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A B S T R A C T

Objective: Jinbei oral liquid (JBOL), which is derived from a traditional hospital preparation, is 
frequently utilized to treat idiopathic pulmonary fibrosis (IPF) and has shown efficacy in clinical 
therapy. However, there are now several obstacles facing the mechanism inquiry, including target 
proteins, active components, and the binding affinity between crucial compounds and target 
proteins. To gain additional insight into the mechanisms underlying JBOL in anti-IPF, this study 
used bioinformation technologies, including network pharmacology, molecular docking, and 
molecular dynamic simulation, with a substantial amount of data based on realistic constituents.
Methods: Using network pharmacology, we loaded 118 realistic compounds into the Swis-
sTargetPrediction and SwissADME databases and screened the active compounds and target 
proteins. IPF-related targets were collected from the OMIM, DisGeNET, and GeneCards databases, 
and the network of IPF-active constituents was built with Cytoscape 3.10.1. The GO and KEGG 
pathway enrichment analyses were carried out using Metascape, and the protein-protein inter-
action (PPI) network was constructed to screen the key targets with the STRING database. Finally, 
the reciprocal affinity between the active molecules and the crucial targets was assessed through 
the use of molecular docking and molecular dynamics simulation.
Results: A total of 122 targets and 34 tested active compounds were summarized in this investi-
gation. Among these, kaempferol, apigenin, baicalein were present in high degree. PPI networks 
topological analysis identified eight key target proteins. AGE-RAGE, EGFR, and PI3K-Akt 
signaling pathways were found to be regulated during the phases of cell senescence, inflamma-
tory response, autophagy, and immunological response in anti-IPF of JBOL. It was verified by 
molecular docking and molecular dynamics simulation that the combining way and binding 
energy between active ingredients and selected targets.
Conclusions: This work forecasts the prospective core ingredients, targets, and signal pathways of 
JBOL in anti-IPF, which has confirmed the multiple targets and pathways of JBOL in anti-IPF and 
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provided the first comprehensive assessment with bioinformatic approaches. With empirical 
backing and an innovative approach to the molecular mechanism, JBOL is being considered as a 
potential new medication.

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic intractable progressive fibrotic interstitial pulmonary disease, characterized by 
irreversible destruction of the lung parenchyma, excessive extracellular matrix (ECM) deposition, and an aberrant wound healing 
response brought on by damage to alveolar epithelial cells (AECs) [1]. Due to its uncertain etiology and poorer prognosis-especially 
with a median survival of 3.8 years (95 % CI 3.5–3.8) [2] since the time of diagnosis in adults aged 65 years or older-it is a serious issue 
in global public health. End-stage respiratory failure, pulmonary hypertension, and even death may occur following IPF and result in a 
significant financial burden [3]. Comorbidities including cardiac disease and gastroesophageal reflux [4] could further raise the risk of 
dying sooner.

According to epidemiological research, the fatality rate from fibrotic pulmonary dysfunction has reached 60%–70 % [5] since 
COVID-19. Glucocorticoids and cytotoxic medications are currently the mainstays of conventional IPF therapy, albeit their efficacy 
appears to be limited when used as an anti-IPF measure. Tyrosine kinase inhibitors, such as pirfenidone and nintedanib, which have 
received FDA approval, are being utilized as first-line treatments for IPF [6]. According to the data survey, the average expenses of 
nintedanib and pirfenidone for clinical treatment in the United States from 2014 to 2019 was USD 397.51 and USD 394.49, respec-
tively. This indicates a low clinical utilization ratio, which is primarily attributable to the higher monthly amounts of self-paid patients. 
However, pirfenidone and nintedanib’s potential medication side effects-gastrointestinal distress, skin eruption [7], diarrhea, and 
elevated liver enzymes [8]- avoid their widespread usage. Currently, lung transplantation [9] is the unique treatment that is known to 
improve the prognosis and increase survival for IPF patients, however, strategies that involve a limited number of appropriate IPF 
patients and a scarcity of donor organs have intrinsic advantages and disadvantages.

Recent studies have demonstrated that the intricate pathophysiology of IPF exhibits intertwined connection of cell types and 
signaling pathways, whereby the exploration of certain crucial signaling pathways serves as a catalyst for elucidating the IPF path-
ogenesis [10]. More medications, particularly Chinese medicinal formulae that target the anti-IPF signal pathways, have been verified 
in recent years. Herbal formulations have been demonstrated via numerous clinical studies to operate on the body through 
multi-component and multiple-target/pathway in order to combat respiratory disorders and improve the prognosis. To a greater 
extent, Traditional Chinese Medicine (TCM) is unable to realize modernization and globalization due to the mechanism of action and 
security are not sufficiently validated. A relatively new field, network pharmacology is intertwined with systems biology, genomics, 
polypharmacology, computational biology, and cutting-edge technologies integrated with massive data analysis and artificial intel-
ligence. It has articulated the mechanism of disease and medicine function from the biological network [11], built a bridge between 
empirical and evidence-based medicine by constructing the “herb-compound-target-disease” relationship that was proposed by Pro-
fessor Shao [12], and is thus appropriate for investigating pharmacological mechanisms in herbal formulas. Massive data sources 
would, however, induce a great deal of variation in the data algorithm. Other causes including acquisition from various databases and 
inconsistent standardization in data application [13] would generally result in deviations between predicted and the realistic con-
stituents in holistic analysis as well.

Currently, there is no newly approved Chinese medicine for IPF treatment, leaving a significant gap in the field of treatment of this 
disease in China. With its origins in 40 years of clinical experience, Jinbei Oral Liquid (JBOL) is one of the few Chinese herbal medicine 
compounds specifically designed for the therapy of IPF. Multi-center clinical study findings have demonstrated that JBOL undoubtedly 
provides an advantage when it comes to considerably improving blood gas analysis, pulmonary function index, and blood oxygen 
saturation. In recent years, JBOL with unquestionable clinical efficacy and safety is frequently utilized at healthcare facilities as an 
approach to treating IPF [14]. JBOL consists of twelve herbs including Angelica sinensis (Oliv.) Diels, Astragalus membranaceus (Fisch.) 
Bge, Codonopsis pilosula (Franch.) Nannf, Glycyrrhiza uralensis Fisch, Lonicera japonica Thunb, Glehnia littoralis Fr. Schmidt ex Miq, 
Pinellia ternata (Thunb.) Breit, Salvia miltiorrhiza Bge, Ligusticum striatum DC, Scutellaria baicalensis Georgi, Forsythia suspensa (Thunb.) 
Vahl, and Fritillaria cirrhosa D. Don [15]. In order to precisely position the key components and targets, we have created a target 
network by utilizing realistic constituents rather than those that were predicted. We then imported the realistic constituents into the 
SwissTargetPrediction database and traditional Chinese medicine systems pharmacology (TCMSP) to investigate the hub genes in the 
biological information of JBOL that target IPF.

