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Background and Aims. Hepatocellular carcinoma (HCC) remains a leading cause of death by cancer worldwide. Computerized
diagnosis systems relying on novel imaging markers gained significant importance in recent years. Our aim was to integrate a novel
morphometric measurement—the fractal dimension (FD)—into an artificial neural network (ANN) designed to diagnose HCC.
Material and Methods. The study included 21 HCC and 28 liver metastases (LM) patients scheduled for surgery. We performed
hematoxylin staining for cell nuclei and CD31/34 immunostaining for vascular elements. We captured digital images and used an
in-house application to segment elements of interest; FDs were calculated and fed to an ANN which classified them as malignant
or benign, further identifying HCC and LM cases. Results. User intervention corrected segmentation errors and fractal dimensions
were calculated. ANNs correctly classified 947/1050 HCC images (90.2%), 1021/1050 normal tissue images (97.23%), 1215/1400 LM
(86.78%), and 1372/1400 normal tissues (98%). We obtained excellent interobserver agreement between human operators and the
system. Conclusion. We successfully implemented FD as a morphometric marker in a decision system, an ensemble of ANNs
designed to differentiate histological images of normal parenchyma from malignancy and classify HCCs and LMs.

1. Introduction

Hepatocellular carcinoma (HCC) represents a major health
concern as it represents the third cause of cancer-related
mortality [1, 2] and fifth in incidence [1-5], being at the
same time the second most prevalent liver tumor (after
liver metastases) and first hepatic primary malignancy [2].
Curative treatment is reserved for early stages of the disease;
tumor size and number as well as the state of previous liver

disease play an essential role [6-8]. Therefore, early diagnosis
and the requirement for precise identification are essential
for improving the management of these patients. The latest
guidelines underline the need for new biomarkers designed
to identify responders to therapy and for trial enrichment [8].

As the primary diagnosis methods for HCC rely on
contrast-enhanced arterial uptake imaging, liver pathology
is usually reserved to tumors of undetermined origin or
too small to be properly investigated noninvasively, or for
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the evaluation of treatment in clinical or experimental trials
[7, 8]. Hence, the clinician needs accurate and rapid diagnosis
on small pathology samples.

The use of computerized aided methods for histological
evaluation of tissue samples has been present in usual
practice for several decades; however, great improvements
were obtained in recent years, with the rapid evolution of
computational methods and the increased complexity of
algorithms. Fractal image analysis with the determination of
fractal dimension (FD) emerged as useful tools for classifica-
tion of natural shapes that do not follow normal geometrical
conformations [9, 10]. This method is nowadays used in
pathology [11-16] as well as in other medical imaging fields,
providing precise quantification for various elements. The
spatial distribution profile in relation to the gauge of a given
space represents the basis for most methods of calculating the
fractal dimension, models based on the work of Hausdorft
and Kolmogorov being the most suitable for quantitative
appreciation [17-19].

Computer-aided diagnosis (CAD) systems are indepen-
dent decision systems employed in medical management
of several pathologies, with an emphasis on various malig-
nancies [20-24]. From the multitude of currently available
artificial intelligence systems, the most useful tools have been
proven to be based on machine learning (ML), especially
artificial neural networks (ANN). Found in various iterations,
ANN systems mimic the architectonics of the human brain in
order to solve classification problems, thus making excellent
decision-making systems in medical diagnostics and progno-
sis [22-24].

In this paper, we present a novel application of fractal
image analysis with FD calculation and integration in an
ANN model for classifying liver tumors and especially HCC
diagnosis.

2. Materials and Methods

2.1. Patient Selection. The study was conducted in accordance
with the Declaration of Helsinki. Patients were not subjected
to any investigation or operatory maneuver other than those
appropriate for their condition. Informed consent for all
procedures was obtained as standard procedure required and
supplemental written acknowledgement on the inclusion in
the study was given prior to manipulation and interpretation
of the histological fragments. The Ethical Committee of the
University of Medicine and Pharmacy of Craiova as well as
that of the University Hospital expressed their consent to the
study.

We prospectively included between January 2010 and
December 2012 a total of 49 patients scheduled for surgery—
21 with HCC and 28 with liver metastases (LM). Interventions
were performed within the Department of Surgery, Univer-
sity Hospital of Craiova. Tumors were removed along with
healthy tissue during lobectomies following usual protocols,
and we collected fresh tissue samples for histological process-
ing and analysis.

