
RESEARCH ARTICLE

Multiscale adaptive analysis of circadian

rhythms and intradaily variability: Application

to actigraphy time series in acute insomnia

subjects

Ruben Fossion1,2*, Ana Leonor Rivera1,2, Juan C. Toledo-Roy1,2, Jason Ellis3,

Maia Angelova4

1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico,
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Abstract

Circadian rhythms become less dominant and less regular with chronic-degenerative dis-

ease, such that to accurately assess these pathological conditions it is important to quantify

not only periodic characteristics but also more irregular aspects of the corresponding time

series. Novel data-adaptive techniques, such as singular spectrum analysis (SSA), allow for

the decomposition of experimental time series, in a model-free way, into a trend, quasiperi-

odic components and noise fluctuations. We compared SSA with the traditional techniques

of cosinor analysis and intradaily variability using 1-week continuous actigraphy data in

young adults with acute insomnia and healthy age-matched controls. The findings suggest a

small but significant delay in circadian components in the subjects with acute insomnia, i.e.

a larger acrophase, and alterations in the day-to-day variability of acrophase and amplitude.

The power of the ultradian components follows a fractal 1/f power law for controls, whereas

for those with acute insomnia this power law breaks down because of an increased variabil-

ity at the 90min time scale, reminiscent of Kleitman’s basic rest-activity (BRAC) cycles. This

suggests that for healthy sleepers attention and activity can be sustained at whatever time

scale required by circumstances, whereas for those with acute insomnia this capacity may

be impaired and these individuals need to rest or switch activities in order to stay focused.

Traditional methods of circadian rhythm analysis are unable to detect the more subtle

effects of day-to-day variability and ultradian rhythm fragmentation at the specific 90min

time scale.
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Introduction

Circadian rhythms are physical, mental and behavioral variations that follow an approximately

24-hour cycle. In the last few decades, it has become well established that most—if not all—

physiological systems obey regular circadian rhythms and these are largely controlled by a cen-

tral clock and several peripheral oscillators [1]. More recently, it has been observed that condi-

tions, such as “healthy” and pathological ageing, illness and medication use, can influence the

regularity and amplitude of the circadian rhythm. Consequently, the focus in the field of chro-

nobiology shifted from a description of periodic cycles to the quantification of irregularities

and the study of the mechanisms underpinning their disruption and normalization [2, 3].

One factor that has been shown to influence the sleep/wake circadian rhythm, albeit pre-

dominantly from data derived from animal studies [4–7], is poor psychological adjustment

(i.e. stress, anxiety and depression). When extrapolating these findings to humans, cross-sec-

tional observations have identified relationships between stress, anxiety and depression, and

circadian disruption [8, 9]. Surprisingly however, few studies have extended this research to

consider the role of stress-related sleep disruption (e.g., acute insomnia) in the relationship

between poor psychological adjustment and circadian dysregulation, despite an intimate rela-

tionship being observed between stress and the onset of insomnia [10–14]. One reason for this

may well be that although polysomnography (PSG) is considered the “gold standard” objective

measurement strategy in sleep research, the ability of PSG to detect circadian abnormalities

and, for that matter, insomnia is limited, due largely to practical reasons: its cost, coupled with

the number of nights of recording that would be required to differentiate “normal” night-to-

night variability in sleep/wake schedules from circadian disruption and insomnia. Similarly,

whilst other methods more specific to measuring circadian rhythms, such as core body tem-

perature and dim light melatonin onset (DLMO), offer a great degree of sensitivity, at a

reduced cost, they tend to lack ecological validity, which means that they can be used in the lab

but are more difficult to measure in ambulatory settings [15]. Moreover, the protocols used to

collect this data, which tend to be invasive, are likely to confound the measurements tradition-

ally used to quantify insomnia (e.g., difficulties initiating or maintaining sleep).

Actigraphy, the monitoring of physical activity patterns over many days up to several

weeks, has been used as a cheaper, non-invasive and ecologically valid method to study sleep-

wake patterns in humans. As such actigraphy may well be a more suitable method to examine

circadian abnormalities in individuals with insomnia. Where the American Academy of Sleep

Medicine (AASM) suggests actigraphy is not required for a diagnosis of insomnia, they do

consider it an optional method to examine suspected circadian disruptions in this population

[16, 17]. However, studies using actigraphy to determine whether circadian disruptions are a

general feature of insomnia have been largely inconsistent [18, 19]. There may be two reasons

for this lack of consistency: (i) either circadian disruption is not routinely a feature of insomnia

by the time it has become chronic, or (ii) the methodology, or more likely, the statistical

method of analysis, is not sensitive enough to identify small, albeit meaningful, levels of circa-

dian disruption should they exist. Certainly, one of the reasons that actigraphy is presently not

solely indicated for the diagnosis of any sleep disorder is due to problems identifying and elim-

inating artifacts in the data [20].