The goal of this study was to promote data mining of multi-component and multi-target via network pharmacology by analyzing 
realistic constituents as a benchmark. In order to confirm the inference of network pharmacology, we further investigated the crosstalk 
between ligand and protein of core components and targets using molecular docking and molecular dynamics simulation. In a nutshell, 
this research aims to offer a reference for methodically delving into the JBOL mechanism in anti-IPF using realistic ingredients.

2. Materials and methods

2.1. Screening the active ingredients and targets of JBOL

A total of 118 peaks were detected and identified [16] using ultra-high-performance liquid chromatography in conjunction with 
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quadruple time-of-flight mass spectrometry (UPLC-Q-TOF-MS). This mixture contained 43 flavonoids, 26 phenylpropanoids, 14 gly-
cosides, 9 phthalides, 8 alkaloids, and other substances. The substances listed above that were assessed served as the research object. 
The databases SwissTargetPrediction (http://www.swisstargetprediction.ch/) and SwissADME (http://www.swissadme.ch/) [16] 
were utilized to uncover potential active ingredients and targets in JBOL, while the TCMSP database (http://tcmspw.com/index.php) 
[17,18] and literature mining were utilized to fill in the component targets that were left out of SwissTargetPrediction. The screening 
criteria for this study mainly include two indicators: OB ≥ 30 % and DL ≥ 0.1; GI absorption is “High” and DL index greater than or 
equal to 3 Yes; Probability≥0.1. Subsequently, the final targets set was uniformly encoded using UniProt (https://www.uniprot.org/) 
genes [19], which eliminated duplicates, using the species setting “Homo sapiens”, and the structures of the active compounds were 
summarized in Table 1.

2.2. Collection of the active ingredients-disease intersection targets

The target genes of IPF-related were retrieved with the keyword “Idiopathic pulmonary fibrosis”, “pulmonary fibrosis” in OMIM 
(https://omim.org/) [20], DisGeNET (https://www.disgenet.org/) and GeneCards (https://www.genecards.org/) databases [21,22]. 
The overlap between the targets of the active ingredient and the IPF-related targets was obtained using a Venn diagram, which was 
utilized to determine the potential therapeutic targets of IPF-related.

2.3. Construction of herb-active ingredient-target network

The active components of JBOL were matched to pertinent targets using the network biology visualization tool Cytoscape (3.10.1). 
To establish the herb-active ingredient-target network, the XLS files containing the node attribute information and node interaction 
connection were loaded into Cytoscape. The node size and (or) depth of color directly reflected the degree value of every node.

2.4. Construction of a PPI network diagram

Targets of ingredient-IPF intersection were loaded into the STRING database [23] (https://string-db.org/) to gather data on the 
protein interaction network. “Homo sapiens” was the criterion for screening the “organisms” and “medium confidence (0.4)" was the 
minimal required interaction score. The generated data was then extracted and loaded into Cytoscape (3.10.0) for the purpose to 
establish a PPI network. In the PPI network, the degree centrality (DC), closeness centrality (CC) [24], and betweenness centrality (BC) 
of the node are calculated, while the node size was visually represented according to DC. The key targets were extracted based on the 
degree value in the PPI network [25].

2.5. Genomic functional enrichment

Gene Ontology (GO) [26] and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis [27] were 
conducted out to obtain insight into the biological function of possible targets in IPF therapy using Metascape (https://www. 
metascape.org) database [28]. Molecular functions (MF), cellular components (CC), and biological processes (BP) were screened 
using GO analysis. Important signaling pathways involved in biological activities were identified by means of KEGG [29] enrichment 
analysis. During the analytic procedure, p < 0.01, minimum overlap of 3, and enrichment factor >1.5 were collected and subsequently 
categorized based on how similar their members were. (last update date: 2024-02-19). For visual analysis, GO and KEGG data were 
uploaded to the Bioinformatics (http://www.bioinformatics.com.cn/).

2.6. Construction of a ingredients-disease-target-pathway network

To further investigate the functional mechanism of JBOL’s active ingredients against IPF, the “ingredient-disease-target-pathway” 
network was constructed using the Cytoscape (3.10.1) software package [30] (Boston, MA, USA) to visualize and illuminate the 
intricate relationships between ingredients, targets, and pathways. The degree of every node in the network would be directly indi-
cated by node size and/or color depth.

2.7. Molecular docking

To verify the binding ability among the active ingredients and core target proteins, nine core ingredients were selected for mo-
lecular docking with nine target proteins [31]. We used AutoDock Vina for molecular docking, which adopted a semi-flexible docking 
mode [32]. The crystal structure of the core target proteins was made reference to RSCB PDB (http://www.rcsb.org/) [33]. The options 
of 3D structure need to coincide as follows: (1) the species type is “Homo sapiens”, (2) the pH of crystallization should approach the 
normal range of the human body, (3) Crystal proteins need to contain the information of original small molecule ligand, (4) High 
resolution (≤2.5A). The ligands and water molecules of each protein were removed by PyMOL software. The structure of the 3D files 
containing the active components was acquired using the PubChem database. The receptors and ligands were pretreated with hy-
drogenation using Auto Dock Tools 1.5.7 before docking, and the Grid Box was set with the original ligand as the center. The scope of 
the grid box should cover the entire protein receptor structure and ensure that any possible docking pockets are included. In order to 
assess free binding energies, AutoDock Vina was used for the docking process. Finally, we used the Discovery Studio (2024) and 
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Table 1 
Prediction of the component of JBOL based on SwissADME and TCMSP.
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PyMOL 2.5.8 (https://www.pymol.org/) to visualize and evaluate the interactions of typical docking data. The minimum binding 
energy among each pair of complexes was calculated to evaluate the binding stability between JBOL core components and target 
proteins. The binding energy value is inversely proportional to the binding ability, with binding energy ≤ -5 kcal/mol signifying strong 
binding activity [34].

2.8. Molecular dynamics simulation

Molecular dynamics simulations were run on the Amber 22 (San Francisco, CA, USA) to determine the binding mode and binding 
energy of the receptor protein with the lowest binding energy to the ligand during the molecular docking process. The ff19SB force 
field [35] was trained using TIP3P water, and counterions were added to neutralize the system. The system was heated up to 300 K 
within 500 ps when energy was minimized, and then the system achieved pre-equilibrated at 300 K using the regular system (NVT), 
lastly, molecular dynamics simulations were run for 100 ns at the isothermal isobaric system (NPT). The SHAKE limited all covalent 
bonds of hydrogen, and the results were analyzed with AmberTools23.

