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Abstract

Octamer-binding transcription factor 4 (Oct4) is a core regulator in the retention of stem-

ness, invasive, and self-renewal properties in glioma initiating cells (GSCs) and its overex-

pression inhibits the differentiation of glioma cells promoting tumor cell proliferation. The Pit-

Oct-Unc (POU) domain comprising POU-specific domain (POUS) and POU-type homeodo-

main (POUHD) subdomains is the most critical part of the Oct4 for the generation of induced

pluripotent stem cells from somatic cells that lead to tumor initiation, invasion, posttreatment

relapse, and therapeutic resistance. Therefore, the present investigation hunts for natural

product inhibitors (NPIs) against the POUHD domain of Oct4 by employing receptor-based

virtual screening (RBVS) followed by binding free energy calculation and molecular dynam-

ics simulation (MDS). RBVS provided 13 compounds with acceptable ranges of pharmaco-

kinetic properties and good docking scores having key interactions with the POUHD domain.

More Specifically, conformational and interaction stability analysis of 13 compounds through

MDS unveiled two compounds ZINC02145000 and ZINC32124203 which stabilized the

backbone of protein even in the presence of linker and POUS domain. Additionally,

ZINC02145000 and ZINC32124203 exhibited stable and strong interactions with key resi-

dues W277, R242, and R234 of the POUHD domain even in dynamic conditions. Interest-

ingly, ZINC02145000 and ZINC32124203 established communication not only with the

POUHD domain but also with the POUS domain indicating their incredible potency toward

thwarting the function of Oct4. ZINC02145000 and ZINC32124203 also reduced the flexibil-

ity and escalated the correlations between the amino acid residues of Oct4 evidenced by

PCA and DCCM analysis. Finally, our examination proposed two NPIs that can impede the

Oct4 function and may help to improve overall survival, diminish tumor relapse, and achieve

a cure not only in deadly disease GBM but also in other cancers with minimal side effects.
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Introduction

Glioblastoma Multiforme (GBM) is a common and devastating malignant form of high-grade

glioma accounting 70% of central nervous system tumors [1, 2]. Despite surgical resection in

combination with radiation therapy and adjunct temozolomide (TMZ) chemotherapy, the

clinical prognosis and median overall survival of GBM patients remain grim with 12–14

months and 5-year survival with3-5% after initial diagnosis [3]. Despite its relatively low fre-

quency, GBM is responsible for 4% of all deaths caused by cancer [4]. Recurrence of malignant

tumors and therapeutic resistance within months following adjuvant therapy are the key con-

tributors to GBM patient’s death and the major challenges in treatment [5]. Evidence signposts

from some studies exposed that a small group of cells called “glioma stem-like cells” (GSCs)

underlie tumor propagation, drug resistance, and relapse after conventional therapy [6]. GSCs

exhibit a quiescence and self-renewal capacity which is responsible for tumor heterogeneity,

maintenance, and metastasis [7]. Therefore, there is an urgent need for specific targeted thera-

pies aiming at the elimination of GSC which could beat this devastating disease by rendering

inordinate significance to the therapeutic advancement of GBM.

Octamer-binding transcription factor 4 (Oct4) is well known as a core GSC regulator estab-

lishing a critical role in GSC maintenance including self-renewal, pluripotency, reprogram-

ming, cellular plasticity, and repressing differentiation [8, 9]. Oct4 belongs to POU (Pit-Oct-

Unc) transcription factor and comprises three domains namely (1) POU domain for DNA

binding (2) an N-terminal transactivation domain and (3) a C-terminal domain which acts as

cell type-specific transactivation domain [10]. The POU domain is composed of two subdo-

mains i.e. POU-specific domain (POUS) with four alpha-helices and the POU-type homeodo-

main (POUHD) domain with three alpha-helices tethered by a flexible linker (approximately

17 amino acid residues long) region [11, 12]. The helix of POUS and the N-terminal part of the

