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A B S T R A C T

Relapse to smoking after initial abstinence is a major clinical challenge with significant public health con-
sequences. At the brain and behavioral level, those who relapse to tobacco smoking have both greater cue-
reactivity and lower inhibitory control than those who remain abstinent. Little is known about neural activation
during inhibitory control tasks in the presence of drug-related cues. In the current study, tobacco smokers (SMK;
n= 22) and non-smoking controls (CON; n= 19) completed a Go/NoGo task involving smoking cues during a
functional magnetic resonance imaging (fMRI) scan. Following the scan session, smokers were required to quit
smoking, and maintenance of abstinence was evaluated as part of a 12-week smoking cessation trial. We
evaluated pre-cessation brain activity during NoGo trials in smokers who were versus were not able to quit
smoking. We then compared fMRI and inhibitory control measures between smokers and non-smokers. We did
not find differences between SMK and CON in performance or activation to smoking or neutral cues. However,
compared to SMK who relapsed, SMK who attained biochemically-validated abstinence at the end of the smoking
cessation trial had greater neural activation in the anterior insula during NoGo trials specifically with smoking-
related cues. Results indicate that within SMK, decreased inhibitory control activation during direct exposure to
drug-related stimuli may be a marker of difficulty quitting and relapse vulnerability.

1. Introduction

Several models highlight the role of impaired inhibitory control in
the development and maintenance of addiction. The ‘Inhibitory Control
Dysfunction’ theory states that response inhibition, defined as the
ability to adaptively suppress behavior (Groman, James, & Jentsch,
2009), is impaired in those who are addicted. The ‘Incentive Salience’
theory of addiction (Berridge & Robinson, 1998) states that with re-
peated exposure to drugs, neural systems become sensitized to certain
drug-related stimuli, which become ‘salient’ or ‘attention-grabbing’ to
the user. These theories are complementary, in that poor response in-
hibition is often associated with difficulty resisting the desire to con-
sume a substance, especially when exposed to highly salient substance-
related cues (Dawe, Gullo, & Loxton, 2004).

Few studies have evaluated neural activation during inhibitory
control tasks in the presence of drug-related cues (Froeliger et al., 2017;
Goldstein et al., 2007; van Holst et al., 2012). A recent report in two
cohorts of smokers found that greater activation in inhibitory control

circuitry (e.g. right inferior frontal gyrus) was associated with quicker
relapse to smoking (Froeliger et al., 2017), indicating that the in-
vestigation of neural response to inhibition may be a potential marker
to determine whether a patient is likely to attain long-term abstinence.
We designed and administered a smoking-related Go/NoGo task to be
administered during functional magnetic resonance imaging (fMRI), to
investigate the neural mechanisms underlying inhibitory control during
exposure to smoking cues. Participants were instructed to respond as
quickly as possible to frequently occurring ‘Go’ stimuli, and inhibit
responses to infrequent ‘NoGo’ stimuli. Variants of this task have been
widely used in neuroimaging studies, and a distributed network of re-
gions underlying response inhibition, including the supplementary
motor area (SMA) (Humberstone et al., 1997; Kawashima et al., 1996;
Smith et al., 1998), dorsal and ventral frontal regions including the
inferior frontal gyrus (IFG) (Casey et al., 1997; Kawashima et al., 1996;
Konishi, Nakajima, Uchida, Sekihara, & Miyashita, 1998; Smith et al.,
1998; Tsujimoto et al., 1997), anterior cingulate (ACC) and insula
(Casey et al., 1997; Casey, Trainor, Orendi, & Schubert, 1996; Ponesse,
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1998; Smith et al., 1998), has been identified. Many of these same re-
gions underlie craving and addictive behaviors (Everitt & Robbins,
2005; Goldstein et al., 2007; Goldstein & Volkow, 2002; Grant et al.,
1996; Lee, Lim, Wiederhold, & Graham, 2005).

We investigated inhibitory control in the presence of smoking-re-
lated cues in tobacco smokers before they quit smoking and attempted
to remain abstinent as well as in matched non-smoking controls. We
aimed to determine whether brain activation during inhibition to
smoking or neutral cues was associated with relapse to smoking, and to
discover differences between smokers and non-smokers in brain acti-
vation when asked to inhibit a response to cues. As relapse vulnerability
is influenced by smoking-cue reactivity (Janes et al., 2010), under-
standing neurobiological mechanisms underlying inhibitory control to
smoking cues could inform mechanisms underlying risk of relapse.

