1.06 (0.80 – 1.40)  
0.67 

Endocrine Disorders    0.73 (0.47 - 1.15)  
0.161 

0.70 (0.44 – 1.10)  
0.12 

Hematological Disorders    1.90 (1.10 – 3.27) 
0.034 

1.95 (1.13 – 3.35)  
0.02 

Number of Medications Taken    1.08 (1.05 – 1.11) 
<0.0001 

1.08 (1.05 – 1.11) 
<0.0001 



 Model 1 
Core 

Model 2 
Lifestyle 

Model 3 
CVD 

Model 4 
Comorbidities 

Model 5 
Autonomic 
Function 

 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 
HR (95% CI) 

p-value 

RHR (10 bpm increase)      1.10 (0.99 – 1.25) 
0.08 

RMSSD (1 SD decrease)      1.01 (0.90 – 1.15) 
0.80 

MAP (1 SD increase)      1.05 (0.95 – 1.16) 
0.35 

 
Full Cox proportional hazards models; results presented as hazard ratio (95% confidence interval), and p value. Model A is our core model adjusting for demographics (age, sex, 
education, and ethnic background). Model B additionally includes lifestyle covariates - alcohol usage, smoking, body mass index, Townsend deprivation index and summed active 
metabolic minutes per week. Model C builds on model B by including CV risks/disease - hypertension, cholesterol, peripheral vascular disease, diabetes mellitus, chronic heart failure, 
prior myocardial infarction and arrhythmias. Model D builds on C by including comorbidities - neurological disease, respiratory diseases, cancer, psychiatric disease, 
gastrointestinal/hepatic disease, musculoskeletal disorder, endocrine disorders, and hematological disease. Model E builds on D by including ANS function indicators – RHR, RMSSD 
and MAP. DistEn distribution entropy, HR hazard ratio, SD standard deviation, CI confidence intervals, CVD cardiovascular disease, ANS autonomic nervous system, RHR resting heart 
rate, bpm beats per minute, RMSSD root mean square of successive differences between normal heartbeats. a per 1-SD decrease, b per 1 year increase, c per 1unit increase, d per 1 
MET-min/week increase, e per 1 medication increase, and f per 1-SD increase. 

 

  



Table S2. Associations of RHR and HRV variables with all-cause and cause-
specific mortality. 
 
 All-Cause  

Mortality  
 

Cardiovascular 
Mortality  

 

Respiratory  
Mortality  

 

Cancer  
Mortality  

 

 HR (95% CI) 
p value 

HR (95% CI) 
p value 

HR (95% CI) 
p value 

HR (95% CI) 
p value 

     
RRI a 1.20 (1.09 – 1.32) 

0.0002 
0.95 (0.73 – 1.24) 

0.80 
1.25 (0.94 – 1.66) 

0.11 
1.38 (1.19 – 1.59) 

0.0001 

RRI a (+RMSSD) 1.14 (1.02 – 1.26)  
0.02 

0.85 (0.63 – 1.14)  
0.28 

1.16 (0.83 – 1.62)  
0.38 

1.33 (1.13 – 1.57)  
0.0008 

RRI a (+DistEn) 1.11 (0.98 – 1.20)  
0.08 

0.80 (0.60 – 1.06)  
0.12 

1.04 (0.77 – 1.42)  
0.78 

1.33 (1.13 – 1.56)  
0.0005 

RHR b 1.14 (1.06 – 1.22) 
0.0002 

0.97 (0.80 – 1.17) 
0.80 

1.21 (0.98 – 1.49) 
0.08 

1.26 (1.13 – 1.40) 
0.0001 

RHR b (+RMSSD) 1.10 (1.02 – 1.19)  
0.02 

0.89 (0.72 – 1.10)  
0.28 

1.12(0.87 – 1.42)  
0.38 

1.23 (1.09 – 1.39)  
0.0008 

RHR b (+DistEn) 1.10 (0.99 – 1.21)  
0.08 

0.85 (0.69 – 1.04)  
0.12 

1.03 (0.82– 1.29)  
0.78 

1.23 (1.10 – 1.39)  
0.0005 

RMSSD†, a  1.22 (1.09 – 1.35) 
0.0003 

1.41 (0.96 – 2.05) 
0.08 

1.39 (0.98 – 1.98) 
0.06 

1.25 (1.06 – 1.48) 
0.009 

RMSSD†, a (+RHR) 1.14 (1.02 – 1.28) 
0.02 

1.38 (1.00 – 1.90)  
0.05 

1.36 (0.92 – 2.01)  
0.13 

1.08 (0.90 – 1.30) 
0.41  

RMSSD†, a 
(+DistEn) 