POUHD domain can interact with major groove and minor groove of DNA, respectively,

thereby triggering downstream gene transcription [13]. Oct4 only the member from the POU

family that plays a pivotal role in stem cell renewal and pluripotency; and cannot be replaced

by any other POU family to reprogram the induced pluripotent stem cell (iPSC) [14]. Expres-

sion of Oct4 is regarded to be restricted to pluripotent stem cells and its expression rapidly

down-regulated upon initiation of differentiation [15]. In recent years, a series of studies

reported that Oct4 is highly expressed in various benign and malignant tumors, including gli-

oma, lung cancer, bladder cancer, breast cancer, pancreatic cancer, hepatoma, and oral cancer

[8, 16]. In primary glioma, Oct4 was highly up-regulated and the expression levels were

increased in parallel with pathological grading [8, 17].

In some studies, it has been demonstrated that Oct4 cooperatively activated the SOX2 (sex-

determining region Y-box 2) enhancer region by interacting with SOX4 to maintain the stem-

ness properties of GSCs [18]. Further, Oct4 upregulated the phosphorylation of Stat3 to prolif-

erate the tumor cells and increased the expression of Nestin to inhibit the differentiation of

glial cells [17]. Together with NANOG, SOX2, and other transcription regulators, Oct4 acti-

vated both protein-coding genes and non-coding RNAs necessary for pluripotency which cor-

related with cell fate determination, proliferation, metastasis, drug resistance and invaded

from apoptosis in cancer cells [19, 20]. Oct4 maintained the cancer cell survival partly by

inhibiting apoptosis through the Oct4/TCL1/AKT1 pathway where Tcl1 enhances the kinases

activity of Akt1 to promote cell proliferation [21]. Most importantly, it has been reported that

the overexpression of the only Oct4 found to be a crucial factor for pluripotent of cancerous

cells including GBM [18], lung cancer [22], human oral squamous cell carcinoma, bladder

cancer, and seminoma cancer [21]. Downregulation of Oct4 resulted in the reduction of gli-

oma colony formation and cell proliferation in vitro and in vivo which indicates the vital role
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of Oct4 in tumorigenic activity in GBM self-renewal, aggressiveness, and pluripotency [17,

18].

Although Oct4 plays a pivotal role in the maintenance of pluripotency, stemness, aggres-

siveness, no small molecule inhibitors have been discovered yet to impede the function of

Oct4. Therefore, we hunt for potent small molecule inhibitors to abolish the function of Oct4

using in silico approach which can increase the survival rate not only in GBM patients but also

in most cancer patients. In this study, we investigated the disordered regions present in Oct4

using various tools followed by STRING analysis to explore the functional interactive networks

with other proteins. Subsequently, receptor-based virtual screening was performed to retrieve

potential leads from various natural product databases. Finally, the conformational and inter-

action stability of the complexes was evaluated through molecular dynamics simulation. From

this study, we identified two compounds showing stable interaction with Oct4 even in the

presence of the linker region and in dynamics conditions.

Materials and methods

Sequence analysis

The reviewed full-length protein sequence (UniProt ID: Q01860) of Oct4 was retrieved from

the UniProtKB sequence database [23] representing 360 amino acids (AA). The obtained

sequence was searched through DISPRED3 [24], IUPred2A [25], and PONDR [26] to analyze

the residue level of disordered propensity. In PONDR, the VL-XT predictor algorithm was

used to predict the disorder regions which uses three integrated feedforward neural networks:

the VL1 predictor [27], the N-terminus predictor (XN), and the C-terminus predictor (XC)

[28]. Subsequently, the updated version of STRING (Search Tool for the Retrieval of Interact-

ing Genes/Proteins) v11.0 [29] was employed to construct the functional interaction associa-

tive network and interaction of Oct4 with other proteins. Further, physicochemical properties

including molecular weight, isoelectric point, instability index, aliphatic index, and grand aver-

age hydropathicity (GRAVY) were computed by the ProtParam too [30] of Expasy Proteomic

Server [31].