2. Methods

This study was approved by Partners Human Subjects Committee.
All participants completed consent procedures prior to initiation of
study procedures and were compensated for their time.

2.1. Participants

Twenty-two otherwise healthy nicotine-dependent smokers (SMK)
were enrolled and evaluated prior to initiating a smoking cessation
attempt as a part of a smoking cessation clinical trial (MGH;
NCT01480232, PI: Evins and Fava). SMK met DSM-IV criteria for cur-
rent nicotine dependence, reported smoking at least 5 cigarettes per
day, and had a urine cotinine ≥30 ng/mL at baseline. Nineteen non-
smoking controls (CON) were also enrolled. Potential participants with
a substance-use disorder other than nicotine, positive ten-panel urine
screen for recent use of illicit drugs (Medimpex United Inc.), current
major depression, lifetime bipolar disorder or schizophrenia, or positive
pregnancy test were excluded.

2.2. Assessments

SMK were permitted to smoke prior to fMRI scan. Baseline smoking
was characterized with expired carbon monoxide (CO) and urine coti-
nine concentration, pack-years of tobacco smoking and cigarettes per
day in the seven days prior to baseline, severity of nicotine dependence
(Fagerstrom Test for Cigarette Dependence; FTND) (Heatherton, KL,
Frecker, & Fagerström, 1991), and craving (Tiffany Questionnaire of
Smoking Urges; TQSU) (Sanderson Cox STTL, 2001). Participants also
completed the six-item Minnesota Nicotine Withdrawal Scale (MNWS)
(Hughes & Hatsukami, 1986). Based on smoking status at the end of the
12-week trial, SMK were characterized as abstinent based on the fol-
lowing criteria: Self-report of 2-week abstinence using Timeline Follow-
Back (Harris et al., 2009), CO<10 ppm, and cotinine< 50 ng/mL.

2.3. Go/No-Go paradigm design and behavioral analysis

Inhibitory control was assessed using a smoking-related Go/NoGo
task, administered during an fMRI scan session, during which partici-
pants were presented with smoking or neutral images (Okuyemi et al.,
2006) (see Fig. 1). A single trial consisted of a stimulus presented for
900ms, followed by an inter-stimulus interval (ISI) of 100ms. Partici-
pants were instructed to press a button on a keypad as quickly as
possible every time they saw a different image (Go trial). If the image
was the same as the preceding one, participants were asked not to press
the button (NoGo trial). In total, the task took 15min and 12 s (over two
runs) to complete and was comprised of 800 trials (400 smoking and
400 neutral), presented in random order. Twenty trials (5%) in each run
were NoGo trials. The task was practiced at least once outside and in-
side the scanner or until a participant reached 100% accuracy. Accu-
racy (correct hits and correct inhibitions), and reactions times for hits

were recorded.

2.4. Acquisition and analysis of neuroimaging data

Participants were scanned using a 3 T Siemens (Erlangen, Germany)
Skyra scanner with a 32-channel head coil at the Martinos Center for
Biomedical Imaging. Whole-brain T1-weighted 1mm isotropic struc-
tural scans were collected using a 3D multiecho MPRAGE sequence
(176 sagittal slices, 256mm FoV, TR 2530ms, TI 1200ms, 2× GRAPPA
acceleration, TE 1.64/3.5/5.36/7.22 ms, BW 651 Hz/px, Tacq 6:03min)
(van der Kouwe, Benner, Salat, & Fischl, 2008). Functional scans were
collected using a 2D gradient echo EPI sequence (31 slices, 3 mm thick,
0.6 mm gap, 216mm FoV, 3mm2 in-plane resolution, TR 2 s, TE 30ms,
BW 2240 Hz/px). All acquisitions were automatically positioned using
AutoAlign (van der Kouwe et al., 2005). fMRI data processing was
carried out using FEAT (fMRI Expert Analysis Tool) Version 5.98, part
of the FSL fMRI processing stream (FMRIB's Software Library, www.
fmrib.ox.ac.uk/fsl). Each participant's functional and structural scans
were registered using FSL's linear registration tool (FLIRT), and then
these scans were registered to standard space images using both FLIRT
and FSL's nonlinear registration tool (FNIRT) (Jenkinson, Bannister,
Brady, & Smith, 2002; Jenkinson & Smith, 2001). Standard pre-pro-
cessing was applied. Higher-level group analysis was carried out using
FSL's non-parametric permutation method (FSL Randomise; Winkler,
Ridgway, Webster, Smith, & Nichols, 2014) with cluster-based thresh-
olding corrected for multiple comparisons using a cluster forming
threshold of z= 2.3 and a family-wise error corrected threshold of
p < .05. For all analyses, we used an anatomically defined ROI mask
comprised of the bilateral insula, IFG, dorsolateral prefrontal cortex
(DLPFC), dorsal medial PFC (DMPFC), orbitofrontal cortex, medial
prefrontal cortex (MPFC), striatum (nucleus accumbens, putamen,
caudate), thalamus, and amygdala (see Froeliger et al., 2017; Janes
et al., 2017a). The groups were compared on two primary contrasts:
inhibit trials for neutral images, and inhibit trials for smoking images.
Neutral and Smoking inhibit trials were also directly contrasted.