3. Results

3.1. Analysis of active components screening and target prediction

3.1.1. Prediction of nuclear ingredients combined with the realistic constituents
A total of 118 chemical ingredients of JBOL were identified through UPLC-Q-TOF-MS. In this investigation, 34 active compounds 

were screened according to the standards of SwissADME database systems, of which 14 components were shared by the 12 herbs. 
Including 8, 2, 6, 10, 4, 2, 5, 7, 6, 3, 4, and 6 compounds were obtained from HQ, DangS, BSS, DanS, DG, CX, JYH, LQ, HQIN, CBM, 
QBX, and GC, respectively. In addition, these substances contained two phenolic acids, five alkaloids, four tanshinones, seven phe-
nylpropanols, and eleven flavonoids. The remaining compounds appertained to isoflavone, glycoside, phenylpropionic acid, and its 
derivatives, phthalide, and psoralen, respectively (Table 1). The UpSet plot acquired the information of intersecting components in 12 
herbs and showed the amounts of active ingredients and common components distribution in each herb of JBOL (Fig. 1).
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3.1.2. Construction of JBOL herb-active ingredient-target network
The herbs, active ingredients, and related putative targets of JBOL were entered into Cytoscape 3.10.1 to produce the herb-active 

ingredient-target network diagram (Fig. 2), which includes 549 nodes and 1550 edges. According to the network analysis tool, the 
network heterogeneity is 2.43 and the network centralization is 0.187. The top 10 active components with degree values were taken as 
the core nodes that including Kaempferol (MOL000422, degree:108), Apigenin (MOL000008, degree:107), Methylnissolin (14077830, 
degree:106), Baicalein (MOL002714, degree:105), Liquiritigenin (MOL001792, degree:102), Phellopterin (MOL002644, degree:80), 
Peimine (MOL004445, degree:77), Cryptotanshinone (MOL007088, degree:71), Isoliquiritigenin (MOL001789, degree:70), 7-hydroxy 
coumarin (MOL003875, degree:68). The network revealed that the most significant active ingredients interacting with the targets were 
kaempferol, apigenin, methylnissolin, and baicalein, among others.

3.2. Prediction of potential targets of JBOL in the treatment of IPF

The retrieval terms were set to “Idiopathic Pulmonary Fibrosis”, “Pulmonary Fibrosis”, and the condition was set to “Homo sapiens”. 
The targets associated to IPF were found using the DisGeNET, GeneCards, and OMIM databases. The findings indicated that 1708, 
1671, and 356 were the confirmed or potential IPF targets, respectively. Uniprot was applied to the screen and standardized all disease 
targets with corresponding gene symbols. A total of 1169 targets were extracted after deduplication. According to the Venn diagram 
data, a total of 122 intersection targets between JBOL component targets and IPF disease The Venn diagram data indicates that there 
are 122 intersection targets between IPF targets and JBOL component targets (Fig. 3).

3.3. PPI network construction and core target selection

We entered 122 common targets to the STRING database into create a PPI network with the aim to investigate the mechanism 
potential therapeutic effects of JBOL against IPF (Fig. 4A). Proteins were represented by nodes, while protein associations were dis-
played via lines. The network displayed 120 nodes and 1793 edges, with median DC values of 26. Based on topology analysis, the core 
PPI network was identified, with DC ≥ 2 times the median and DC, BC, and CC ≥ median as the screening criterion. Topological 
analysis indicated that 8 core objectives stand out distinctly. (Table 2 and Fig. 4A), namely RAC-alpha serine/threonine-protein kinase 
(AKT1), Epidermal growth factor receptor (EGFR), Proto-oncogene tyrosine-protein kinase Src (SRC), Signal transducer and activator 
of transcription 3 (STAT3), Matrix metalloproteinase-9 (MMP9), mitogen-activated protein kinase 3 (MAPK3), Caspase-3 (CASP3) and 
Heat shock protein HSP 90-alpha (HSP90AA1) (Table 2). The network with essential and non-essential targets was constructed 

Fig. 1. Distribution of the predicted active ingredients in 12 herbs. The number of active compounds found in every herb is indicated in the strip at 
the bottom left. The intersection situations of the individual sets are displayed by the dots and lines at the bottom right. A histogram illustrates the 
quantity of relevant components exist in each subset.
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simultaneously (Fig. 4B), with node sizes in this network proportional to the target degree.

3.4. GO enrichment and KEGG pathway analysis

The core targets were imported into the Metascape database for enrichment analysis. The top 10 items of biological function (BP), 
cell function (CC), and molecular function (MF) (P < 0.01) in GO analysis were shown in Fig. 5. Among them, BP involved positive 
regulation of phosphorus and phosphate, transmembrane receptor protein tyrosine kinase signaling pathway, positive regulation of 
protein phosphorylation, transferase, and kinase activity. There were vesicle lumen, caveola, membrane raft, membrane microdomain, 
and focal adhesion. In CC. MF was related to protein kinase activity and phosphotransferase activity with the alcohol group as 
acceptor, kinase activity, protein tyrosine kinase activity, and transmembrane receptor protein tyrosine kinase activity.

The first 20 signal pathways involved pathways in cancer, AGE-RAGE signaling pathway, lipid and atherosclerosis, EGFR tyrosine 
kinase inhibitor resistance PI3K-Akt signaling pathway, and so on (Table 3 and Fig. 6A and B). Using the Bioinformatics platform 
(http://www.bioinformatics.com.cn/), a Sankey diagram was established on the basis of the relationship between the target genes and 

Fig. 2. Herb-active ingredient-target network of JBOL. (Red arrows represent the herbs in JBOL, the octagon node represents components of JBOL, 
2 blue octagon nodes are BSS compounds, 3 crimson octagon nodes are CBM compounds, 1 purple octagon node is CX compound, 5 rose red octagon 
nodes are DanS compounds, 2 navy blue octagon nodes are GC compounds, 1 yellow octagon node is DG compound, 3 Red octagon nodes are HQ 
compounds, 2 blue octagon nodes are CX compounds, 1 bottle-green octagon node is LQ compound, and the 14 light green circular nodes are 
common components in the twelve herbs of JBOL. Purple rhombus node represent predict targets. The edges depict the interaction between in-
gredients and targets, and the node size and depth of color are proportional to the degree value of interaction.

Fig. 3. Venn diagram of the target of JBOL and the target of IPF.
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the enrichment pathways (Fig. 6C).

3.5. Construction of JBOL ingredients-disease-target-pathway network

Finally, we constructed a ingredients-disease-target-pathway network and visualized using Cytoscape 3.10.1 (Fig. 7), containing 
185 nodes and 905 edges. The degree value indicated that kaempferol, apigenin, baicalein, vanillic acid, and isoimperatorin were the 
top 5 active components. The top five targets included EGFR, AKT1, PIK3CA, PIK3CD and MAP2K1.