Patients were selected from those diagnosed with liver
tumors scheduled for surgery with the intent of performing
liver resection. For HCC this implied patients with Stage 0 of
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disease, according to the Barcelona criteria [6, 8]. After the
intervention, we surveyed the patients for a minimum period
of six months to make sure the initial diagnosis was correct
and to evaluate their postoperative condition.

2.2. Pathology Specimens and Expert Interpretation. Hema-
toxylin staining was used for nuclear chromatin disposi-
tion and immunohistochemical staining with CD34/CD31
antibodies was used for assessing vascular patterns. Both
techniques have been previously described in detail by our
group [25]. Briefly, for immunostaining we used overnight
incubation with an anti-CD34 and anti-CD31 antibody cock-
tail (Clones QBEnd-10, Dako, and, JC70A, 1:100 dilution,
resp.) and then used a polymer-HRP system for amplifi-
cation (Dako, Denmark). Detection was performed with
3’3’ diaminobenzidine (Dako, Denmark) and counterstained
with hematoxylin for marking the nuclei.

A total of ten slides were prepared for each case, five
with tumoral parenchyma and five with normal surrounding
tissue. We then proceeded to record 100 consecutive images
(10 per each slide) and digitally stored them for each patient.
We used a Nikon Eclipse 90i microscope (Apidrag, Bucharest,
Romania) with apochromatic 40x and 60x objectives for
imaging, coupled to a dedicated 5-megapixel CCD camera for
recording the uncompressed images.

Two pathologist experts in diagnosing HCC and LM,
blinded to the initial diagnosis, gave their interpretation on
each image (DP and MC). Their assessment was tested with
the agreement coeflicient by using the weighted Kappa test.
The strength of the agreement as expressed with the Kappa
coeflicient [26] was quantified as negligible (values between
0.00 and 0.20), slight (0.21-0.40), moderate (0.41-0.60), great
(0.61-0.80), and excellent (0.81-1.00).

2.3. Image Processing and Calculation of FDs. Uncompressed
images in Bitmap format were processed in a custom-
created computer program. The software was created as an
application in MATLAB (MathWorks, USA). The software
interface is presented in Figure 1. The process through which
blood vessels and cellular nuclei were selected is illustrated in
Figure 2.

The image color space was translated from red-green-blue
(RGB) signature to a hue-saturation-value (HSV) defined
color space which allowed segmenting each image and
extracting the nuclear signatures and vascular axels. The soft-
ware threshold eliminated any element under 10 pixels, con-
sidered artifacts. This step also allowed us to ignore incom-
plete nuclei which did not fit entirely in the imaging field.

In order to make it even easier to segment the nuclei or
vascular elements, the “value” parameter was set constant;
thus, the whole color space became two-dimensional. By
using a color threshold and selecting the “blue” or the
“brown” pixels from the images we were able to clearly
determine the nuclei/vascular elements from the background
and automate the selection.

By using the fractal box-counting algorithm, FDs were
obtained as the regression slope of the regression line for the
log-log plot of the scanning box size and the count from a
box-counting scan.
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FIGURE 1: (a)-(c) An overview of the interface designed for selecting and calculating FDs. (a) An individual image is loaded; then values for
the reference hues and standard deviations as well as the desired saturations can be either typed in the designated box or manually selected
with the mouse cursor on the image representation on the left. (b) The operator receives a visual confirmation of the selection and can further
adjust the parameters in order to make it more accurate. (c) The FD is calculated and a graphical representation of the log-log function is
presented to the user. After the cycle is completed, the user can batch-process entire series of images. Values for FDs are automatically saved

as lists of comma-separated values and are fed to the ANN system.

A fractal dimension is a synthetic index for characterizing
fractal patterns or sets by quantifying their complexity as a
ratio of the change in detail to the change in scale. Basically, in
our approach, this is a non-Euclidian morphological param-
eter that aims to quantify the roughness or the irregularity of
the perimeter line of the nuclei or of the vessels” outlines.

Starting from the general formula of the FD, consider e as
the box length (scale), N(e) as the number of boxes required
to cover the structures (detail), FD as the fractal dimension,
and C as a constant number:

N(e)=C =", )
We obtained the numerical approximation of the FD:
L
ED = slope (M) . (2)
Log (e)

The nuclear fractal dimension (FD) on each image was
estimated by using an in-house implementation of the box-
counting algorithm using MATLAB. The algorithm returned

the FD of a binary image object using the polyfit MATLAB
standard function for obtaining the slope and was designed
as follows.