2.5. Region-of-interest (ROI) analyses: relation to smoking relapse

Beta weights for the smoking versus neutral image contrasts were
extracted from anatomical ROIs consisting of the (1) anterior insula,
and (2) right IFG, chosen a priori based on regions previously im-
plicated in inhibitory control and addiction (Feltenstein & See, 2008;
Garavan, Ross, & Stein, 1999; Koob & Volkow, 2010). All masks were
parcellated using validated landmarks (Gasic et al., 2009; Perlis et al.,
2008). Activation signal was extracted from each participant using the
FSL program, featquery (http://fsl.fmrib.ox.ac.uk/fsl/fsl4.0/feat5/
featquery.html). A linear regression controlling for FTND score was
calculated to evaluate whether fMRI signal in the anterior insula or
right IFG could predict whether smokers would relapse or remain ab-
stinent in the parent clinical trial.

3. Results

3.1. Participants

See Table 1 for participants' baseline demographic and clinical in-
formation. SMK and CON did not differ on basic demographic measures
(sex, age, education). Additionally, SMK who relapsed (n=12) and
those who remained abstinent (n= 10) did not differ on baseline
smoking-related measures (expired CO, cigarettes smoked per day, pack
years, nicotine dependence, craving and withdrawal).

3.2. Behavioral results

Across both CON and SMK, there was a main effect of Condition on
response accuracy (F=103.7, p < .001); participants made more
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errors on NoGo versus Go trials (Fig. 2A). There were no main effects of
Stimulus (smoking: M=0.59, SD=0.05, neutral: M=0.55,
SD=0.01, p= .73) or Group on response accuracy (SMK: M=0.76,
SD=0.24, CON: M=0.76, SD=0.21; p= .78). There was a main
effect of stimulus type on reaction time, F= 7.05, p= .01, indicating
that participants generally responded faster to smoking-related Go trials
than to neutral Go trials (Fig. 2B). No other significant effects were
found for reaction times. No significant correlations were found be-
tween Go-NoGo behavioral measures (i.e., accuracy and reaction time)
and smoking-related measures (e.g. FTND scores or end-of-treatment
abstinence) (all p-values > .10).

3.3. Neuroimaging results

After correcting for multiple comparisons using FSL's non-para-
metric permutation method (Winkler et al., 2014), there were no re-
gions that showed suprathreshold differences between smoking at
neutral cues in either SMK or CON. For activation observed from the
contrast of NoGo > Baseline trials in smoking and neutral trials, see
Table 2 and Fig. 3.

3.3.1. NoGo activation to neutral cues
In NoGo trials presenting neutral cues, CON and SMK showed

activation in the bilateral orbitofrontal cortex and bilateral insula. SMK
also showed significant activation in the right IFG. There were no re-
gions that showed significant differences between SMK and CON.

3.3.2. NoGo activation to smoking cues
In NoGo trials presenting smoking cues, CON and SMK both showed

activation in the right IFG. SMK also showed activation in the left
middle frontal gyrus and left nucleus accumbens. There were no regions
that showed significant differences between SMK and CON. When we
compared smoking to neutral images during NoGo trials, there were no
differences in the contrast of smoking vs neutral images in either group.

3.3.3. Association between brain activation during NoGo trials and relapse
to smoking
3.3.3.1. Anterior insula. Among SMK, after controlling for FTND scores,
those who maintained abstinence had greater activation during NoGo
smoking trials in both the left (β=−0.41, t=−2.27, p= .03), and
the right (β=−0.51, t=−2.50, p= .02) anterior insula (Fig. 4).
FTND scores were associated with activation in the left anterior insula
(β=−0.44, t=−2.42, p= .03) but not the right anterior insula
activation (β=−0.11, t=−0.54, p= .59). Activation to neutral
images in NoGo trials was not different between SMK who did and
did not relapse to smoking, and was not associated with FTND (p-

Fig. 1. Go/NoGo task. Participants were presented with a set of visual cues with smoking or control content. Participants were instructed to press a button on a keypad as quickly as
possible each time they saw a new image (GO trial). Participants were asked not to press any button when the image presented was identical to the preceding image (NO-GO trial). Two
separate runs of this task were completed.