Fig. 4. The PPI network of JBOL and IPF predict key targets. (A) The PPI network screening process. The 8 core targets were screened by screening 
from 122 common targets via the value of DC, BC, and CC. (B) Construction of core target and non-core target network. Nodes represent proteins 
(The important target is indicated by the red circular node; the node size and color depth are graphically depicted based on the DC value.), edge 
represents protein-protein association.
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3.6. Analysis of molecular docking

Molecular docking was used to evaluate the interaction of screening active ingredients and core targets to validate the findings from 
network pharmacology. Based on synthesis analysis of the degree values from the PPI network and KEGG, 9 key protein targets were 
chosen. 9 active components that achieved high degree values through the “herb-active ingredient-targets” network was used for 
molecular docking. Realistic ingredients with high contents from previous experiments were also taken into account. Based on the 
aforementioned outcome, we docked 9 receptor proteins-AKT1 (PDB ID: 4EJN), EGFR (PDB ID: 4LQM), SRC (PDB ID: 1T65), STAT3 
(PDB ID: 5AX3), MMP9 (PDB ID: 4WZV), MAPK3 (PDB ID: 2ZOP), CASP3 (PDB ID: 3KJF), HSP90AA1 (PDB ID: 5VYY), MTOR (PDB ID: 
4DRI)-with 9 ingredients as ligands, including kaempferol, apigenin, methylnissolin, baicalein, liquiritigenin, phellopterin, peimine, 
cryptotanshinone, and wogonin. An average free binding energy value of − 8.27 kcal⋅mol-1 was found in the docking results of 81 
groups of active ingredient-target protein, indicating tight binding activity in screening active components with core targets (Fig. 8). 
The top eight compound-target interactions and the binding mode with the highest free binding energy score were visualized using 
PyMoL2.5.8 and Discovery Studio 2024 (Fig. 9 and Table 4).

The smaller the value of the binding free energy, the lower the binding free energy and the stronger the binding. A ligand would 
demonstrate a certain binding activity, a satisfactory binding activity, and a tight binding activity with the receptor if its binding 
energy was less than − 4.25 kcal⋅mol-1, -5.0 kcal⋅mol-1, and -7.0 kcal⋅mol-1, respectively [36]. Out of all of them, the free binding 

Table 2 
Core targets information of PPI network.

UniProt ID Gene symbol Protein name Degree Betweenness Centrality Closeness Centrality

P31749 AKT1 RAC-alpha serine/threonine-protein kinase 87 0.0628 0.7778
P00533 EGFR Epidermal growth factor receptor 86 0.0599 0.7727
P12931 SRC Proto-oncogene tyrosine-protein kinase Src 80 0.0761 0.7438
P40763 STAT3 Signal transducer and activator of transcription 3 79 0.0284 0.7391
P14780 MMP9 Matrix metalloproteinase-9 74 0.0309 0.7169
P27361 MAPK3 Mitogen-activated protein kinase 3 72 0.0261 0.7083
P42574 CASP3 Caspase-3 71 0.0222 0.7041
P07900 HSP90AA1 Heat shock protein HSP 90-alpha 66 0.0669 0.6879

Fig. 5. GO analysis (Top 10 terms of biological process (BP), molecular function (MF) and cellular component (CC)).

X. Han et al.                                                                                                                                                                                                            Heliyon 10 (2024) e38173 

11 



energy of MTOR with peimine exhibited the highest affinity, it was − 11.1 kcal mol− 1. The interaction was mainly reflected in the 
formation of hydrogen bonds with TYR-57, and ARG-73 residues and hydrophobic interactions with TRP-2102, TRY-2105, PHE-77, 
ILE-87, VAL-86, PHE-2039, and PHE-2108 residues of MTOR. Other groups of target protein-active ingredient, like apigenin-MMP9 
and cryptotanshinone-AKT1, also exhibited high free binding energies, all of which were less than − 9.4 kcal⋅mol-1. Additionally, 
this investigation discovered that MMP9 could interact with apigenin, kaempferol, baicalein, liquiritigenin, and wogonin, among 
additional compounds. The interaction was concerned with the formation of hydrogen bonds and hydrophobic interactions, whose 
residues included ALA-189, VAL-223, etc. We predicted that screening compounds and targets would be important in the management 
of IPF based on the aforementioned findings. It should be mentioned, nonetheless, that more experimental verification is required for 
the potential active components.

3.7. Molecular dynamic simulation

The molecular dynamic simulation was run to investigate the binding abilities of AKT1 to cryptotanshinone, MTOR to peimine, and 
MMP9 to apigenin. Root Mean Square Fluctuation (RMSD) curves of protein indicated position variability between the conformation 

Table 3 
Analysis of the KEGG pathway of phillygenin for weight loss (Top 20).

ID Description Count Gene ID P- 
Value

hsa05200 Pathways in cancer 44 ABL1,AKT1,ALK,AR,CCND1,CASP3,EDNRA,EGFR,ESR1,F2,FGFR1,FLT4,MTOR, 
HDAC2,HSP90AA1,IGF1R,IL2,JAK2,KIT,MET,MMP1,MMP2,MMP9,NFKB1,NOS2, 
PDGFRB,PGF,PIK3CA,PIK3CB,PIK3CD,PPARG,PRKCA,MAPK1,MAPK3,MAPK8, 
MAP2K1,PTGS2,PTK2,RAF1,RET,SLC2A1,STAT3,TERT,VEGFA

2.96E- 
43

hsa04151 PI3K-Akt signaling pathway 30 AKT1,CCND1,EGFR,FGFR1,FLT4,MTOR,HSP90AA1,IGF1R,IL2,ITGB3,JAK2,KDR,KIT, 
MET,NFKB1,PDGFRB,PGF,PIK3CA,PIK3CB,PIK3CD,PIK3CG,PRKCA,MAPK1,MAPK3, 
MAP2K1,PTK2,RAF1,RET,TEK,VEGFA

2.73E- 
29

hsa05205 Proteoglycans in cancer 29 AKT1,CCND1,CASP3,MAPK14,EGFR,ESR1,FGFR1,MTOR,IGF1R,ITGB3,KDR,MET, 
MMP2,MMP9,PIK3CA,PIK3CB,PIK3CD,PLAU,PRKCA,MAPK1,MAPK3,MAP2K1,PTK2, 
PTPN11,RAF1,SRC,STAT3,VEGFA,EZR