(1) Pad the image with background pixels so that its
dimensions are a power of 2 (0 is background).

(2) Set the box size “e” to the size of the image.

(3) Compute N(e), which corresponds to the number of
boxes of size “e” which contains at least one object
pixel.

(4) Ife > 1 then e = /2 and repeat step (3).

(5) Compute the points log(N(e)) x log(1/e).

(6) Use the least squares method to fit a line to the points.

(7) The returned FD (Hausdorff) is the slope of the line.

We registered and automatically analyzed 100 images per
patient (10 images for each slide, 10 slides equally divided
between tumor and normal parenchyma), totaling at 4900
images for all cases. This high number ensured a large enough
sample for the ANN system described below.
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FIGURE 2: (a)-(c) The process of selecting vessels and nuclei for calculating FDs. (a) The initial pathology images. The pathologist can observe
the large pleomorphic nuclei and the enlarged nucleus/cytoplasm ratio as well as the prominent nucleoli. Also, after immunohistochemical
staining for newly formed blood vessels, the relative paucity in the case of LM as opposed to HCC can be observed. (b) The vessels are selected
automatically by the software. (c) The same process is applied on the predefined color channels for cellular nuclei.

2.4. Computerized Diagnostic System Based on Artificial
Neural Networks. The resulting FDs were automatically fed
by the software application to a double-layer feed-forward
ANN designed to classify images as malignant or benign;
furthermore, a second ANN collected all mean FDs of malig-
nant images from each case and determined if the tumor
was more likely to be HCC or LM. Both the ANN models
were developed in MATLAB and fully integrated within
the graphical interface. As we established from previous
work, optimal ANN layout for classification tasks in image
processing is usually the simplest. Thus, we chose the network
architecture to contain only one hidden layer, with an input
layer and one layer dedicated for the output (Figure 3).
Briefly, ANNs are made up of multiple interconnected
units called “neurons,” each containing a transfer function.
They are organized in “layers” which usually perform a
function—most ANN models contain, for instance, one input
layer (for receiving the parameters) and one output layer for
giving results, based on calculations made in intermediate
layers by interconnected neurons. Neurons are connected by
“synapses” and the ones in the intermediate layers attribute
“weights” to each variable, based on the strength of the

connection. If a connection is used multiple times to reach a
solution, that parameter gains importance towards a decision,
thus establishing a hierarchy within the system [27-29].

In our model, neurons in the hidden layer of the first ANN
associated transfer and processing functions for each FD of
all elements in a given image. The sum of products between
synaptic weights and neuron values classified them as benign
and malignant (i.e., identifying if it is an image of normal
parenchyma or from the tumor area). Similarly, the second
ANN received the mean FDs per malignant image for each
set corresponding to a patient and attributed weights to each
value. By summing them this ANN reached a conclusion of
either HCC or LM. The suggestions given by the networks
also received a probability score—the percentage from the
ideal score for the ideal value.

For both ANN models, the sets of FDs (for elements in
an image and for each patient, resp.) were randomly divided
into training, validation, and testing sets, respectively (50%
training, 25% validation, and 25% testing). In short, during
the training phase the system learned how to classify an image
by comparing the values obtained in the evaluation with the
correct diagnosis, therefore establishing the weights of each
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FIGURE 3: Graphical representation of an ANN. The FDs are imputed to corresponding neurons in the first layer of the ANN, which in turn
send the data to all neurons of the hidden layer. The neurons in this intermediate layer establish an importance value for the output layer,
which presents the user with a result, classifying the image into one category.

TABLE 1: Characteristics of the patient lot.

Hepatocellular carcinoma

Liver metastases

Men Women Men Women
Number of cases 17 4 20 8
Median age (min/max)” 54 (48/69) 59 (44/68) 51 (43/66) 50 (46/70)
Preexisting conditions
Chronic viral hepatitis B 3 0 0 0
Chronic viral hepatitis C 2 1 1 0
Cirrhosis (B) 6 3 0 0
Cirrhosis (C) 3 0 0 0
Cirrhosis (B and C) 2 0 0 0
Other malignancies 0 0 20 8
Alcohol consumption 9 0 8 0
Smoking 1 2 14 3
Characteristics of the tumor
Single tumor™” 17 4 17 6
Median size (min/max)*"*" 1.9 (1.0/2.0) 1.7 (1.0/1.9) 6.1(2.4/71) 5.9 (2.1/8.2)

* Age in years; ** for multiple tumors, only the largest in size is reported in the table;

synapse. We used a back-propagation algorithm and 10-fold
cross validation which we previously used [27-30] in order
to minimize overfitting (ultraclassify based on rigid rules).
We were able to change the learning rate and determine the
number of epochs (iterations needed for completion of the
training phase) and perform adjustments in real time.

