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This study presents an automated algorithm that measures ocular deviation quantitatively using photographs of the nine cardinal
points of gaze by means of deep learning (DL) and image processing techniques. Photographs were collected from patients with
strabismus. The images were used as inputs for the DL segmentation models that segmented the sclerae and limbi. Subsequently,
the images were registered for the mathematical algorithm. Two-dimensional sclera and limbus were modeled, and the corneal
light reflex points of the primary gaze images were determined. Limbus recognition was performed to measure the pixel-wise
distance between the corneal reflex point and limbus center. The segmentation models exhibited high performance, with
96.88% dice similarity coefficient (DSC) for the sclera segmentation and 95.71% DSC for the limbus segmentation. The
mathematical algorithm was tested on two cranial nerve palsy patients to evaluate its ability to measure and compare ocular
deviation in different directions. These results were consistent with the symptoms of such disorders. This algorithm
successfully measured the distance of ocular deviation in patients with strabismus. With complementation in the dimension
calculations, we expect that this algorithm can be used further in clinical settings to diagnose and measure strabismus at a low cost.

1. Introduction

Strabismus is a condition in which the eyes do not line up
properly: while one eye points towards a particular object,
the other deviates in another direction [1]. Although the
cause is still not clearly understood, it is well known that sev-
eral factors may affect the occurrence of this disorder includ-
ing age, inheritance, ethnicity, and history of other ocular
diseases [2–4]. Strabismus can lead to serious ocular disor-
ders, such as amblyopia, diplopia, and permanent vision
loss, if it remains untreated. Therefore, timely and accurate
diagnosis is extremely important.

At present, there are several methods for diagnosing and
measuring strabismus clinically. The Prism Cover Test

(PCT) measures the magnitude of the deviation using a piece
of prism [5, 6]. It is the most widely used and easy method for
examining strabismus, but it exhibits an interrater reliability
problem as the examination is strongly dependent on the
examiner experience, examiner bias, and positioning of the
prism [5]. Furthermore, as this method requires patient coop-
eration [7], the PCT is not appropriate for infants, who consti-
tute the majority of the patient population. The Hirschberg
test quantifies ocular deviation based on the position of the
corneal light reflex point by measuring the distance between
the reflex point and limbus center [8]. The Krimsky test uses
hand-held prisms to determine the strabismus angle by exam-
ining the amount of prism that is required to position the
reflex point correctly [8]. Both tests can calculate the extent
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of the deviation without the cooperation of the subject; how-
ever, the results rely on the examiner ability, which suggests
lower interrater reliability. Moreover, both tests require a cer-
tain correction of the angle kappa which is the difference
between the primary line of sight and pupillary axis to avoid
the overestimation of the strabismus deviation [9].

Despite the importance of early detection and the
acknowledgement of the inaccuracy of existing diagnostic sys-
tems, current clinical practice still tends to adhere to these tra-
ditional methods as relevant research is lacking. Although
various attempts to diagnose strabismus are currently under-
way, studies regarding the accurate measurement and quanti-
fication of the deviation angle to determine the severity of
strabismus remain lacking. Chen et al. [10] developed a system
that recognizes strabismus using eye-tracking data and a con-
volutional neural network (CNN). They collected gaze devia-
tion images with their eye-tracking system and applied the
CNN to classify the image as positive or negative. Miao et al.
[11] integrated image processing with virtual reality to develop
an automated device for effective strabismus diagnosis. Weber
et al. [12] proposed a pair of portable goggles that can measure
strabismus objectively; the goggles implement a modified Hess
screen test [13] by measuring the ocular deviations on a nine-
point target grid, and the results are compared with actual
Hess screen test results. Lim et al. [14] used image processing
to measure the ocular deviation angle in different directions of
gaze using image editing software.