1.55E- 
34

hsa05417 Lipid and atherosclerosis 26 AKT1,CASP3,MAPK14,CYP1A1,CYP2C9,HSPA1A,HSP90AA1,ICAM1,JAK2,LYN, 
MMP1,MMP3,MMP9,NFKB1,PIK3CA,PIK3CB,PIK3CD,PPARG,PRKCA,MAPK1, 
MAPK3,MAPK8,PTK2,SELE,SRC,STAT3

2.73E- 
29

hsa04014 Ras signaling pathway 25 ABL1,AKT1,EGFR,FGFR1,FLT4,IGF1R,KDR,KIT,MET,NFKB1,PDGFRB,PGF,PIK3CA, 
PIK3CB,PIK3CD,PLA2G2A,PRKCA,MAPK1,MAPK3,MAPK8,MAP2K1,PTPN11,RAF1, 
TEK,VEGFA

6.44E- 
27

hsa04010 MAPK signaling pathway 25 AKT1,CASP3,MAP3K8,MAPK14,EGFR,FGFR1,FLT4,HSPA1A,IGF1R,KDR,KIT,MAPT, 
MET,NFKB1,PDGFRB,PGF,PRKCA,MAPK1,MAPK3,MAPK8,MAP2K1,RAF1,RET,TEK, 
VEGFA

1.82E- 
24

hsa05167 Kaposi sarcoma-associated 
herpesvirus infection

24 AKT1,CCND1,CASP3,CCR3,MAPK14,MTOR,HCK,ICAM1,JAK2,LYN,NFKB1,PIK3CA, 
PIK3CB,PIK3CD,PIK3CG,MAPK1,MAPK3,MAPK8,MAP2K1,PTGS2,RAF1,SRC,STAT3, 
VEGFA

2.03E- 
27

hsa05207 Chemical carcinogenesis-receptor 
activation

24 ADRB2,AKT1,AR,CCND1,CHRNA7,CYP1A1,CYP1A2,EGFR,ESR1,MTOR,HSP90AA1, 
JAK2,NFKB1,PIK3CA,PIK3CB,PIK3CD,PRKCA,MAPK1,MAPK3,MAP2K1,RAF1,SRC, 
STAT3,VEGFA

1.51E- 
26

hsa04510 Focal adhesion 23 AKT1,CCND1,EGFR,FLT4,IGF1R,ITGB3,KDR,MET,MYLK,PDGFRB,PGF,PIK3CA, 
PIK3CB,PIK3CD,PRKCA,MAPK1,MAPK3,MAPK8,MAP2K1,PTK2,RAF1,SRC,VEGFA

1.76E- 
25

hsa04015 Rap1 signaling pathway 23 AKT1,MAPK14,EGFR,FGFR1,FLT4,IGF1R,ITGB3,KDR,KIT,MET,PDGFRB,PGF,PIK3CA, 
PIK3CB,PIK3CD,PRKCA,MAPK1,MAPK3,MAP2K1,RAF1,SRC,TEK,VEGFA

3.64E- 
25

hsa05163 Human cytomegalovirus infection 23 AKT1,CCND1,CASP3,CCR3,MAPK14,EGFR,MTOR,CXCR2,ITGB3,NFKB1,PIK3CA, 
PIK3CB,PIK3CD,PRKCA,MAPK1,MAPK3,MAP2K1,PTGS2,PTK2,RAF1,SRC,STAT3, 
VEGFA

1.62E- 
24

hsa04933 AGE-RAGE signaling pathway in 
diabetic complications

22 AKT1,CCND1,CASP3,MAPK14,F3,ICAM1,JAK2,MMP2,NFKB1,SERPINE1,PIK3CA, 
PIK3CB,PIK3CD,PRKCA,PRKCD,MAPK1,MAPK3,MAPK8,SELE,STAT3,VEGFA,NOX4

1.39E- 
30

hsa05208 Chemical carcinogenesis-reactive 
oxygen species

22 ABL1,AKT1,MAPK14,CYP1A1,CYP1A2,EGFR,MET,NFKB1,PIK3CA,PIK3CB,PIK3CD, 
PRKCD,MAPK1,MAPK3,MAPK8,MAP2K1,PTK2,PTPN11,RAF1,SRC,VEGFA,NOX4

4.01E- 
23

hsa05215 Prostate cancer 21 AKT1,AR,CCND1,EGFR,FGFR1,MTOR,HSP90AA1,IGF1R,MMP3,MMP9,NFKB1, 
PDGFRB,PIK3CA,PIK3CB,PIK3CD,PLAT,PLAU,MAPK1,MAPK3,MAP2K1,RAF1

2.86E- 
29

hsa04062 Chemokine signaling pathway 21 AKT1,CCR3,HCK,CXCR1,CXCR2,JAK2,LYN,NFKB1,PIK3CA,PIK3CB,PIK3CD,PIK3CG, 
PRKCD,MAPK1,MAPK3,MAP2K1,PTK2,RAF1,SRC,STAT3,CCR2

4.73E- 
23

hsa01521 EGFR tyrosine kinase inhibitor 
resistance

20 AKT1,AXL,EGFR,MTOR,IGF1R,JAK2,KDR,MET,PDGFRB,PIK3CA,PIK3CB,PIK3CD, 
PRKCA,MAPK1,MAPK3,MAP2K1,RAF1,SRC,STAT3,VEGFA

2.73E- 
29

hsa04926 Relaxin signaling pathway 20 AKT1,MAPK14,EGFR,MMP1,MMP2,MMP9,MMP13,NFKB1,NOS2,PIK3CA,PIK3CB, 
PIK3CD,PRKCA,MAPK1,MAPK3,MAPK8,MAP2K1,RAF1,SRC,VEGFA

5.76E- 
25

hsa01522 Endocrine resistance 19 AKT1,CCND1,MAPK14,EGFR,ESR1,MTOR,IGF1R,MMP2,MMP9,PIK3CA,PIK3CB, 
PIK3CD,MAPK1,MAPK3,MAPK8,MAP2K1,PTK2,RAF1,SRC

1.42E- 
25

hsa04066 HIF-1 signaling pathway 18 AKT1,EGFR,MTOR,IGF1R,NFKB1,NOS2,SERPINE1,PIK3CA,PIK3CB,PIK3CD,PRKCA, 
MAPK1,MAPK3,MAP2K1,SLC2A1,STAT3,TEK,VEGFA

4.73E- 
23

hsa04917 Prolactin signaling pathway 16 AKT1,CCND1,MAPK14,ESR1,JAK2,NFKB1,PIK3CA,PIK3CB,PIK3CD,MAPK1,MAPK3, 
MAPK8,MAP2K1,RAF1,SRC,STAT3

5.56E- 
23
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Fig. 6. Results of KEGG pathway enrichment analysis. (A) The bubble diagram for the top 20 pathways in the KEGG enrichment analysis. (B) The 
KEGG type of the top 20 pathways. (C) The KEGG enrichment analysis sankey diagram for the JBOL anticipated targets in the anti-IPF. The KEGG 
pathways are symbolized via the right rectangle nodes in the sankey diagram, the anticipated targets via the left rectangle nodes, and the interaction 
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and initial conformation during the MD simulation. As shown in Fig. 10. The protein structures of peimine-MTOR and apigenin-MMP9 
were stable after 40 ns, cryptotanshinone- AKT1 remained more stable after 60 ns, which signified the protein structure of three 
complexes showed a slight modification, but the bindings were mostly stable. The fact that the RMSD curve was not disrupted indi-
cated that the core chemicals might remain tightly linked to screened proteins throughout the simulation without separating from the 
protein pocket.