Table 1
Characteristics of participants.

Controls (n= 19) Smokers (n= 22) p value

Abstinent (n= 10) Relapse (n= 12)

Sex (M/F) 9/10 8/2 8/4 N/A
Age (years) 39.63 (12.41) 35.00 (11.29) 42.25 (11.51) 0.15
Education (years) 15.68 (2.26) 13.90 (1.66) 14.83 (1.80) 0.22
WASI-II Vocabulary T Score 58.95 (12.59) 52.10 (6.42) 53.42 (8.06) 0.72
WASI-II Matrix Reasoning T Score 53.84 (14.26) 52.80 (12.71) 53.83 (8.12) 0.96
Expired CO (ppm) at baseline 2.26 (1.19) 15.80 (11.79) 25.92 (14.81) 0.10
Cigarettes/day at baseline – 15.85 (7.66) 21.46 (11.79) 0.21
Pack years – 17.30 (10.44) 23.92 (11.75) 0.18
FTND scores at baseline – 4.40 (1.90) 6.00 (2.83) 0.14
Age of daily smoking onset (years) – 15.50 (2.72) 17.17 (2.25) 0.13
Total craving score (TQSU) – 39.30 (14.72) 37.75 (11.26) 0.78
Withdrawal score (MNWS) – 4.60 (2.95) 3.75 (2.49) 0.47

Abbreviations: (F) female; (M) male; (WASI), Wechsler Abbreviated Scale of Intelligence, 2nd Edition; (CESD), Center for Epidemiological Studies-Depression; (CO), carbon monoxide;
(FTND), Fagerstrom Test for Nicotine Dependence; (TQSU), Tiffany Questionnaire of Smoking Urges; (MNWS), Minnesota Nicotine Withdrawal Scale.
Data are presented as mean values (SD in parentheses).
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values > .10).

3.3.3.2. Right IFG. Among SMK, end-of-study abstinence was not
associated with activation of the right IFG during NoGo smoking
trials (β=−0.78, t=−0.36, p= .75). FTND scores also did not
predict activation of the right IFG (β=−0.11, t=−0.54, p= .59).
Inhibitory control activation to neutral images also was not associated
with abstinence or with FTND (p-values > .10).

4. Discussion

Though poor response inhibition in individuals with substance use
disorder is associated with difficulties resisting the urge to use a sub-
stance, especially when exposed to highly salient substance-related cues
(Dawe et al., 2004), few studies have directly investigated the inter-
action between inhibitory control and cue reactivity. In the current
study, although both smokers and controls showed expected activation
in inhibitory control regions during exposure to neutral and smoking

cues, we did not find significant differences between the smoking and
control groups, and smoking vs neutral images did not yield significant
differences in activation in either group. However, we found activation
in the insula during inhibition to smoking cues to be associated with
likelihood of relapsing during 12weeks of smoking cessation treatment.
Decreased activation in the anterior insula during inhibitory control in
the presence of smoking-related cues may reflect potentiated relapse
vulnerability.

The insula has been consistently implicated in addictive behaviors.
The anterior insula in particular has emerged as a critical node in cir-
cuitry related to maintenance of tobacco addiction, as insula activity
has been consistently associated with cigarette craving (Brody et al.,
2007). In a similar cohort (NCT01480232), altered anterior insular
reactivity during passive viewing of smoking cues was predictive of
relapse (Janes et al., 2017b).

We suggest that less activation in the anterior insula during in-
hibition, particularly in the face of highly salient cues may underlie
impaired inhibitory control related to smoking behaviors. Smokers who
relapsed had less activation in the bilateral anterior insula, even after
adjusting for severity of nicotine dependence using the FTND scale. In
contrast, the right IFG, which is a critical region in inhibitory control
(Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003) but not often
implicated in nicotine addiction, did not show differential activation
between those who relapsed and those who remained abstinent.