Despite the exponential development of artificial intelli-
gence in recent years, few studies have demonstrated the
use of such techniques. To overcome the difficulties of previ-
ous studies, the aim of this study was to propose a mathe-
matical algorithm for measuring strabismus quantitatively
using photographs of the nine cardinal gaze positions (nine
gazes), by integrating deep learning (DL) to segment the area
of the eyes and image analysis to provide automated and
accurate strabismus measurement.

2. Materials and Methods

2.1. Data Collection. Photographs were collected from stra-
bismus patients of different ages and genders. Each patient
captured nine photographs of his/her upper face while gaz-
ing at different points representing the nine gazes
(Figure 1). These photographs were obtained with an 8.2-
megapixel digital single-lens reflex camera (EOS20D; Canon
Inc., Tokyo, Japan) with a ling flash attached on the camera
lens. The camera was positioned 1m from the patient. More-
over, it was ensured that a corneal reflex point was present in
each eye of the patient image with a primary gaze, as these
points were crucial for the image processing. The resolution
of the images was fixed to 2544 × 1696 pixel.

For the DL-based segmentation, 529 images were used for
training, 133 were used for validation, and 166 were used for
testing the performance of the trained model. The nine gaze
images of two adult patients with paralytic strabismus were used
to test its performance for the postsegmentation algorithm.

2.2. Data Preprocessing. The data preprocessing and postseg-
mentation processing, which included the mathematical
algorithm, were performed on Python (version 3.8.8; Python
Software Foundation, Wilmington, DE, USA) and OpenCV
library. The collected photographs were manually prepro-
cessed before they were used for the DL training. First, the
areas of the limbi and sclerae for both eyes were manually
annotated in ImageJ (NIH, Bethesda, MD, USA) for use as
the ground truth images. These were created as mask images
and used as inputs for the DL training along with the nine
gaze images. Furthermore, the images were resized to 512
× 512 pixels, as the inputs of convolutional networks must
have pixel size with the same width and height.

2.3. Sclera and Limbus Segmentation. In this study, the U-Net
architecture was applied to train the DL model for the limbus
and sclera segmentation. U-Net is a CNN that is popular in
medical image segmentation [15]. It has a symmetric architec-
ture with an encoder (contracting) path and a decoder (expan-
sive) path (Figure 2). The encoder path (left) consists of two
iterations of a 3 × 3 convolution for each convolutional net-
work. Each network is followed by ReLU and batch normali-
zation using a 2 × 2 max pooling operation. Every operation
halves the spatial dimension, while doubling the feature chan-
nels. The decoder path (right) uses a 2 × 2 up-convolution for
up-sampling, which doubles the spatial dimension and halves
the feature channels. Thereafter, the corresponding feature
map from the encoder is concatenated with the one in the
decoder, and subsequently, two iterations of 3 × 3 convolution
are applied, followed by ReLU. Finally, a 1 × 1 convolution is
applied to map and output the final feature map, which is a
mask image of the segmented parts in this case [16, 17].

Two separate models were trained for the limbus and
sclera segmentation, in which two sets of ground truth
images were used for each photograph (Figures 3(a)–3(c)).
Both models were trained using the Adam optimizer with
a batch size of 4, a learning rate of 0.0001, and 200 epochs.

2.4. Mathematical Algorithm

2.4.1. Image Registration. Image registration of nine gaze
images was implemented before performing any pixel-based
measurements (Figures 3(d)–3(f)). The registration was per-
formed based on the primary gaze image of each patient. This
process was necessary because the distance measurement

Figure 1: Nine cardinal gaze points.
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would be meaningless if the eyes of a single patient were not
positioned at the same location with the same size.