The traditional method to analyse circadian rhythms is cosinor analysis, which quantifies

the 24-hour (24h), and other periodic cycles, by means of examining the degree of “fit”

between the data and a user-defined model consisting of a superposition of cosine functions

[21, 22]. However, experimental data where the statistical properties vary over time (non-

stationary data), such as having a dominant trend [23–25], or time-varying amplitudes, fre-

quencies or phases [26–28], are much harder or impossible to describe using models based on
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these periodic functions. Another disadvantage of the cosinor method is that it is unable to

detect rhythm fragmentation. With this in mind, the traditional approach, particularly for the

analysis of actigraphy data, has been the measure of intradaily variability (IV), which is not

model-based and hence is a nonparametric method. IV quantifies the frequency and the

importance of transitions between periods of rest and activity, and for historical reasons is gen-

erally applied to hourly clustered data [2, 29, 30]. Although qualitatively different, the cosinor

method and the IV method can be seen as complementary, where the focus of the former is

the characterization of the 24h periodic aspects of the data, whereas the latter assesses the

degree of rhythm fragmentation. Recently, more specialized techniques have been developed

to study circadian rhythms (see Ref. [31] for a review). In particular, wavelets have been used

to study circadian rhythms of nonstationary data [27, 28]. Wavelets however are, as with cosi-

nor analysis, model based in the sense that the results obtained may depend on the particular

wavelet basis function selected by the user. While continuous wavelet transforms may need an

explicit prior detrending, discrete wavelet transforms are more effective in extracting time

series components.

In the broader context of time-series analysis applied to physiology, it has been found that

most physiological variables exhibit, what is often thought to be, spontaneous fluctuations.

However, these fluctuations are often not random but according to Fourier spectral analysis or

the more advanced detrended fluctuation analysis (DFA), behave as a fractal 1/f noise that

might reflect the harmonious contribution of a wide variety of biological processes at multiple

scales. Further, a breakdown of this power law often indicates an impoverishment where only

a few single dominant processes contribute. One of the best studied examples of physiological

time series is heart rate variability, where 1/f noise is interpreted as a reflection of youth and

health, and a departure from this power law is often a signature of increased health risk due to

ageing [32] or chronic-degenerative disease [33]. 1/f behaviour and its breakdown has been

studied in actigraphy data in previous studies applied to ageing and dementia [34–36].

A long-standing problem in time-series analysis is the presence in the data of the nonstatio-

narities mentioned above. The most recent developments in time-series analysis which take

account of these nonstationarities are data-adaptive techniques such as singular spectrum anal-

ysis (SSA) [37–41], empirical mode decomposition (EMD) [42, 43] and nonlinear mode

decomposition (NMD) [44, 45], which—with one rare exception [46]—have never been

applied in the analysis of circadian rhythms, but may be particularly useful for examining

sleep/wake circadian abnormalities in individuals with insomnia using actigraphy data. The

basic idea of these data-adaptive techniques is to decompose a time series as a sum of modes

that describe separately non-oscillating trend, (quasi-)periodic components and high-fre-

quency noise. These techniques are nonparametric because, in contrast to the classical Fourier

decomposition, the modes are not model dependent and do not need to be periodic sine or

cosine functions. Instead the modes are derived from the data itself, they are not limited to a

single time scale or a limited range of scales, but describe the data at all scales present. The lack

of accessible specialized software to carry out data-adaptive analysis is the likely reason that

these techniques, to date, have not been applied to circadian-rhythm research; fortunately, sev-

eral open-source implementations have recently become available in multiple platforms such

as Mathematica, MatLab, R, Python, etc., for SSA [47–50], EMD [51–54] and NMD [55]. Of

the data-adaptive methods mentioned, in the present work, we prefer SSA because of its close-

ness to standard Fourier spectral analysis and the availability of graphical tools such as the

scree diagram that can be interpreted as a generalization of the well-known Fourier power

spectrum.

The aim of the present study was to undertake, for the first time, a systematic analysis of cir-

cadian rhythms, using data-adaptive time-series analysis, in individuals with acute insomnia.
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SSA was applied to 1-week continuous actigraphy time series data in a sample of young adults

with acute insomnia compared to age-matched healthy controls. SSA was chosen on the basis

that it combines the different aspects of circadian analysis, ultradian rhythm fragmentation

and scaling analysis in one single consistent framework, and not only reproduces but also

improves the statistical results of the more traditional approaches. It was hypothesized that

there would be small but meaningful differences in the sleep/wake circadian and/or ultradian

rhythms between acute insomnia subjects and asymptomatic controls.

The paper is organized as follows. In the section Materials and Methods the details of the

data set are given and the data analysis methods of cosinor, intradaily variability (IV) and sin-

gular spectrum analysis (SSA) are explained. The Results section presents the analysis of the

1-week actigraphy series with cosinor, IV and SSA. In the Discussion section, we interpret the

results and we discuss the possible clinical implications. The results and interpretations are

summarized in the Conclusion section. Finally, in the Appendix, some technical details of the

SSA method are provided.

Materials and methods

Experimental actigraphy time series

We based our analysis on experimental actigraphy time series from the publicly available data

of the publication of Ref. [56] of some of the authors of the present article. The data collection

for the original analysis was approved by the University of Glasgow Ethics Committee. The

previous article compared day- and night-time physical activity patterns of acute insomnia

subjects with those of asymptomatic controls and included individuals of all age ranges. Acti-

graphy offers an objective measure of the level of physical activity using movement counts per

sample time interval. In modern devices the movement counts are usually taken per 30-second

or 1-minute basis, called “epochs”, but typically a whole range of sample intervals is possible,

from seconds to hours. In principle, resting and waking intervals can be distinguished as

absence or low levels of activity vs. high levels of movement, respectively. The data was

recorded with an Actiwatch device, worn at all times throughout day and night, for a period of

2 weeks. However, not all subjects completed the entire 2-week period; therefore, in the pres-

ent study, we decided to study 1-week continuous day-and-night actigraphy time series. Each

time series consists of activity counts, summed at P = 1min epochs. We focused on young

adults (18–40yo), including 23 asymptomatic controls (28yo ± 6, 7 males and 16 females) and

18 acute insomnia subjects (25yo ± 6, 5 males and 13 females).