Protein structure prediction and preparation

Since the structure of human Oct4 has not yet been solved experimentally, comparative model-

ing was executed using MODELLERv9.19 [32] to construct 50 3D models. The 3D coordinates

were generated based on the crystal structure of Mus Musculus Oct4 (PDB ID: 3L1P) [33] with

42% identity and 87.77% query coverage (For full length). The generated models were ranked

according to discrete optimized potential energy (DOPE) and the lowest energy model was

selected as the best model. Optimization followed by energy minimization of the best model

was performed by Protein preparation wizard until the root mean square deviation (RMSD) of

the non-hydrogen atoms touched 0.3Å by applying OPLS-AA force filed [34, 35]. The mini-

mized structure was evaluated using ProSA, and Saves server to check overall potential errors,

dihedral angle distribution, and calculate the non-bonded interactions between the atoms

respectively [36, 37]. The validated model was superimposed with the template structure to

investigate the reliability of the structure.

Molecular dynamics simulation

MD simulation was carried out to comprehend the stability and dynamic behavior of modeled

structure using Desmond with Optimized Potentials for Liquid Simulations (OPLS) 2005 force

field [38]. The protein was soaked with TIP3P as solvent inside an orthorhombic box and
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neutralized by adding appropriate counter ions and 0.15M of salt concentration [39]. The dis-

tance between the protein and box wall was set to 10Å to avoid the steric interaction with its

periodic image. Each simulation was subjected to energy minimization applying a hybrid

method of steepest descent and the Limited memory Broyden–Fletcher–Goldfarb–Shanno

(LBFGS) algorithms with maximum 5000steps until a gradient threshold was touched up to 25

kcal/mol [40]. The systems were relaxed by constant NVT (number of particles, Volume and

Temperature) ensemble conditions for 1ns to produce simulation data for post-simulation

analysis [41, 42]. The temperature was maintained at 300K for whole simulations using Nose-

Hoover thermostats and the Martyna-Tobias-Klein barostat method was used to maintain sta-

ble pressure. To examine the equation of motion in dynamics, a multi-time step RESPA inte-

grator algorithm was used [43]. The final equilibrated system was carried to perform a 100ns

molecular dynamics simulation and the result was analyzed through the event analysis module

of Desmond.

Binding site prediction and grid generation

The Druggability sites were identified through SiteMap implemented in Schrodinger [44].

SiteMap predicts the binding sites using Goodford’s GRID algorithm which locates the ener-

getically favorable sites by using the interaction energies between the protein and grid probes

[45]. The druggable sites were predicted by various physical descriptors such as size, the degree

of enclosure, the degree of exposure, tightness, hydrophobic, hydrophilic, hydrogen bonding

possibilities, and linking site points that promote protein-ligand interaction [46]. The sites

were then ranked based on the SiteScore (Eq 1) and Dscore (Eq 2) respectively.

SiteScore ¼ 0:0733n1=2 þ 0:6688e � 0:20p ð1Þ

Dscore ¼ 0:094n1=2 þ 0:60e � 0:324p ð2Þ

Where n is the number of site points, e is the enclosure score, and p is the hydrophilic score

[47]. After identification of ranked potential druggability sites, the sites were validated by

superimposing the modeled structure with the crystal structure (PDB ID: 3L1P) and the best

site was chosen for further study.

The validated and top-ranked druggability site predicted by SiteMap was prearranged as

Glide input files for the generation of the receptor grid [48]. The white sphere of SiteMap was

picked to distinguish the position of ligand applying van der Waals radius scaling factor of 1.0

and partial charge cutoff of 0.25 [49].