Several geometrical features were measured for use as
indicators of the two-dimensional (2D) transformation.
First, the primary gaze image was selected from the nine

inputs. Subsequently, using the trained model, the area of
the sclerae was segmented using the trained model, and the
output mask image was resized to the raw data size. Refer-
ence points that represented the innermost points of both
sclera areas were then defined using the output image. A line
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Figure 2: Architecture of U-Net model.
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Figure 3: Summary of the overall process of the algorithm. The sample images that are put into the segmentation model: (a) example of
ground truth images of limbus, (b) example of raw data, and (c) example of ground truth images of sclera. The registration process: (d)
example of center image with reference line (red line) drawn and (e) example of rotating image with reference line (red line) drawn. The
center (green dot), length, and angle of the reference line are adjusted to be the same as those of (e) for registration to take place. (f) The
overlaid image of (d) and (e), showing that both eyes are positioned on the same location. (g) Example of recognized limbi (red circle)
and the corneal reflex points (intersect of the parallel and vertical lines). (h) Example of recognized limbus (red circle) and measured
distance between the limbus center and the corneal reflex point detected in (g).
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was drawn connecting the reference points, which could be
used to determine three elements: the center, length, and
angle of the line.

An image with a different gaze was considered, and the
previous steps were repeated to obtain the three elements.
Thereafter, 2D transformation was performed using the
values. First, translation was performed by moving the refer-
ence center to the same position with the reference center of
the primary gaze image. Subsequently, rotation and scaling
were applied to ensure that the length and angle of the refer-
ence image were the same with those of the primary gaze
image. Figures 3(d)–3(f) present an example image before
and after the registration. By adjusting the points of the
innermost parts of the sclerae, both eyes were positioned at
a similar location pixel-wise and had a similar size.

2.4.2. 2D Limbus Modeling and Definition of Corneal Reflex
Point. Several assumptions were made based on the limita-
tions of analyzing three-dimensional objects in a 2D envi-
ronment. The assumptions were as follows:

(1) Both the limbus and sclera are perfect spheres

(2) In adults, the radius of the sclera is 2.5 times longer
than that of the limbus

(3) The extension line of the corneal light reflex point
penetrates the center of the eyeball

Assumption 2 was defined based on the average eye size
that is used in clinical settings [18, 19]. The radius of the lim-
bus and corneal reflex point of the primary gaze image, which
was further used as an indicator of the other images for the
measurement, were defined. All of the images were registered
prior to processing. The limbus segmentation was performed
for the primary gaze image using the trained model, followed
by resizing of the output mask image to match its size with the
raw data. Using the mask image, the smallest enclosing circles
were drawn to recognize each limbus (Figure 3(g)). Thereafter,
the radius of the recognized limbus was measured.

The raw images and segmented masks were added to
mask the area that was not the limbus for the corneal reflex
point. Subsequently, the area of the bright point was deter-
mined. The exact coordinates of the reflex point were the
center of the bright point area that was determined.

2.4.3. 2D Sclera Modeling. The sclera of the eye was also mod-
eled with the consideration of a follow-up study as well as to
provide improved visualization. The initial steps were the same
as those of the limbus modeling, namely, registering the image
and segmenting the sclerae area. Subsequently, enclosing circles
were drawn to determine the center point of each sclera.
Finally, a 2D sclera model was created by drawing a circle with
a radius that was 2.5 times longer than that of the limbus, based
on the assumption stated in the previous section.

2.4.4. Limbus Recognition and Distance Measurement. The
final step of the algorithm was to recognize limbi from the non-
primary gaze images and to calculate the pixel-wise distance
between the limbus center and the corneal reflex point that
was obtained from the primary gaze image. To achieve this, a

fitting ellipse was drawn on the segmented limbus. Thereafter,
a line representing the short axis was drawn. The limbus center
was determined by assigning it to the extension line of the short
axis with the length of the limbus radius, starting from the outer
contour of the ellipse. A circle was drawn with the newly
assigned center and radius of the limbus, thereby finalizing the
limbus recognition process (Figure 3(h)). The distance between
the limbus center and corneal reflex point was calculated.

2.5. Evaluation Method. A confusion matrix was generated
to evaluate each segmentation model. The confusion matrix
used various evaluation indices, such as the accuracy, sensi-
tivity, specificity, and dice similarity coefficient (DSC), to
assess the performance of the model.