1.01 (0.90 – 1.15) 
0.80 

0.97 (0.70 – 1.35) 
0.87 

0.91 (0.64 – 1.29) 
0.60 

1.17 (0.94 – 1.44)  
0.16 

SDSD †, a 1.19 (1.08 – 1.33) 
0.0009 

1.28 (0.97 – 1.69) 
0.08 

1.47 (1.03 – 2.11) 
0.04 

1.25 (1.06 – 1.49) 
0.009 

SDNN †, a 1.26 (1.14 – 1.39) 
0.0001 

1.33 (1.03 – 1.74) 
0.03 

1.72 (1.23 – 2.40) 
0.001 

1.23 (1.05 – 1.45) 
0.008 

pNN5 †, a 1.23 (1.13 – 1.35) 
0.0002 

1.30 (1.03 – 1.65) 
0.03 

1.45 (1.08 – 1.94) 
0.01 

1.22 (1.06 – 1.40) 
0.005 

MAP c 1.05 (0.95 – 1.16) 
0.35 

1.02 (0.77 – 1.36) 
0.88 

0.74 (0.52 – 1.05) 
0.10 

1.05 (0.90 – 1.22) 
0.57 

 
Cox proportional hazards for associations between RHR, time-domain HRV variables, and MAP with all-cause mortality and cause-
specific mortality (cardiovascular, respiratory and cancer related mortality) using our fully adjusted Model E. afor 1-SD decrease. bfor 
10bpm increase. cfor 1-SD increase. SD standard deviation, HR hazard ratio, CI confidence interval, RRI RR interval, RHR resting 
heart rate, HRV heart rate variability, RMSSD root mean square of the successive differences between normal heartbeats, SDSD 
standard deviation of successive RRI, SDNN standard deviations of NN intervals, pNN5 percentage of successive normal cardiac 
interbeat intervals greater than 5ms, MAP mean arterial pressure. † log transformed. 

 



Figure S1. Demonstration and further description of the DistEn algorithm. 
 

 
 

 

 

(A) An exemplary time series of 1000 points {x(i), 1 ≤ i ≤ 1000}. (B) The first 20 vectors X(i)={u(i),u(i+1),...,u(i+m-1)},1 ≤ i ≤ 20 in the 
state space after embedding state-space reconstruction. Here m indicates the embedding dimension which is set as 3. (C) The 
distance matrix D={di,j} with each element being the Chebychev distance among vectors X(i) and X(j) for all 1 ≤ i, j ≤ N − m, i.e., di,j = 
max{|u(i + k) − u(j + k)|, 0 ≤ k ≤ m − 1}. (D) Probability density of di,j estimated using histogram. If the histogram has B bins, we use pt, 
t = 1, 2, ..., B to denote the probability (frequency) of each bin. To reduce bias, elements with i = j are excluded when estimating the 
ePDF. Then DistEn can be calculated by the Shannon entropy formula normalized by the theoretical maximum log(B). 

 
 
  



Figure S2. DistEn simulation showing stability and consistency of results across 
data length and parameter selection. 
 

 

 
A: Theoretical time series with known complexity levels were generated to test the performance of DistEn. We simulated chaotic 
series, Gaussian noise, MIX(p) processes, and a periodic signal. Magnitude of signal in arbitrary units (a.u.) over time in seconds. 
The Logistic attractor x(n + 1) = ω × x(n) × (1 − x(n)) was considered with ω = 4.0 for chaotic series and ω = 3.5 for periodic signals 
(period 4), respectively. The MIX(p) process is generated by a sinusoid signal of length N, with N × p randomly chosen points being 
replaced with independent identically distributed random noise. We applied p = 0.1 and 0.2, respectively, to generate two MIX(p) 
processes with different complexity levels. The Gaussian noise was generated by the random number function (randn) in MATLAB. 
B: DistEn as a function of data length N (left panel), set at 10 values between 50 to 2,000, in the aforementioned five time series. 
Error bars indicates the standard deviation of 20 results. Note the relative stability i.e. narrow error bars of DistEn, and ability to 
separate all five signals across varying short signal lengths, N. DistEn as a function of input parameter, m (middle panel): the 
dimension parameter (1 to 10). DistEn is consistent for MIX(p) signals and separate them well from other signals across the most 
commonly used 2, 3 or 4 values and beyond. DistEn as a function of input parameter, B (right panel): the number of bins selected 
(128 to 1024) when m is held constant at 3. Again, note the relative consistency of results for DistEn, and ability to separate all five 
signals across varying number of bins selected, B. 

  



Figure S3. ECG strips over 15s for two males with similar HR and mean RRI, and 
direct comparison of DistEn and RRI model performance 

 

 
 

 

(A) Male subject within 10th centile DistEn who died during follow-up (B) Male subject within 90th centile 
DistEn who survived during follow-up. DistEn Distribution Entropy; HR heart rate; RRI RR-interval. Note 
the difference in the dynamical patterns is not visible to the naked eye, despite differences in nonlinear 
measures such as DistEn. (C) In a direct comparison between DistEn and RRI survival models (adjusting 
for age, sex and education), DistEn was superior across follow-up years. ∆C, difference in concordance 
index (c-stat), shaded region represents 95% confidence intervals after 100 iterations. 
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