Cosinor

The traditional method to study the periodic behaviour of circadian rhythms is cosinor analy-

sis [21, 22]. The cosinor approach is based on regression techniques and is also applicable to

equidistant or non-equidistant time series x(n) of N discrete data points,

xðnÞ ¼ fx1; x2; . . . xNg: ð1Þ

Given a specific value for period T, the procedure consists of fitting a continuous cosine func-

tion y(t) to time series x(n),

yðtÞ ¼ M þ A cos ð2pt=T þ �Þ: ð2Þ

When exposed to the normal day-and-night cycle, this period can be expected to be T� 24h.

Minimizing the summed square residual errors e2
n ¼ ðxn � ynÞ

2
for all data points n = 1, 2, . . .,

N, allows to find values for the parameters of the circadian cycle: the rhythm-adjusted mean or
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mesor M, the amplitude A and the phase ϕ. Here, ϕ indicates the height of the cosine wave at

the start of the monitoring; because each monitoring session can start at an arbitrary time of

the day, the phase ϕ does not give any physiological information on the monitored individual.

Instead, a more interesting variable is the acrophase ϕ0 which can be defined as the time of day

where the circadian cycle obtains its maximum, with respect to a fixed moment in time which

is the same for all subjects, e.g. taking midnight as a reference, and which can be expressed as

hours and minutes (hh:mm), or alternatively, as an angle (taking into account the relation

360˚ = 24hrs), relative to this reference time.

An important result in cosinor analysis is the coefficient of determination R2, which com-

pares the variance of the residual errors en around the fitted model y to the variance of the time

series x(n) around its average value hxi,

R2 ¼ 1 �
VarðeÞ
VarðxÞ

ð3Þ

¼ 1 �

PN
n¼1
ðxn � ynÞ

2

PN
n¼1
ðxn � hxiÞ

2
; ð4Þ

such that R2 is a measure for the fraction of the variance of the time series that can be explained

by the model y(t).

Intradaily variability

The cosinor approach is only applicable within very restrictive conditions where the data

behaves approximately as a cosine function, and any non-sinusoidality of the time series limits

the applicability of the method. There has been a lot of interest for alternative measures and

methodologies to quantify the characteristics of circadian rhythms independently from user-

defined functions and that therefore are called nonparametric. One popular nonparametric

measure, applied in particular to actigraphy time series, is intradaily variability (IV), proposed

in 1990 by Witting et al. [2] and reviewed recently in Ref. [29]. Because of limitations in avail-

able technologies when IV was originally proposed, the measure is traditionally applied to a

time series X(n) sampled at P = 60min intervals. It can be defined as,

IV ¼
VarðX 0Þ
VarðX Þ

¼

PN
n¼2
ðXn � Xn� 1Þ

2
=ðN � 1Þ

PN
n¼1
ðXn � hXiÞ

2
=N

;

ð5Þ

which corresponds to the variance of the derivative of the time series (differences of successive

time-series values X0(n) = Xn − Xn − 1 which fluctuate around zero, see Figs 5 and 6 in S1 File)

with respect to the variance of the time series X(n) around its mean hXi. IV is a measure of the

frequency and the importance of transitions between resting and activity periods, and how

much these transitions contribute to the total variance of the time series.

Since the measure IV was introduced, battery and memory capacity of actigraphy equip-

ment has improved in an important way such that data can be recorded at a wide variety of

sampling intervals P instead of only at epochs of P = 1h, such that the P = 60min interval con-

vention in itself has actually become a parameter. Any time series x(n), such as the one of

Eq (1), sampled originally at a high temporal resolution, e.g. P = 1min, can be resampled to

new times series XP(n) of lower temporal resolution using different sample intervals P> 1min.

In Ref. [30], it was found that considering intradaily variability IV(P) as function of the
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resampling interval P, i.e., IVðPÞ ¼ VarðX 0PÞ=VarðXPÞ; facilitated the comparison between dif-

ferent study populations; moreover, it was found that statistical differences between the differ-

ent populations can maximize for sample intervals P that do not necessarily correspond to the

arbitrary convention of P = 60min. Here, however, we argue that IV(P) is a composite func-

tion, where nominator VarðX 0PÞ and denominator Var(XP) can depend on P each in their own

way. Here, we redefine the function IV(P) as follows,

IVðPÞ ¼
VarðX 0PÞ
VarðxÞ

ð6Þ

using the variance of the original time series x(n), which is a constant, as the denominator,

such that IV(P) is a simple and unequivocal function of resampling interval P (Fig 7 in S1 File

compares different normalization conventions).

Singular spectrum analysis (SSA)

SSA has been discussed in detail in a number of textbooks [37–39], a short and very accessible

introduction can be found in Ref. [40], whereas a larger and very complete review article is

Ref. [41]. In brief, SSA can be explained as a 3-step process: (i) the time series is transformed

into a matrix which represents the underlying phase space of the time series, (ii) singular value

decomposition (SVD) is applied to decompose this matrix as a sum of elementary matrices,

or—equivalently—to decompose the original phase space in a superposition of “sub phase-

spaces”, and (iii) each of the elementary matrices or “sub phase-spaces” is transformed back

into a time-series component. Unlike Fourier analysis which expresses a time series as a sum

of predefined sine and cosine functions, SSA can be considered to be data-adaptive or model-
independent because the basis functions are generated from the data itself. It can be shown that

the sum of all time-series components is identical to the original time series. Below, a summary

is given of the most important outcomes of SSA analysis, whereas some technical details are

briefly discussed in the Appendix.