For the algorithm, the line and measured distance were dis-
played on the raw images to confirm that the limbus recogni-
tion and distance measurement were performed properly, as
well as to provide improved visualization.Moreover, we consid-
ered a couple of paralytic strabismus patients to measure the
differences in movement between the two eyes. We could
obtain examples of two cases: fourth cranial nerve palsy and
sixth cranial nerve palsy. Fourth cranial nerve palsy deteriorates
eye movement, preventing downward and inward movement
[20], whereas sixth cranial nerve palsy causes esotropia impair-
ing outward eyemovement [21]. Thus, it is necessary to observe
movements of the limbi based on various directions of gaze.

3. Results

3.1. Segmentation Models. The segmentation models for the
sclera and limbus were tested using 166 images. Confusion
matrices were used for the evaluationmethod, which were cre-
ated by comparing the ground truth images and the resulting
images pixel by pixel. The comparisons were represented
using true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). The accuracy, sensitivity, speci-
ficity, and DSC were calculated with these values using Equa-
tions (1)–(4). The results are presented in Table 1.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100, ð1Þ

Sensitivity =
TP

TP + FN
× 100, ð2Þ

Specificity =
TN

FP + TN
× 100, ð3Þ

DSC = 2 ×
TP

TP + TNð Þ + FP + FNð Þ : ð4Þ

Table 1: Results of segmentation models.

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

DSC
(%)

Sclera
segmentation

99.84 97.47 99.90 96.88

Limbus
segmentation

99.92 95.63 99.96 95.71
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According to Table 1, the sclera segmentation model
exhibited an average accuracy of 99.84%, sensitivity of
97.47%, specificity of 99.90%, and DSC of 96.88%. Similarly,
the limbus segmentation model also provided high values:
accuracy of 99.92%, sensitivity of 95.63%, specificity of
99.96%, and DSC of 95.71%. These results demonstrated that
the trained models could correctly segment the limbi and
sclerae of the eyes on the image, which means that the images
that were segmented by these models could be used as the
inputs for the subsequent algorithm.

3.2. Algorithm. The algorithm was evaluated using visualiza-
tion and testing of specific cases. Figure 3(h) depicts the
manner in which the visualization was performed; it illus-
trates which part of the image the algorithm attempted to
measure and displays the actual number so that the results
can be understood more clearly.

As it is difficult to estimate the actual amount of move-
ment using a photograph and the pixel-wise distance does
not represent any clinically meaningful indicators, we used
the ratio of the impaired eye movement to normal eye move-
ment to test the performance of the algorithm. Two specific
cases of strabismus that required examination with the nine
gazes were considered: fourth cranial nerve palsy and sixth
cranial nerve palsy.

We attempted to observe the deviation by measuring the
ocular movement of two patients with cranial nerve palsy
(Table 2). The first patient was diagnosed with fourth cranial
nerve palsy in both eyes. We observed that her eyes per-
formed less movement when trying to move inwards and
downwards, as the percentage of movement was 91.6% for

the left eye and 89.4% for the right eye. The second patient
had sixth cranial nerve palsy in her left eye, and it was clearly
demonstrated that the ability of the left eye to move out-
wards was damaged as its movement was only 27.6% com-
pared to the right eye, whereas inward movement
remained similar. Figure 4 clearly visualizes the ocular devi-
ation of two separate cases, depicting how the measurements
were taken place. Figure 4(a) represents the result of patient
1, whereas Figure 4(b) represents the result of patient 2.

4. Discussion

The purpose of this study was to introduce a mathematical
algorithm to measure the ocular deviation in strabismus
patients using photographs of the nine cardinal gaze posi-
tions. The overall procedure consisted of two steps: segmen-
tation of the sclera and limbus using U-Net architecture, and
distance measurement between the limbus center and cor-
neal reflex point using an image processing technique. The
segmentation models yielded significantly accurate results,
which means that the trained models could accurately seg-
ment the sclera and limbus areas so that they could be used
for further image processing steps, whereas the mathemati-
cal algorithm exhibited a clear distance measurement and
meaningful explanations for the disorders that were present
in the testing images. The results suggest that the algorithm
offers the potential to be applied to actual clinical settings
with several modifications that would make it more useful
and convenient.