The quantity of hydrogen bonding in the protein-compound interactions assessed the binding strength, the strongest and most 
dense hydrogen bonds were found in peimine-MTOR among them. According to MM/PBSA calculations, binding free energy repre-
sents the stability and variation of ligand and binding protein properties. The total binding free energies of peimine-MTOR, 

between the target and the pathway with the lines. The right side is a conventional bubble diagram. The bubble size represents the number of genes 
to which the pathway belongs, and the bubble color represents the p-value.

Fig. 6. (continued).
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cryptotanshinone-AKT1, and apigenin-MMP9 were − 37.78, − 33.36, and − 21.44 kJ/mol, respectively. Peimine-MTOR exhibited the 
lowest binding free energy and the maximum binding intensity, in agreement with the outcomes of molecular docking and dynamic 
simulation.

Fig. 7. The ingredients-disease-target-pathway network of JBOL in ant-IPF. The green rhombus nodes represent the targets, the lavender hexagon 
nodes represent the herb, the pink circle nodes represent the ingredients, orange circle nodes represent the common ingredients, the purple octagon 
nodes represent the pathways.

Fig. 8. Heat map of Molecular docking binding energy.
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4. Discussion

The development of pulmonary fibrosis is associated with the stimulation of inflammatory cytokines and the promotion of the 
epithelial-mesenchymal transition (EMT), which are both aided by the significant upregulation of alveolar epithelial cells and vascular 
endothelial cells in hyperplastic during the course of IPF [37]. Moreover, it involves the following: angiogenesis, oxidative stress, 
extracellular matrix deposition, insufficient autophagy, immune response misaligned, imbalance of the coagulation and fibrinolysis 
systems, etc. [38]. In some instances, the above-mentioned provides future directions of treatment, prevention in clinical practice of 
anti-fibrosis. Modern medicine has not by any means clarified the pathophysiology of IPF. Patients still have unmet medical demands 
despite the wide range of conventional medication alternatives available for the management of IPF because they don’t feel satisfied 

Fig. 9. Molecular docking mode of core targets and screened active ingredients: Apigenin-MMP9 (A), baicalein-MMP9 (B), cryptotanshinone-AKT1 
(C), cryptotanshinone-MTOR (D), kaempferol-MMP9 (E), liquiritigenin-MMP9 (F), peimine-MTOR (G), wogonin-MMP9 (H).
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with their treatment or stick with it. The application of TCM, particularly with regard to the use of herbs or extracts from them, has 
garnered significant attention in the wake of its exceptional efficiency in treating COVID-19. TCM classifies the IPF into two categories: 
“pulmonary flaccidity” and “pulmonary arthralgia” [39]. The pathophysiology of “pulmonary flaccidity” and “pulmonary arthralgia” 
is described in ancient medical literature as being characterized by an embodied deficiency of vital qi, blood and qi stagnation, and 
phlegm stasis blocking [40]. The principles of TCM include replenishing qi and nourishing yin, activating blood and dredging col-
laterals, and resolving phlegm and masses as the entry point to resist IPF.

On the other hand, there are rarely any reports on the range of TCM preparations that have obvious advantages in treating IPF. 
JBOL is a hospital prescription that was developed based on clinical experience. It possessed the advantage in therapy of pulmonary 
interstitial fibrosis and acute lung injury, some of which benefits include replenishing qi and nourishing yin, clearing heat and 
detoxifying and relieving cough, and resolving phlegm. Prior multi-center clinical trials have demonstrated that JBOL provides unique 
clinical treatment advantages with a notable improvement in lung function indicators and blood gas analysis, suggesting that JBOL 
might be an additional therapeutic scheme option for the treatment of IPF. A prior study revealed that JBOL prevented the production 
of inflammatory factors, which in turn helped to ameliorate bleomycin-induced IPF in rats. Anti-IPF was also validated by JBOL 
inhibiting EMT in vitro experiment [41] and downregulating the expression of ERK1/2, JNK, and p38 by decreasing phosphorylation 

Fig. 9. (continued).
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[42]. All these results indicate that JBOL plays a critical role in anti-IPF with multiple components and pathways. Nevertheless, data 
mining and experimental validation are still required for active components and mechanisms. It is critical for the determination of the 
key indicators to ensure their safety and efficacy in clinical use. In order to lay the groundwork for more investigation into the function 
mechanism, this research aims to tentatively forecast the potential active components and mechanisms based on realistic constituents 
of JBOL in anti-IPF using biological methodologies and analysis. In the meanwhile, it also contributes to offering a point of reference 
for the determination of the quality control index and formulation’s optimization.

Based on 118 components found in earlier studies, 34 active components were selected for this research, and the key targets were 
taken via the SwissTargetPrediction and TCMSP databases. 1169 IPF-related targets were obtained from OMIM, DisGeNET, and 
GeneCards databases, and 122 component-IPF targets were determined with intersection. We screened out the top 8 potential active 
ingredients by analyzing rank of degree value in the herb-compound-target network, including kaempferol, apigenin, methylnissolin, 
baicalein, liquiritigenin, phellopterin, peimine, cryptotanshinone.

Fig. 9. (continued).
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Kaempferol is one of the core ingredients existed in 5 herbs of JBOL, which exhibited a wide range of inhibition on the expression of 
fibrosis-related genes in transforming growth factor beta 1 (TGF-β1) and triggered the process of EMT by reversing the expression of 
α-SMA and E-cadherin [43,44]. Previous in vitro experiments have shown that kaempferol inhibits TGF-β1-induced fibroblast prolif-
eration and myofibroblast differentiation by promoting the AMPK/PPAR-γ pathway, which in turn reduces excessive collagen pro-
duction and the formation of scar tissue in fibrotic conditions [45]. Additional diverse pathways, like the TGF-β/Smad and 
Wnt/β-catenin pathways, were implicated in the anti-fibrosis process [46]. Moreover, kaempferol could prevent the formation of 
inflammatory cytokines and regulate autophagy to have an anti-fibrosis effect [47]. Recent studies have shown that kaempferol in-
fluences the progression of organ fibrosis through the bone morphogenic protein 7-Smad1/5, Notch pathways, and autophagy [48], 
respectively.