When applying SSA to a discrete time series x(n) with length n = 1, . . ., N, see Eq (1), a par-

ticular window length L must be chosen as an initial parameter, with 2� L� N/2, which

allows to fix the number of components r into which the time series will be decomposed,

xðnÞ ¼
Xr

k¼1

skgkðnÞ; ð7Þ

where gk(n) are time-series components, σk are singular values that serve as weights for the

components and r�min(K, L) with K = N − L + 1. Only (quasi-)periodicities with average

length T ≲ L will be resolved into separate time-series components, whereas those with lengths

T> L will be absorbed in the trend component. One can chose L as a multiple of the (average)

periodicity of the data, i.e. L = mT, where m is an integer number. In the case of circadian

data the obvious choice would be L = T = 24h = 1140min. It can be shown that in the limit for

L! N/2, SSA converges to Fourier spectral analysis [41], where a time series is always decom-

posed as the superposition of N/2 independent oscillators (Nyquist theorem). Whereas the

Fourier power spectrum of a quasiperiodic time series with average period T would corre-

spond to a broad gaussian peak around some central frequency f = 1/T, intuitively, it can be

understood that for an adequate choice of the parameter L the neighbouring Fourier compo-

nents of this broad gaussian peak can be “compressed” within a single SSA component.

One of the main results of SSA analysis is the so-called scree diagram that visually represents

the partial variances lk ¼ s2
k, ordered according to magnitude from the most to the least domi-

nant, where λk can be interpreted as the variance of the “sub phase-space” of time-series
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component gk(n) and where ltot ¼
Pr

k¼1
lk is the total variance of the phase space of the origi-

nal time series x(n). The dominant partial variance λ1, associated with component g1(n), usu-

ally corresponds to the trend. Dominant periodicities can be recognized as “steps” in the scree

diagram, i.e., two successive partial variances λk and λk+1 that are nearly degenerate and clearly

distinguishable from the neighbouring partial variances, and where the corresponding compo-

nents gk(n) and gk+1(n) are the Fourier equivalents of a sine and cosine function with the same

frequency. Higher-order partial variances λk tend to have values that decrease gradually and

continuously with k, indicating that at these scales it is impossible to distinguish any individual

time-series components gk(n) that can be assigned physical significance.

Results

Visual inspection of time series

In Fig 1, one week of continuous actigraphy measurement is compared for a specific control

subject and a subject with acute insomnia. In both cases, the night-time resting period can be

roughly recognized as a 6–8h interval of minimal physical activity. Comparing the visual

aspects of the time series shown, it can be observed that the control subject goes to bed and

gets up earlier than the acute insomnia subject, but the total duration of the resting period

appears to be similar between both subjects. A more subtle difference is that the time series of

the acute insomnia subject seems to be more “spiky” or intermittent, whereas the time series of

the control subject is characterized by more and longer intervals with continuous activity at a

more or less constant intensity level. In Fig 2, the average 24h actigraphy profile is compared

for the population of asymptomatic controls and the population of acute insomnia subjects.

Here, and in what follows, statistical significance was calculated using a Kruskal-Wallis non-

parametric test (IBM SPSS software version 22), with an a priori significance level of p = 0.05.

The average 24h profile shows significant differences between the two populations for the rest-

to-wake (07:22–09:01) and wake-to-rest transitions (23:01–24:00).

Cosinor

Values for the period T were calculated for each subject individually and were determined

in order to maximize the amplitude A of the cosinor fit of Eq (2) (see Fig 2 in S1 File). For

all subjects, period T� 24h, with a somewhat larger dispersion around the ideal period

T0 = 24h = 1440min for the subjects with acute insomnia than for the controls, but without sta-

tistical significance, see Table 1 and Fig 3. Subsequently, values for the other circadian parame-

ters were obtained by regression analysis: mesor M, amplitude A and phase ϕ, see Table 1 and

Fig 4. Also values for the coefficient of determination R2 and for the acrophase ϕ0 were calcu-

lated, see Table 1 and Fig 3. Mesor M, period T and amplitude A are constants. On the other

hand, when ΔT = T − T0 6¼ 0, these differences ΔT will accumulate day after day leading to a

linear delay (ΔT> 0) or advance (ΔT< 0) of acrophase ϕ0 as a function of time, see Fig 5.

Therefore, in Table 1 and Fig 3, 7-day average values are given for ϕ0. R2 values are slightly

larger for the control group than for the acute insomnia group, but without statistical signifi-

cance. All circadian parameters are similar for both populations with exception of the mean

acrophase ϕ0, see Table 1 and Fig 3, and indicates that the time of day with maximum activity is

significantly delayed with about 1.5hrs in acute insomnia subjects with respect to the controls.

Intradaily variability (IV)

In Fig 6, results are shown for the nonparametric measure of intradaily variability IV(P) as a

function of the sampling interval P, according to Eq (6), comparing the population of
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asymptomatic controls and the acute insomnia subjects. For both populations, there is a local

maximum near P = 500min; for the population with acute insomnia, there is another local

maximum near P = 20min. It should be noted that the time scales of these two relative maxima

fall outside of the scale P = 60min as considered traditionally for IV analysis. The variability of

the maximum at P = 500min is due to the circadian cycle of 24h which is the only oscillation

slow enough to be observed in units of P = 500min� 8hrs. The variability of the maximum at

Fig 1. 1-week continuous actigraphy time series. Shown for a specific control subject (female, 24yo, left-hand panels) and a subject with acute insomnia

(male, 22yo, right-hand panels). Shown for 7 successive days (24h per panel), from midnight till midnight, with vertical gridlines at 6h intervals at 00:00,

06:00, 12:00, 18:00 and 24:00 hours. Vertical scale is identical for both subjects, from 0 to 3000 movement counts per minute.

https://doi.org/10.1371/journal.pone.0181762.g001
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P = 20min for the population with acute insomnia is related to an ultradian variation with a

period that is a multiple of this particular sample interval. According to the Kruskal-Wallis

nonparametric test there are no significant statistical differences between both populations for

the measure IV(P).