Several attempts have been made to study ocular move-
ments using images of different gaze positions [22–26].

Table 2: Results of algorithm testing images. Patient 1 represents a patient with fourth cranial nerve palsy, in which both eyes exhibit
disability with downward and inward movement. Patient 2 represents a patient with sixth cranial nerve palsy, in which the left eye
cannot move outwards.

Patient 1 Patient 2
Downward, outward

(pixels)
Downward, inward

(pixels)
Percentage

(%)
Left eye
(pixels)

Right eye
(pixels)

Percentage
(%)

Left eye 227 208 91.6 Outwards 45 163 27.6

Right
eye

218 195 89.4 Inwards 109 105 103.8

195

218 208

227

(a)

105 45

109163

(b)

Figure 4: (a) Algorithm result for patient 1. The pixel-wise distances that are measured indicate that the patient has difficulties moving eyes
inwards. (b) Algorithm result for patient 2. The pixel-wise distances that are measured indicate that the patient has difficulties moving left
eye outwards.
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Figueiredo et al. [23] developed a web application using a
CNN to classify eye versions into the nine gaze positions,
but it was not clear how this could contribute to the actual
examination of strabismus. Zheng et al. [26] implemented
a DL algorithm to classify horizontal strabismus using pri-
mary gaze photographs of children; however, this study
lacked other types of strabismus and different gaze positions.
To overcome these difficulties, we attempted to build a pow-
erful CNN model to segment the limbus and sclera areas as
accurate as possible as it is crucial for objective measurement
of strabismus. Furthermore, we combined the developed
algorithm and the concept of nine cardinal points of gaze
to enable the measurement of ocular deviation from various
directions. We expect that this algorithm could aid doctors
in the clinical settings to diagnose and classify different types
of strabismus and their severities using captured photo-
graphs and potentially could further be used for studying
different areas of strabismus.

Several limitations of this study necessitate improve-
ments to the algorithm and further research. First, this study
analyzed eyes in the 2D plane, whereas real eyes are three-
dimensional (3D). Therefore, errors were inevitable when
measuring the distance. Although a previous study pre-
sented software that quantitatively analyzes binocular mis-
alignment in a 3D environment, a portion of the process
remains manual and only primary gaze sources are used
[27]. Thus, follow-up study would require this algorithm to
be implemented and changed for its application to a 3D
model of the eyes. Furthermore, it was difficult to identify
the location of the limbi in cases of small eyes with little
exposure to the limbus area. To resolve this problem, one
suggestion is for the examiners to adjust the location of the
limbus manually after approximately determining the loca-
tion, making the algorithm semiautomatic.

Another problem of automatic and objective measure-
ment is that it does consider the potential for the existence
of differences according to the age or surgery status of the
patient [28, 29]. An age-related gaze impairment in horizon-
tal and upward gazes has been reported [28]. Therefore, it is
necessary for examiners to determine the ocular deviation of
subjects considering their age and surgery status, even when
using objective measurement methods.

5. Conclusion

To conclude, this study has provided an algorithm that can
automatically quantify ocular deviation using nine gaze pho-
tographs, by combining DL and 2D image processing tech-
niques. The algorithm enables examiners to measure the
pixel-wise distance between the limbus center in various
gaze positions and the corneal reflex point of the primary
gaze image. The proposed method offers the potential to
aid ophthalmologists in measuring ocular deviation in stra-
bismus patients with more objective indicators. A follow-
up study would require the implementation of the algorithm
in an actual web or mobile application or software with an
easy and simple user interface to provide 3D application of
the analysis.
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