Apigenin is a significant member of the flavonoid family with anti-fibrosis and anti-inflammatory characteristics. At the same time, 

Fig. 9. (continued).
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the exact mechanism of apigenin in inhibiting lung fibrosis and inflammation has not yet been articulated. It is involved in Salvia 
miltiorrhiza Bge; Lonicera japonica Thunb; Scutellaria baicalensis Georgi; Codonopsis pilosula (Franch.) Nannf in JBOL. Phosphorylated 
p65 levels were downregulated by apigenin, which also reduced the expression of pro-inflammatory cytokines such as caspase-3, 
interleukin-1β (IL-1β), TNF-α and TGF-β that were motivated by lipopolysaccharide (LPS) [49]. Numerous investigations have 
demonstrated that oxidative stress plays a major role in the progression of lung fibrosis. TGF-β, a powerful fibrosis promoter, was 
produced in a condition of high oxidation. Apigenin can decrease TGF-β expression in a concentration-dependent way and lessen the 
accumulation of collagen [50]. In short, it can prevent lung cells from experiencing oxidative stress and fibrosis cytokines [51]. Yet, 
further experimental validation is required to confirm the active mechanism of apigenin due to its low levels of solubility in vitro and 
bioavailability in vivo. Zhang J. et al. [52] looked examined the utilization of apigenin loaded in a biodegradable carrier (apigenin-NP) 
to treat pulmonary fibrosis and found that it could dose-dependently arrest cells in the G0/G1 phases.

Baicalein is a common plant flavonoid with a variety of advantageous pharmacological characteristics, including anti- 
inflammatory, antioxidative, anti-apoptotic, pro-immunoregulatory functions. Sun [53] investigated that baicalein inhibited the 
differentiation of lung fibroblasts into myofibroblasts via downregulating the levels of Col1a1 and CTGF. In addition, baicalein 
significantly improved the proliferation and activation of NIH/3T3 by alleviating TGF β1-induced type I collagen [54]. EGFR and AKT1 
are indispensable targets for anti-IPF, while peimine could suppress the phosphorylation of EGFR, PI3K, and AKT1 to inhibit fibroblast 
activation [55]. Yuan et al. [56] demonstrated that baicalein arrests the development of pulmonary fibrosis by suppressing the 
TGF-β1/Smad signaling pathway by downregulating the BLM-induced of lung Sirt3 expression. In addition, it also attenuated markedly 
mRNA levels of profibrotic senescence-associated secretory phenotype (SASP) factors, including MCP-1, PAI-1, TNF-a, MMP-10 and 
MMP-12 to relieve the senescence of lung fibroblasts.

Major tanshinone derived from Salvia miltiorrhiza Bge is identified as cryptotanshinone. According to recent research, cryptotan-
shinone inhibits the expression of COL1A1 and α-SMA, which provides the effects of anti-inflammatory, anti-angiogenesis, and anti- 
lymphangiogenesis in addition to preventing atherosclerosis and Alzheimer’s disease [57,58], but also exerts multiple effects on 
anti-inflammatory, anti-angiogenesis, and anti-lymphangiogenesis through inhibiting the expression of α-SMA, collagen-I And the 
phosphorylation level of Stat3 also participate in anti-IPF [59]. To put it briefly, the aforementioned components are speculated to be 
the material basis of IPF.

The above-mentioned studies stated that screened ingredients are closely linked with JBOL in anti-IPF. Additionally, three core 
components were found in Salvia miltiorrhiza Bge and Astragalus membranaceus (Fisch.) Bge, and two key components involved in 
Scutellaria baicalensis Georgi, Lonicera japonica Thunb, and Glycyrrhiza uralensis Fisch, respectively. The herb-component-target 
network predicts that Astragalus membranaceus (Fisch.) Bge and Salvia miltiorrhiza Bge are essential groups in JBOL and correspond 
to the IPF therapeutics in TCM, which followed the principles of tonifying the spleen to nourish qi and promoting blood circulation to 
remove blood stasis. Thus, we anticipate that the network conclusion will serve as a guide for JBOL compatibility and dosage 
optimization.

We performed GO and KEGG enrichment analysis to investigate the mechanism of JBOL in the treatment of IPF. Numerous bio-
logical processes, including as protein phosphorylation, signal transduction, drug reaction, inflammation, and apoptosis, were iden-
tified by GO functional analysis as being connected to the effects of JBOL in anti-IPF. Cell senescence, inflammatory response, 
autophagy, and immune-related pathways, which focused on the AGE-RAGE, PI3K-Akt signaling pathway, and EGFR tyrosine kinase 
inhibitor resistance were among the enriched targets.

Based on accumulating data, the EGFR-ligand system was crucial in the irreversible lung tissue scarring. In the meantime, the EGFR 
receptors and ligands were found to be overexpressed in IPF lungs [60]. It has already been demonstrated that the stimulation of 
fibroblasts with TGF-β1 elevates the expression of various EGFR ligands, such as AREG, EREG, and HB-EGF, which in turn increases cell 
proliferation and the expression of profibrotic genes. These effects were reversed by the treatment of TGF-β1-stimulated fibroblasts 
with AREG siRNA or EGFR inhibitors [61]. Moreover, several reviews indicate that the EGFR signaling cascade is upregulated in lung 
fibroblasts from patients with IPF [62]. The EGFR pathway promotes fibrosis by phosphorylating EGFR, which in turn stimulates a 
number of downstream signaling pathways, such as PIK3/Akt pathway, PLC pathway, STAT pathway, and MAPK pathway [63]. 
Previous research has demonstrated that the activity of EGFR in pulmonary fibrosis can be restricted through decreasing the expression 
of TGF and VEGF/PDGF/FGF1 receptors [64], which in turn decreases collagen synthesis and ECM deposition [65], and inhibiting 

Table 4 
Molecular docking results and interaction analysis for identified compounds.