Singular spectrum analysis (SSA)

All calculations have been carried out with parameter value L = 1440min, the results however

are largely independent of the specific value of L. An important result in SSA analysis is the

scree diagram of ordered fractional partial variances λk/λtot which graphically represents the

relative importance of each of the time-series components in the original time series. A scree

diagram is usually represented in log-log scale, see Fig 7, and in the present case one can distin-

guish a dominant λ1/λtot corresponding to a non-oscillating trend or mesor component g1(n),

then—one order of magnitude below—come λ2/λtot and λ3/λtot with very similar values corre-

sponding to the periodic time-series components g2(n) and g3(n) that together constitute the

circadian rhythm, and finally—again one order of magnitude below—a long tail k� 4 of

smaller fractional partial variances λk/λtot with gradually diminishing values that correspond

to time-series components gk(n) at ultradian time scales (see Figs 8 and 9 in S1 File for a graph-

ical representation of some of these time-series components where the average period has

Fig 2. Mean 24h profile of actigraphy time series. Averaged over 7 days and over all control subjects (blue curve) and over all

subjects with acute insomnia (red curve). Vertical gridlines at 6h intervals. Significant (p < 0.05) minute-to-minute differences are

observed between the 2 groups for rest-to-wake (07:22–09:01) and wake-to-rest (23:01–24:00) transitions (orange shading).

https://doi.org/10.1371/journal.pone.0181762.g002

Table 1. Parameters of the circadian rhythm according to cosinor analysis.

Controls Acute insomnia p

T 1437 ± 20 1435 ± 22 0.733

M 216 ± 56 218 ± 63 0.895

A 178 ± 60 178 ± 61 0.979

mean(ϕ0) 232 ± 22 253 ± 27 0.017 (*)

15 : 28 ± 01 : 28 16 : 52 ± 01 : 48

R2 0.14 ± 0.06 0.12 ± 0.05 0.446

Period T (min), mesor M (1/min), amplitude A (1/min), 7-day average acrophase ϕ0 expressed in degrees (˚)

and in hours and minutes (hh:mm) after midnight, and coefficient of determination R2. Values given in the

table are the population average and the standard deviation. Statistical significance (*) is considered for

p < 0.05 according to a nonparametric Kruskal-Wallis test.

https://doi.org/10.1371/journal.pone.0181762.t001
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been calculated to corroborate the identification of a component being ultradian, circadian or

trend). Fractional partial variances of the mesor and the circadian components are similar for

the controls and the subjects with acute insomnia. Interestingly, in the case of the control sub-

jects, the fractional partial variances at the ultradian scales appear to follow a single power law

λk/ 1/kγ with γ� 1, for the whole range 0.78� log10(k)� 3.0. On the other hand, in the case

of the subjects with acute insomnia, this power law appears to be broken because of an

increased variability near k = 30 (or log10(k) = 1.5) corresponding to an average frequency

hfi = 1/60–1/90min, and results in a crossover behaviour between different power laws with γ1

at larger scales before the crossover (0.8� log10 k� 1.5) and γ2 at smaller scales after the

Fig 3. Circadian parameters according to cosinor analysis. Box-whisker plots for period T with respect to the ideal period of

T0 = 24h = 1440min (dashed horizontal line), and 7-day average acrophase ϕ0 (˚).

https://doi.org/10.1371/journal.pone.0181762.g003

Fig 4. Circadian component of actigraphy data. Shown for the control (upper panel) and the acute insomnia subject (bottom panel) of Fig

1. The circadian rhythm has been fitted using the model-based cosinor method according to Eq (2) (dashed curve) and the data-adaptive

SSA method using the periodic components g2(n) and g3(n) of Eq (7) (full curve). Vertical gridlines at midnight.

https://doi.org/10.1371/journal.pone.0181762.g004

Multiscale adaptive analysis of actigraphy time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0181762 July 28, 2017 10 / 21

https://doi.org/10.1371/journal.pone.0181762.g003
https://doi.org/10.1371/journal.pone.0181762.g004
https://doi.org/10.1371/journal.pone.0181762


crossover (1.6� log10 k� 2.0), see Table 2 and Fig 8. The differences in scaling behaviour

between controls and insomniacs are statistically significant, and for insomniacs also the

increased variability in the range hfi = 1/60–1/90min and the scaling parameters γ1 and γ2

before and after the crossover; these differences are valid at the level of the individual subjects

as can be seen from Fig 8.

The circadian cycle is well described by the periodic components g2 and g3, see Fig 4, and

according to the R2 measure the description is equally good for the controls as for the subjects

with acute insomnia, see Table 2. SSA describes the day-to-day variations in the circadian

parameters of mesor M, amplitude A, period T and acrophase ϕ0, see Fig 4. Therefore, in order

to compare the values of these parameters for the two populations, 7-day average values are

presented in Table 2. Additionally, statistical measures such as the standard deviation (SD),

coefficient of variation (CV = SD/mean), skewness (Skew) and kurtosis or “peakedness”

(Kurt) are listed, to give information on the day-to-day variations for all individuals of each

Fig 5. Acrophase ϕ0(t) as a function of time. Results for the subjects of Fig 1. Within the cosinor approach (dashed lines), the deviation

from the ideal 24h circadian cycle is small for the control subject,ΔT = +3min, such that ϕ0(t) is rather constant (blue dashed line), whereas

for the subject with acute insomnia the circadian deviation is larger, ΔT = −24min, and ϕ0(t) is a downsloping linear function (red dashed line).