Ligand database preparation and ADME screening

Initially, the complete ZincNPD, NCINPD, and NPB databases were prepared using the Lig-

Prep module [50]. The optimized potential for the liquid simulation (OPLS)-2005 force field

was employed to preserve the original state and the chirality of ligands [51]. Further, the

Absorption Distribution Metabolism and Elimination (ADME) properties were evaluated by

employing the QikProp module of Schrodinger suite [52] to assess the druggability and filter

the drug-like molecules at an early stage before identifying the new inhibitors. QikProp pre-

dicts both physicochemical and pharmacokinetic properties of the compounds [53]. For con-

sidering the compound in the present study, the compound must satisfy the following criteria

1. Molecular weight of the molecule (mol_MW) 130.0–725.0

2. Predicted central nervous system activity on a –2 (inactive) to +2 (active) scale (CNS) –1 to

+2
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3. Hydrogen bond donor (donorHB) 0.0–6.0

4. Hydrogen bond accepter (accptHB) 2.0–20.0

5. Predicted octanol/water partition coefficient (QPlogPo/w) –2.0–6.5

6. Predicted aqueous solubility (QPlogS) –6.5–0.5

7. Predicted brain/blood partition coefficient (QPlogBB) –3.0–1.2

8. Predicted human oral absorption on 0 to 100% scale (PercentHuman-OralAbsorption)

25% is poor >80% is high

High throughput virtual screening

To identify novel potent inhibitors that interact with the druggable regions of Oct4, receptor-

based virtual screening (RBVS) was performed using the Virtual Screening Workflow (VSW)

available in Glide, Schrodinger [54]. Glide utilizes Systematic and Simulation methods to dis-

cern the conformations and flexibility of ligands [54]. The processed compounds were elapsed

through Glide based three stages of docking protocol such as High Throughput Virtual Screen-

ing (HTVS), Standard Precision (SP), and Extra precision (XP) [46]. In the first phase, HTVS

docking retrieved 10% of the top compounds based on their scoring values where fewer scor-

ing compounds were eliminated. The HTVS retrieved compounds were subjected to SP dock-

ing as input files and the top 10% screened compounds were passed through XP docking.

Glide XP mode determines all reasonable conformations for each low energy conformer in the

designated binding site [55]. The Glide scoring function (G-score) was applied to evaluate the

final energy and to pick the best conformation for each ligand during the docking procedure.

GScore is a modified and extended version of the empirical scoring function that combines

various parameters [56, 57]. The GScore is calculated in Kcal/mol as

GScore ¼ a � vdW þ b � Coul þ Lipo þ Hbond þ Metal þ Site þ BuryP
þ RotBð3Þ

Where vdW = Vander-Waals forces, Coul = columbic forces, Lipo = hydrophobic inter-

actions, Hbond = Hydrogen bonds, Metal = metal-binding term, Site = polar interactions in

the binding site, Bury P = penalty for the buried polar group, RotB = freezing rotatable bonds

and the coefficients of vdW and Coul are a = 0.065 and b = 0.130.

Induced fit docking

Induced fit docking (IFD) was performed to understand the specific interaction between the

modeled structure of Oct4 and screened compounds using IFD application in Schrodinger

[58]. IFD uses both rigid receptor docking (using Glide) and protein structure prediction and

refinement (using Prime) code to provide the best conformation. Initially, Glide [59] generates

possible conformations of the ligand and the top 20 poses of each ligand were refined by Prime

refinement module [60] via rotamer-based library optimizations of the protein side-chain con-

formations [61]. Finally, the putative docked complexes and poses were ranked using the

Glide score function and prime where the best complexes were chosen based on Glide docking

Score, energy, and visual inspection [62, 63].

Binding free energy calculation

The binding free energies of the putative complexes were calculated through prime-MM/

GBSA (Molecular Mechanics/Generalized Born Surface Area) [60] to cross verify the docking
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results of Glide XP and IFD. MM/GBSA is an elision of a procedure that integrates OPLS

molecular mechanics energies (EMM), an SGB solvation model for polar solvation (GSGB),

and a nonpolar solvation term (GNP) comprised of the nonpolar solvent accessible surface

area and van der Waals interactions [64]. The binding free energy calculation is expressed as

DGbind ¼ Gcomplex � ðGprotein þ GligandÞ ð4Þ

Where

G ¼ EMMþGSGBþGNP ð5Þ

The Gaussian surface area model instead of vdW was engaged by Prime for representing

the solvent-accessible surface area [65].