A workflow of the whole study protocol can be observed
in Figure 4.

3. Results

3.1. Characteristics of the Patient Lot. We included a total
of 49 patients (37 men) who met the inclusion criteria and
were available for at least six months of followup. Their
characteristics are summarized in Table 1. No patient died or
dropped out during the follow-up period. We could observe
that tumors were more prevalent in men (37 men versus
12 women), with a 4.25:1 male: female ratio for HCC and
2.5:1 ratio for LM. All but one of the HCC patients had

***diameter in centimeters.

a history of chronic viral hepatitis infection, either B (12
cases, 9 with cirrhosis) or C (6 cases, 3 with cirrhosis); we
also found two cases with cirrhosis of mixed B and C viral
etiology. All LM cases had other prediagnosed tumors (14
colon adenocarcinomas found during colonoscopy, 12 lung
cancers confirmed by chest radiograph and CT scan, and
two gastric cancers confirmed on endoscopy) for which they
underwent curative treatment (data not shown). One LM
patient had a history of chronic viral C hepatitis. We also
acknowledged the importance of both alcohol intake and
smoking as a risk for developing cancer, with both habits
being highly prevalent in our patient lots.

All HCCs were single tumors with diameters below 2 cm,
making them ideal candidates for liver resection. For LM, 5
cases presented multiple tumors; the median diameters were
approximately three times higher than those of HCCs.

3.2. Human Histological Interpretation. The two pathologists
randomly reviewed the images recorded from slides and
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FIGURE 4: Overview of the study protocol. Tissue samples from the liver resection pieces of 49 patients with either HCC (21) or LM
(28) undergo hematoxylin staining and CD31/34 immunohistochemistry. RGB images are converted in the HSV space and elements are
semiautomatically segmented with the calculation of FDs for each element, either cell nuclei or vascular axels. Elements below a 10-pixel
threshold are automatically excluded, and the remaining data is fed to a first ANN which classifies the image as either malignant or benign.

All malignant images are further classified by a 2nd ANN into eithe

r HCC or LM. (The RGB and HSV images provided as examples are

reproduced from http://commons.wikimedia.org/wiki/User:SharkD and were originally licensed under the Creative Commons Attribution-

Share Alike 3.0 Unported license.)

gave their expert opinion based on the overall appearance
of the image. The Kappa coefficient was calculated and
the agreement between the two observers was found to be
excellent (Kappa of 0.998; standard error of Kappa = 0.001;
95% confidence interval = 0.996-0.999).

The first pathologist correctly identified 99.6% of all
HCC images while the second pathologist correctly identified

99.4% of all HCC images (Table 2); four images were misin-
terpreted by both as being LM. In the case of LM, the first
pathologist identified 98.4% of the images and the second
pathologist identified 98.8% of the images (Table 3);17 images
were misinterpreted by both as being HCC. No normal
parenchyma image was misinterpreted by any of the two
pathologists, and no image from any of the tumors was
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TABLE 2: Number of correct interpretations of random images by the
first pathologist.

Correct diagnosis

Identified as. ..

HCC LM Normal tissue
HCC 1046 4 0
LM 22 1378 0
Normal tissue 0 0 2450

TABLE 3: Number of correct interpretations of random images by the
second pathologist.

Correct diagnosis

Identified as. ..

HCC LM Normal tissue
HCC 1044 6 0
LM 17 1383 0
Normal tissue 0 0 2450

interpreted as normal. When they reviewed all images from
each case, both pathologists gave the correct diagnosis on a
per case basis.