SSA (continuous lines) allows to calculate the day-to-day variability of acrophase ϕ0(t), and are found to fluctuate around the average

behaviour obtained within the cosinor approach.

https://doi.org/10.1371/journal.pone.0181762.g005

Fig 6. Intradaily variability IV(P) as a function of sample interval. Calculated according to Eq (6). Shown for the population of asymptomatic controls

(blue) and acute insomnia subjects (red). Vertical gridline at traditional sample interval P = 60min.

https://doi.org/10.1371/journal.pone.0181762.g006

Multiscale adaptive analysis of actigraphy time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0181762 July 28, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0181762.g005
https://doi.org/10.1371/journal.pone.0181762.g006
https://doi.org/10.1371/journal.pone.0181762


population. With respect to the 7-day average values of the circadian parameters, there are sta-

tistically significant differences only for the acrophase ϕ0, where the subjects with acute insom-

nia show a 1.5hr delay in the moment of the day with maximum activity. With respect to the

day-to-day variations, there are significant differences for acrophase ϕ0 and amplitude A. The

kurtosis of the ϕ0 values over 7 successive days is Kurt� 3 for the controls, indicative of a

gaussian distribution, whereas Kurt� 2 for the acute insomnia subjects, which indicates a pla-

tykurtic distribution, see Fig 9. Although the standard deviation of successive ϕ0 values is simi-

lar for controls and acute insomnia subjects, in the former case there is a large spread in SD

values between subjects, whereas because of the platykurtic distribution more homogeneous

results are obtained for SD for the acute insomnia subjects. The standard deviation of ampli-

tude A over successive days are significantly larger for the acute insomnia subjects than for the

control subjects, and this difference is even more explicit for the coefficient of variation which

expresses SD as a fraction of the average value, see Fig 9.

Fig 7. SSA scree diagram of ordered fractional partial variances. Fractional partial variances λk/λtot

ordered from the most dominant λ1/λtot corresponding to the non-oscillating trend or mesor, and (λ2 + λ3)/λtot

corresponding to the periodic circadian cycle, down to higher-order λk/λtot with k� 4 corresponding to

ultradian fluctuations. In the case of the control subjects (blue), fractional partial variances follow a power law

λk/λtot/ 1/kγ with power-law exponent γ� 1 (negative of the slope of the scree diagram in log-log scale),

whereas in the case of the acute insomnia subjects (red) this power law is broken because of an increased

variability around hfi = 1/90min, these differences are statistically significant in the range 1.4� log10 k� 1.6

(shaded region).

https://doi.org/10.1371/journal.pone.0181762.g007
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Discussion

The focus of circadian-rhythm research has shifted over the years from the demonstration of

the existence of a regular circadian modulation of physiological variables to more recent inves-

tigations of how these rhythms degenerate with ageing and disease. The use of circadian analy-

sis as a diagnostic tool is becoming increasingly important to quantify deviations from

regularity in circadian cycles. It has been hypothesized that insomnia might be related to

Table 2. Parameter values of the circadian and ultradian rhythms according SSA analysis.

Controls Acute insomnia p

mean(T) 1432 ± 35 1429 ± 24 0.572

mean(M) 217 ± 57 218 ± 64 1.00

mean(A) 190 ± 55 186 ± 60 0.431

mean(ϕ0) 234 ± 23 253 ± 25 0.013 (*)

15 : 36 ± 1 : 32 16 : 52 ± 1 : 40

SD(ϕ0) 26 ± 16 23 ± 9 0.415

CV(ϕ0) 0.11 ± 0.06 0.09 ± 0.03 0.202

Skew(ϕ0) 0.28 ± 0.97 0.09 ± 0.54 0.378

Kurt(ϕ0) 2.84 ± 0.87 2.21 ± 0.60 0.015 (*)

SD(A) 51 ± 17 69 ± 27 0.031 (*)

CV(A) 0.28 ± 0.12 0.37 ± 0.10 0.010 (*)

Skew(A) 0.12 ± 0.72 0.31 ± 0.61 0.535

Kurt(A) 2.27 ± 0.67 2.34 ± 0.72 0.588

γ1 0.85 ± 0.17 0.73 ± 0.21 0.04 (*)

γ2 0.86 ± 0.15 1.02 ± 0.22 0.04 (*)

R2 0.20 ± 0.06 0.20 ± 0.05 0.979

Parameter values of the circadian cycle for period T (min), mesor M (1/min), amplitude A (1/min), acrophase

ϕ0 in degrees (˚) and hours and minutes (hh:mm) after midnight, and coefficient of determination R2. Values

given in the table are the population average and the standard deviation. (*) Considered to be significant

(p < 0.05) according to a nonparametric Kruskal-Wallis test.

https://doi.org/10.1371/journal.pone.0181762.t002

Fig 8. Fractal scaling parameters according to SSA analysis. Box-whisker plots of the scaling exponent of the power law

λk/ 1/kγ at larger scales (exponent γ1) and at smaller scales (exponent γ2) before and after log10 k = 1.5, shown for the control

subjects which follow a single power law (blue) and subjects with acute insomnia which exhibit a crossover (red).

https://doi.org/10.1371/journal.pone.0181762.g008
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alterations, albeit small, in circadian and ultradian rhythms, but after many years of study this

topic remains an open problem. In the present article, we studied 1-week continuous actigra-

phy time series in young adults with acute insomnia in comparison with age-matched control

subjects, using more traditional methods such as cosinor analysis, intradialy variability (IV)

and the novel data-adaptive time-series technique of singular spectrum analysis (SSA).