We did not observe performance differences between smokers and
non-smokers with respect to accuracy or reaction time to either neutral
or smoking cues. Previous studies in smokers report mixed findings;
while some show no differences in inhibitory control behavior between
smokers and non-smokers (Dinn, Aycicegi, & Harris, 2004; Reynolds
et al., 2007), others have reported correlations between lower beha-
vioral inhibition and higher cigarette consumption (Galvan, Poldrack,
Baker, McGlennen, & London, 2011; Glass et al., 2009; McClernon,
Kozink, & Rose, 2008). As with behavioral differences, there is a lack of
consensus on whether differences in neural activation during inhibition
between SMK and CON exist. Though some studies report hypoactiva-
tion in smokers, particularly in the ACC, IFG, and the dorsolateral
prefrontal cortex (de Ruiter, Oosterlaan, Veltman, van den Brink, &
Goudriaan, 2012; Goldstein & Volkow, 2011; Luijten et al., 2014),
others have reported no group differences (Galvan et al., 2011). Larger
studies with standardized experimental designs may be able to better
determine the extent to which brain activity underlying inhibition is
impaired in smokers compared to controls.

It is important to note that unlike many previous cue-reactivity
studies (Balter, Good, & Barrett, 2015; McClernon et al., 2008;
McClernon, Kozink, Lutz, & Rose, 2009; Owens et al., 2017), we did not
observe significant differences in brain regions between smoking and

Fig. 2. A. Accuracy during the Go/NoGo task. There was a robust main effect of response type, F= 103.7, p < .001 showing that participants were less accurate when asked to inhibit
their response (NoGo trials). Overall task performance was not different in smokers and controls. There were also no main or interaction effects of stimulus type (smoking or neutral) on
accuracy of responding. B. There was a main effect of stimulus type on reaction time, indicating that participants generally responded faster to smoking-related Go trials than to neutral
Go trials. No other significant effects were found for reaction times.

Table 2
Activation during NoGo trials on Go-No/Go task.

HEM Region x y z Voxels p value

Neutral images
Controls
Left Frontal orbital cortex, insular

cortex
−28 20 −12 772 0.008

Right Frontal orbital cortex, insular
cortex

32 22 −16 762 0.009

Smokers
Right Inferior frontal gyrus 52 14 18 657 0.008
Left Frontal orbital cortex, insular

cortex
−30 16 −14 610 0.015

Right Frontal orbital cortex, insular
cortex

40 20 −14 517 0.042

Smoking images
Controls
Right Frontal pole, inferior frontal

gyrus
46 36 14 433 0.021

Smokers
Right Inferior frontal gyrus 48 18 18 803 0.001
Left Middle frontal gyrus −44 36 20 658 0.023
Left Nucleus accumbens −16 10 −6 622 0.027

p values generated using FSL's non-parametric permutation method (Randomise) with
cluster-based thresholding corrected for multiple comparisons using a cluster forming
threshold of z= 2.3 and a family-wise error corrected threshold of p < .05. All analyses
used an anatomically defined ROI mask comprised of the bilateral insula, IFG, orbito-
frontal cortex, MPFC, DLPFC, DMPFC, striatum (nucleus accumbens, putamen, caudate),
thalamus, and amygdala.
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neutral trials in either SMK or CON. There are at least three possible
explanations for this negative finding. First, the correction method used
in this paper is stricter than that used in many fMRI reports that have
shown these differences, and it is possible that previously significant
results in the literature would not have held up under nonparametric
corrections (see Eklund, Nichols, & Knutsson, 2016 of full explanation).
Second, it is now well-known that not all smokers are cue-reactive;
many factors, including self-reported nicotine dependence, prescan
withdrawal symptoms (craving and negative affect), gender effects
(McClernon et al., 2008), and even nicotine metabolism (Falcone et al.,
2016), can influence who is cue-reactive and who is not among smo-
kers. In a small sample size of 22 smokers, it is possible that not all
participants were cue-reactive, obscuring a significant finding. Finally,
it is possible that the smoking cues in this study were not appetitive
enough to elicit a significant brain response.

There are methodological limitations to the study. In our Go/NoGo
version, only 5% of stimuli were NoGo, which resulted in high error

rates in both groups during the task on NoGo trials. We designed the
task in this way to increase its difficulty and therefore maximize any
potential differences between SMK and CON. However, even with this
difficult version, behavioral inhibitory control on the Go/NoGo is likely
quite different than the behavioral control needed to abstain from
smoking in the real world. Furthermore, this limited number of NoGo
trials may have contribute to a lack of power to observe significant
findings.

In conclusion, results from the current study suggest that, while
brain activation during inhibition to smoking cues does not sig-
nificantly differ from inhibition to neutral cues, decreased activation in
the anterior insula to inhibition of smoking cues may be associated with
relapse among smokers attempting to remain abstinent.
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