3.3. Fractal Analysis of Histological Images. The interface
allowed us to select the hue interval and the saturation level
manually and set the reference values for all images. This was
possible for two independent elements, in our case for cellular
nuclei and vascular vessels (see Figures 1(a) and 1(b)). Visual
inspection of a given image was possible; however, FDs were
batch-calculated by the software (Figure 1(c)). Overall, the
automated segmenting algorithm correctly selected 92% of
the HCC image sets (1932/2100) and 90% of the metastases
sets (2520/2800). Manual corrections were applied to the
other images in order to provide an accurate FD calculation
(i.e., not to over- or underselect a certain element, either
nuclei or vascular vessels). We thus obtained the two sets of
variables to be fed into the first ANN system—the FDs for
nuclei and for vascular elements (see Table 4 for an overview
of the data).

Once the ANN decided an image represented a malignant
area, the software calculated two median FDs per image and
further fed the data on a per patient basis to the second ANN
system, in order to evaluate whether it is a case of HCC or of
LM (see Figure 3 for details on the working protocol).

3.4. The ANN Decision System. The first ANN system suc-
cessfully identified all 2450 images obtained from the two
tumor types (Table 5). However, the system misinterpreted 57
(2.32%) images of healthy parenchyma as being malignant.
The overall sensitivity and specificity of the first ANN were
100% and 97.6%, respectively.

The second ANN system thus received 2507 images as
malignant (including the 57 misinterpreted images from the
first ANN analysis). Its sensitivity was 90.19% and specificity
was 86.78%. It correctly classified 947/1050 (90.2%) and
1215/1400 metastases (86.78%) and classified the wrongly
included parenchyma images into HCC (27 images) and LM
(30 images).

TABLE 4: Distribution of FDs obtained for individual cell nuclei and
blood vessels via automated analysis. This data constituted input
parameters for the first ANN.

Cell nuclei Blood vessels

Median FD per element

HCC 1.78 1.83

LM 1.64 1.41

Normal tissue 1.21 112
Minimum FD per element

HCC 1.23 1.63

LM 1.18 1.11

Normal tissue 1.03 1.02
Maximum FD per element

HCC 1.91 1.96

LM 1.94 1.63

Normal tissue 1.68 1.36

TaBLE 5: Number of correct interpretations of random images (after
the completion of the training phase) by the ANN system.

Correct diagnosis

Identified as.. .

HCC LM Normal tissue
HCC 947 103 0
LM 185 1215 0
Normal tissue 27 30 2403

We then proceeded to calculate the Kappa level of agree-
ment between the CAD system and the two human operators,
obtaining excellent agreement in both comparisons. The
results are presented in Table 6.

4. Discussions

We present here what we believe is the first automated
system to integrate fractal image analysis of liver tumors
and parenchyma into a computer-aided diagnostic system,
by providing fractal dimensions to a combined system of
single-layer feed-forward artificial neural networks that can
classify histology images into liver primary or secondary and
recognize normal parenchyma.

We have previously reported in a pilot study [25] the
first results of using FD in discriminating between HCC
and various cases of LM; our previous results showed good
discriminating capabilities of this morphometric parame-
ter on a small number of cases with a large number of
extracted images. We now established on this extended lot of
prospectively selected patients that indeed FD can be used to
discriminate between malignant and benign histology images
and more specifically can differentiate HCC from LM.

Fractal analysis relies on the morphological complexity
and the intrinsic self-similarity that most natural shapes
occurring in nature possess. Calculation of FD is performed
by quantifying the ability of an item to fill the space it
resides in. For bidimensional structures that are represented
in the plane of a digitized image, for instance, the FD can
only be between 1 (corresponding to a straight line) and 2
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TABLE 6: The level of agreement between the CAD system relying on FDs and the human operators that subjectively evaluated the images.

Comparison Kappa Standard error 95% confidence interval Force of concordance
Observer 1 and CAD 0.978 0.003 0.973-0.983 Excellent
Observer 2 and CAD 0.898 0.005 0.887-0.909 Excellent

(a filled circle that matches the density of the space). Usage
of FD has proved to be beneficial in pathology, as various
structures could be evaluated in this manner, especially in
neural structures, tumor angiogenesis, or fibrotic processes
within the liver [31-35].