With respect to the average parameters of the circadian cycle, traditional cosinor analysis

detects a small but significant delay of about 1.5hrs in the acrophase ϕ0 in subjects with acute

insomnia compared to those in the control subjects, whereas the other parameters of period T,

mesor M and amplitude A are similar in both populations. These results were confirmed by

SSA analysis, which is not surprising because the description of the circadian rhythm is very

similar for cosinor and SSA, as illustrated in Fig 4 and quantified by the rather large Pearson

and Spearman’s rank correlation coefficients r and ρ, see Table 3. However, comparing the

Fig 9. Day-to-day variability of circadian parameters according to SSA analysis. Histogram of acrophase ϕ0, box-whisker

plots of standard deviation (SD) and kurtosis (Kurt) of acrophase ϕ0 (with Kurt = 3 for a gaussian distribution as a reference), and

coefficient of variation CV = SD/mean of amplitude A, for the controls (blue) and the acute insomnia subjects (red).

https://doi.org/10.1371/journal.pone.0181762.g009

Table 3. Correlation between cosinor and SSA circadian components.

Controls Acute insomnia

Pearson’s r 0.83 ± 0.10 0.81 ± 0.09

Spearman’s ρ 0.84 ± 0.10 0.84 ± 0.08

Pearson’s correlation coefficient r and Spearman’s rank correlation coefficient ρ for the description of the

circadian cycle of the asymptomatic controls and the subjects with acute insomnia. Values given in the table

are the population average and the standard deviation.

https://doi.org/10.1371/journal.pone.0181762.t003
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coefficients of determination R2 for both methods of analysis, see Tables 1 and 2, it can be seen

that SSA improves the description of the circadian cycle in an important way, mainly due to

the inclusion of day-to-day variability in the SSA description whereas cosinor only evaluates

average properties of the circadian cycle.

Regarding the day-to-day variability of the circadian cycle, SSA detects a significantly larger

variability for amplitude A for the subjects with acute insomnia than for the control subjects,

whereas for acrophase ϕ0 a gaussian distribution is found for the controls and a more platykur-

tic distribution for those with acute insomnia. A possible interpretation may be that acute

insomnia does not affect the mean activity level over 1 week. This suggestion is further sup-

ported as both cosinor and SSA agree that mesor M and amplitude A on the average are simi-

lar for both populations, see Tables 1 and 2. On the other hand, in individuals with acute

insomnia, the physical activity level for a specific day may depend on the previous nights’ sleep

quality, whereby a night of poor sleep is related to less active behaviour the following day,

potentially as a volitional method to recuperate. In contrast, the control subjects who do not

have sleeping problems appear to be able to maintain more constant activity levels over succes-

sive days. The difference in the distribution of acrophase ϕ0 between both populations may be

related to the deviations ΔT = T − T0 in the length of the circadian cycle from the ideal period

T0 = 1440min, see Fig 3. Although there are no statistical significant differences between both

groups for the deviations from the ideal circadian cycle ΔT, in the acute insomnia group these

somewhat larger deviations may accumulate and can result in a trend for ϕ0 over successive

days. Fig 5, which shows the acrophase as a function of time ϕ0(t), suggests that the cosinor

method describes the linear trend of the day-to-day variability of the acrophase as calculated

with SSA. Trends tend to lower the kurtosis of time series, as can be verified easily by adding a

linear trend to random gaussian noise (Kurt = 3), which reduces the kurtosis to more platykur-

tic values (Kurt<3), see Fig 14 in S1 File.

For the ultradian cycles, using the nonparametric method of intradaily variability IV(P) as a

function of sample interval P, we found an increased variability in the range 10< P< 50min

for the subjects with acute insomnia indicating enhanced ultradian rhythms with respect to

the healthy controls and with periods that are a multiple of these particular sample intervals.

Although not significant within the approach of IV, these enhanced ultradian rhythms proba-

bly reflect the more intermittent and “spiky” behaviour in the actigraphy time series of individ-

uals with acute insomnia, as discussed before in relation with Fig 1. SSA is very similar to

intradaily variability, it also breaks down the time series at different scales to quantify how

much each scale contributes to the total variance of the time series, but with the additional fea-

ture that the time-series components can be extracted to study their dynamics in more detail.

Using SSA analysis, we found a similar increase of variability for the subjects with acute insom-

nia with respect to the controls at a frequency range of hfi = 1/60–1/90min, and in this case the

differences were statistically significant. For the healthy controls, there is no indication of

enhanced variability in ultradian cycles at any frequency range, instead the fractional partial

variances λk/λtot appear to behave as a 1/f power law over the whole range of ultradian scales.