Ligands 
Compounds

Receptor 
Protein

PDB 
ID

Hydrogenbonds Hydrophobic interaction E. 
kcal⋅mol− 1

peimine MTOR 4DRI TYR-57, ARG-73 TRP-2102, TRY-2105, PHE-77, ILE-87, VAL-86, PHE- 
2039, PHE-2108

− 11.1

cryptotanshinone AKT1 4EJN SER-205 LYS-268, LEU-264, TYR-272, VAL-270 − 11.0
cryptotanshinone MTOR 4DRI SER-2035 PHE-77, PHE-2039 − 10.4
apigenin MMP9 4WZV ALA-189 VAL-223 − 10.4
kaempferol ALA-189, GLU-227 VAL-223 − 10.2
baicalein LEU-188, ALA-189, MET-247, 

PRO-246
VAL-223 − 10.1

liquiritigenin ALA-189, TYR-248 VAL-223, LEU-188 − 10.0
wogonin ALA-189 VAL-223 − 9.7
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fibroblast proliferation.
Abnormal activation of EMT in IPF is associated with accelerated aging, which is the key to changes in wound healing [66]. The 

advanced glycation end-products (AGEs) have been proposed as markers of oxidative stress and aging. AGEs were proven to postpone 
the wound healing of epithelial cells and TGF-β1 synthesis in vitro studies, and their ligand RAGEs decrease led to AGEs accumulation. 
All of these findings indicated that the formation and progression of IPF is caused by an imbalance between AGEs and RAGEs [67], 
which are correlating with the upward regulation of the AGEs-RAGEs pathway.

The PI3K/AKT signaling pathway has been significant in the intracellular regulation of cell growth, proliferation, autophagy, 
metabolism, and apoptosis, and it has been identified as a hotspot route in IPF [68,69], which play an important role of cellular 
proliferative and migration [70], cell adhesion [71]. The activation of the PI3K/AKT pathway accelerates the overexpression of α-SMA 
and TGF-β leading to the formation of pulmonary fibrosis [72]. In addition, it promotes pulmonary fibrosis by upregulating its 
downstream cytokines including mTOR and HIF-1alpha, to regulate inflammatory immune response, induces EMT and ECM deposition 

Fig. 10. Molecular dynamics simulation of peimine-MTOR, cryptotanshinone-AKT1, and apigenin-MMP9. (A) RMSD values extracted from the 
protein-ligand docked complexes. (B) H bond formation among peimine-MTOR, cryptotanshinone-AKT1, and apigenin-MMP9.
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[73,74]. In addition to regulating the biological processes associated with IPF alone, the pathophysiology of IPF involves a range of 
interaction and crosstalk with signaling pathways, such as TGF, VEGF, WNT, mTOR, Jun N-terminal kinase, CTGF, Hedgehog, and 
Notch pathway [75]. Recent studies suggest that the suppression of PI3K/Akt signaling pathway induces the down-regulation of 
HIF-1α and VEGF expression in lung tissue, which in turn interfere with angiogenesis and the IPF process [76]. It is necessary to 
confirm our hypothesis that these pathways play an essential part in the JBOL therapy mechanism in IPF.

To explore the potential molecular mechanism of JBOL in the treatment of IPF and verify the prediction results of network 
pharmacology, molecular docking studies, and molecular dynamic simulation were performed with core bioactive components and 
targets based on the outcome of the herb-active ingredient-target network and PPI network. The results of docking suggested that the 
components exhibited a satisfactory affinity with the key target proteins. These compounds and targets might contribute to the 
therapeutic effects of JBOL in IPF. Peimine-MTOR is among the compounds with the lowest binding affinities groups.

To identify the active components and putative signaling pathways in this study, we first performed data mining analysis based on 
the actual measurement of 118 components and merged it with the quantitative analysis of chemical components in JBOL, and the 
outcomes of the bioinformation analysis were more rational. However, it should be pointed out that there are still some limitations in 
this research. As we all know, there are large discrimination of effects for the content and efficacy of active ingredients with different 
processing specifications and combinations [77]. For example, Pinellia ternata (Thunb.) Breit has some other artillery products but is 
not distinguished in SwissTargetPrediction and other traditional Chinese medicine information databases. Consequently, it is essential 
to screen accurately for each artillery drug via scientific verification. On the other hand, the accuracy and timeliness of the chemical 
library need to be updated, such as the amount of evidence for toxicological mechanisms is insufficient, which may lead to biases in the 
analysis results. Our research findings will be further validated in pharmacodynamic and molecular biology experiment in the 
following time.

5. Conclusion

In this study, we firstly forecasted an investigation of main active ingredients and prospective mechanisms in JBOL for the therapy 
of IPF, which utilizing network pharmacology, molecular docking, and molecular dynamic modeling, etc. Effect mechanism of JBOL in 
anti-IPF was concerned with decreasing autophagy, inflammatory, immunological response, and cell senescence through AGE-RAGE 
signaling pathway, EGFR signaling pathway, PI3K-Ak signaling pathway, and etc. In summary, we reviewed how JBOL exerted its 
therapeutic effects on anti-IPF through multi-target and multi-pathway in accordance with the core ingredients and signaling pathways 
predicted. Bioinformatics techniques were used to investigate the potential mechanism, providing the theoretical foundation for 
experimental research. The study has indicated where additional research should be performed in order to confirm the quality in-
dicators and optimize the preparation technology. Numerous studies indicate that machine learning has been increasingly popular in 
recent years and has applications in a variety of fields, including biology, medicine, and healthcare [78,79]. This inspires us to combine 
this strategy with experiments to obtain additional verification. From a clinical application standpoint, only few research has verified 
that TCM compound preparation is feasible to enhance the clinically therapeutic effect of IPF, JBOL has enhanced the efficacy of IPF 
treatment and raised patient acceptance by decreasing adverse events. Based on extensive studies investigating, the future research 
should focus on the clinical applications, including determining optimal dosages, conducting clinical trials to explore the absorption, 
distribution, metabolism and elimination in the human body, as well as the safety and efficacy in the treatment of IPF. With the 
advantages of IPF treatment in multi-target and multi-pathway, JBOL, a novel TCM preparation, present a promising frontier in IPF 
therapy, and we supposed that conventional therapy assisted the application of phytopharmaceuticals would provide an option for 
reducing IPF symptoms, which could be a supplementary and alternative therapy.
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Appendix

Component abbreviation Molecule ID

A MOL000114
B1 MOL000414
B2 MOL000422
C1 MOL000417
C2 MOL000392
D MOL001780
E MOL000008
F MOL000040
G MOL001942
H MOL000105
I MOL010870
J1 MOL000173
J2 MOL002714
K MOL002929
BSS1 MOL001953
BSS2 MOL002644
C1 MOL000417
C2 MOL000392
CBM1 MOL004451
CBM2 MOL009582
CBM3 MOL004445
CX1 61361(PubChemid)
DanS1 11425923(PubChemid)
DanS2 MOL000041
DanS3 MOL007154
DanS4 MOL007088
DanS5 MOL007157
DG1 MOL003875
GC1 MOL001789
GC2 MOL001792
HQ1 14077830(PubChemid)
HQ2 MOL000390
HQ3 101679160
HQIN1 MOL002919
HQIN2 MOL002928
LQ1 MOL003330
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