The RGB color model is good for presenting images on a
computer screen to a human operator, as it mimics the human
eye model. The problem with its Cartesian representation (a
cube with each axis representing a base color) is that it is
nonintuitive in the matter of the “next” or closest color when
trying true images color comparisons. Moreover, we used
real images from histological stained tissue in which we were
interested in brown (CD31/34 immunolabeling for vessels)
and blue (hematoxylin for nuclei) colors. It was thus possible
to have similar values of both colors in the same pixel and
therefore we could not decide if it is part of the element of
interest or of the surrounding elements. The HSV is one of
the most common cylindrical-coordinate representations of
points in an RGB color model. The representation rearranges
the geometry of RGB in an attempt to be more intuitive and
perceptually relevant than the Cartesian representation.

Delides et al. [16] used FD as a prognostic factor for
laryngeal carcinoma, while Goutzanis and his team proved
that increased FD for cellular elements is inversely correlated
with survival in oral cancer. The results presented in our
study can be successfully applied when analyzing response
to chemotherapy. It can evaluate the posttreatment state of
newly formed blood vessels after Sorafenib usage and can
possibly stratify patients according to response rates.

A very recent study concluded that if a resected liver
tumor contains poorly differentiated components, it is safe
to assume poor prognosis and high recurrence rates [36].
The system described here can find its utility in this field, as
FDs are sensitive morphometric tools for assessing cellular
and vascular features. Other previous studies also theorized
on the usage of FD in cancer prognosis [34, 35]; our system
integrates ANNs into the diagnosis and therefore can increase
the specificity and sensitivity of such a method.

Our system relied on a perceptron feed-forward hidden-
layer ANN and used back-propagation algorithms. This setup
was proven to be the better choice when designing medical
diagnosis tools; its simple architecture is best suited to avoid
overfitting and is at the same time one of the fastest available
[20, 27]. The use of automated image interpretation tools in
medicine greatly depends on the quality of the data received
by the system, and machine-based learning systems can
increase the accuracy of any image analysis tool that is based
on quantitative assessment of feature elements [37-40]. The
effectiveness of this layout was proven by excellent training
and validation times, with few cycles being sufficient for
optimal results. The testing phase maintained the fast rates
already shown in the previous phases. We calculated the

Kappa coeflicient in order to determine the interobserver
agreement between the ANN system and human operators
and found excellent correlation between their interpretations.

The system can therefore be integrated in training
applications for medical practitioners or can serve as an
independent assessor for aiding pathologists in presenting
a diagnosis. It will be available on the World Wide Web
as a free online tool and can be accessed at the address
hepfracnet.umfcv.ro. Current imaging analysis methods are
heavily dependent on the experience of the pathologist,
and they rely on subjective interpretations; introducing a
parameter that is size irrelevant such as FD in conjunction
with a learning system can prove to be extremely beneficial
for improving both the time needed for a diagnosis and
medical decisions. Previous studies [22-24] showed that both
tumor grade and vascular invasion can be predicted by the
use of ANNSs; furthermore, clinical decision-making can
benefit from the use of computer-aided diagnostic systems.

Our study suffers from some limitations; HCC patients
that qualify for liver resection are usually selected from those
with an early diagnostic and are therefore somewhat less
frequent. Therefore, we could not include a large number
of patients and also did not try to stratify the lot based on
histological grading. We believe that in such low numbers
the system can be able to differentiate different stages of
HCC; however, these results may not be reproducible in
larger cohorts. Our pilot statistical study on the usage of FDs
for HCC diagnosis [25] showed promising results in terms of
identifying the type of LM; however, as we already predicted,
these results could not be reproduced in this larger-scale
design. The study may benefit from an increased number of
heterogeneous images from more HCC cases, as the nature
of ANNs is to evolve with an increased training dataset.
Also, experimenting with other architectures or types of
machine learning techniques may provide improved results.
The use of other patient data (from both patient history and
blood tests, for instance) as well as imaging parameters can
greatly improve the accuracy of a CAD system in diagnosing
liver focal lesions. In this manner, as some of our previous
researches suggest, metastases can be further classified
according to origin and a multitude of other liver lesions
may be well diagnosed [27-29].

In conclusion, we successfully proved that nuclear and
vascular FDs calculated from histological images are good
quantifiers for morphological aspects of liver parenchyma
and can therefore fit perfectly as input variables in a
perceptron feed-forward hidden-layer ANN system. Our
implementation could distinguish between malignant and
benign histological images and further classify malignant
images into either HCC or LM, thus distinguishing between
primary and metastatic tumors within the liver. This system
may have excellent applications in telemedicine, medical
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training, or time-efficient diagnostic of HCC cases and can
positively influence response to both surgical and drug-based
treatments.
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