In subjects with acute insomnia this power law appears to be broken and a crossover can be

seen between a less steep behaviour before and a steeper behaviour after the characteristic fre-

quency of hfi = 1/60–1/90min. We checked the SSA results with Fourier spectral analysis and

DFA, see Figs 1, 13 and 15 in S1 File. Fourier reproduced all features of the SSA analysis but

without statistically significant differences between the 2 populations. Because of technical lim-

itations, DFA analysis can only be applied to day-time or night-time fragments and not to

1-week continuous time series, and DFA confirms the scaling results of SSA for smaller scales

with significant differences between the controls and those with acute insomnia. The interpre-

tation may be as follows. On the one hand, the particular frequency range hfi = 1/60–1/90min
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is reminiscent of Kleitman’s basic rest-activity cycle (BRAC) model [57], which hypothesizes

that the circadian 24h cycle can be subdivided into shorter ultradian oscillations that during

sleep manifest as REM-nonREM cycles of�90min and during wakefulness in�90min fluctu-

ations in cortical alertness and sleep propensity [58]. These 90min oscillations are not observed

in the actigraphy data of asymptomatic subjects during their daily routine [59], but there is evi-

dence that these rhythms become dominant in experimental conditions with sleep deprivation

[60, 61], isolation [62], artificial 90min days [63] and when putting people on learning sched-

ules of 90min [64–66]. On the other hand, fractal 1/f behaviour has been previously observed

in actigraphy data using DFA in the context of ageing and dementia [34–36]. In physiology,

heart rate variability is one of the best known examples of 1/f noise, and is interpreted as the

harmonious contribution of many biological processes at multiple scales [67]; whereas a devia-

tion from the 1/f power law is interpreted as an impoverishment and a predominance of a few

single contributing processes [32, 33]. In essence, in healthy controls, the routine of a typical

day may be composed of many different activities with multiple durations and intensities,

whereas in subjects with acute insomnia the modulation of activity by BRAC 90min attention

cycles or sleep-propensity cycles can make it more difficult to perform longer-term continuous

activities.

Conclusion

The aim of the present study was to examine circadian rhythms in individuals with acute

insomnia using a database of 1-week continuous actigraphy data of young adults with acute

insomnia and age-matched asymptomatic controls. It was hypothesized that insomnia is asso-

ciated with alterations in circadian and ultradian cycles. For the first time a systematic analysis

was undertaken which employed a data-adaptive time-series technique, singular spectrum

analysis (SSA). The findings suggest that this new approach is able to reproduce, improve and

combine within a single consistent framework the results of the complementary traditional

approaches of cosinor analysis and nonparametric intradaily variability (IV). Whereas the

majority of the circadian parameters such as mesor, period and amplitude were similar for

both populations, a small but significant delay in the acrophase for subjects with acute insom-

nia was observed. Moreover, alterations in the day-to-day variability of acrophase and ampli-

tude in the acute insomnia population were also noted. At ultradian scales, for healthy

controls, actigraphy data appears to behave as fractal 1/f noise, which indicates that the routine

of a typical day does consist of many activities with multiple durations and intensities. In the

case of acute insomnia subjects, this power law breaks down because of a significantly higher

intradaily variability around the average frequency of 1/60–1/90min. This finding is reminis-

cent of Kleitman’s basic rest-activity cycle (BRAC) model, which may indicate that 90min

cycles in attention levels and/or sleep-propensity cycles modulate the activity level in subjects

with acute insomnia interfering with the capacity to carry out long-term continuous activities.

The more detailed aspects of day-to-day variability and ultradian statistics only became appar-

ent using our new method based on SSA, whereas the traditional methods were unable to

detect these effects. This more sensitive analysis in the present study further contributes to our

understanding of the role of circadian disruption in acute insomnia.

Appendix: Technical details on the SSA method

Let x(n) of Eq (1) be a discrete time series. SSA uses a parameter L as a window length, or

embedding dimension, to embed the time series in a phase space which is represented as a so-

called trajectory matrix X. A sliding window Wi = (xi, xi+1, . . .xi+L−1) is passed over the time
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series using a unit step size, Δi = 1, such that,

X ¼
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with K = N − L + 1. By construction, the trajectory matrix X is of Hankel type, i.e. each ascend-

ing diagonal has equal elements. Applying SVD to matrix X allows to identify new data-gener-

ated basis states~uk and~vk to re-express the data more meaningful physically, and in particular

to decompose matrix X in a unique and exact way as a sum of elementary matrices, see

Ref. [68],

X ¼ USVT ¼
Xr

k¼1

skð~uk~v
T
k Þ ¼

Xr

k¼1

skXk; ð9Þ

where columns~uk of the K × K-dimensional matrix U, also called left-singular vectors, and the

columns~vk of the L × L-dimensional matrix V (i.e. rows of VT), also called right-singular vectors,
span the elementary (rank-1) matrices Xk ¼ ~uk~vTk �~uk 
~vk, which can be thought of as “sub

phase-spaces” of phase space X. The K × L-dimensional matrix S contains only diagonal ele-

ments which are the ordered singular values σ1� σ2� . . .� σr. The square of the singular value

lk ¼ s2
k is the partial variance corresponding to the particular “sub phase-space” Xk. The sum

ltot ¼
Pr

k¼1
lk gives the total variance of the phase space X, and a so-called scree diagram can

be constructed to visually represent the ordered fractional partial variances λk/λtot. Here, r is the

rank of matrix X, i.e. the number of independent columns or rows of X, with r�min(K, L),

such that the number of “sub phase-spaces” can be controlled with parameter L. By inverse

transformation each elementary matrix Xk is converted to time series component gk(n), such

that an exact decomposition of the original time series is obtained, see Eq (7). In general, the

individual elementary matrices Xk are not of Hankel type. Therefore, the nth element of time-

series component gk(n) is calculated by taking the average over the nth ascending diagonal of

Xk, a process called diagonal averaging. Because of the lack of Hankel symmetry of the elemen-

tary matrices Xk, the various time-series components gk(n), with k = 1, . . ., r are not necessarily

uncorrelated; graphical tools such as the scree diagram and the w—correlation matrix allow to

estimate the degree up to which different time-series components gk(n) are uncorrelated (see

Figs 8 and 9 in S1 File).
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