Molecular dynamics simulation

To investigate different conformation and interaction of the compounds within the binding

pocket of Oct4, molecular dynamics simulation was carried out using Desmond [38]. The

docking complexes were used as initial structures for computing 50ns MD simulation. The

structures were imported in the set-up wizard of Desmond and soaked with TIP3P inside an

orthorhombic box. All other steps were followed as mentioned in the free form of Oct4 protein

simulation. ProDyv1.10.10 was used to perform Principal component analysis (PCA) followed

by dynamic cross-correlation matrix (DCCM) and prody interface of the VMD-integrated

Normal Mode Wizard(NMW) was employed to construct porcupine plots [66].

Results and discussion

Identification of disordered region and in silico characterization

To analyze the propensity for the intrinsically disordered region of Oct4, the obtained precise

sequence (UniProt ID: Q01860) was subjected to PONDR VL-XT, DISOPRE3, and IUPred2A.

Disordered regions (DRs) were defined as the protein or some part of proteins that lack fixed

or ordered three-dimensional structures that can facilitate their interactions with other pro-

teins and allow more structural changes in the modeled structure [67, 68]. Fig 1 illustrated the

overall disorder profile of the Oct4 protein. According to PONDR VL-XT, Oct4 contains 163

(from 360) disordered residues that are characterized as 45.28% of overall disorder probability.

Further, PONDR VL-XT predicted that there are six DRs consist of at least 15 residues (resi-

dues 1–26, 42–59, 81–126, 218–243, 275–303 and 340–360). The dark black box shown in Fig

1a represented the disorder binding region which can get stable order structure during pro-

tein-protein interactions [69, 70]. DISOPRED 3 predicted the high confidence disorder region

at the C-terminal of Oct4 comprising approximately 87 residues long (residues 275–360). DIS-

OPRED 3 also determined three disorder-to-order transition regions (residues 1–21 of N-ter-

minal, 210–230 and 280–360 of C-terminal) which can be stable structure upon binding with

other proteins (Fig 1b). IUPred2A illustrated that the N-terminal and C-terminal are disorder

regions and Oct4 contains a sensitive disorder region (residues 59–79) that can undergo disor-

der-to-order transition to form a stable conformation (Fig 1c) [25]. PONDR VL-XT and DIS-

OPRED 3 showed a similar pattern of disorder region prediction except at the C-terminal

whereas IUPred prediction varies from N-terminal to C-terminals. Despite their different

algorithm to predict the disorder regions, all servers categorized the approximately first 25

amino acid residues of the N-terminal, 77–125 amino acid residues and 286–300 residues of

the C-terminal region of Oct4 as intrinsically disordered region (Fig 1d).
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Protein interaction patterns of Oct4 were investigated through the STRING database using

the sequence search tool and the interaction map illustrated in Fig 2. The generated interaction

diagram from STRING disclosed that Oct4 interacts with SOX2, Nanog, KLF4, ZSCAN10,

CDX2, EPAS1, FOXD3, and so on (Table 1). Oct4 heterodimerizes with SOX2 and generates

induced pluripotent stem cells from differentiated cells [71, 72]. Oct4 together with other tran-

scription factors viz. KLF4, ZSCAN10 possesses a magic power to reprogram the pluripotency

in differentiated cells; to maintain embryonic stem cells, proliferation, self-renewal features

and prevent cell differentiation [73, 74]. Oct4 cooperating with SOX2 and NANOG regulates

several gene expression where these genes play a key role in signaling pathways that attribute

Fig 1. Intrinsically disordered predisposition of Oct4 protein. a) PONDR VL-XT b) DISOPRE3 c) IUPred2A d) comparison of

three predicted results.

https://doi.org/10.1371/journal.pone.0255803.g001
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pluripotency, reoccurrence, and self-renewal of tumor cells [19, 72]. FOXD3 suppresses the

interneuron differentiation by restricting the neural progenitor cells to the lineage neural crest

and maintain the pluripotency [75]. FOXD3 controls the expression of Oct4, NANOG, and

SOX2 and participates in the maintenance of stemness, pluripotency, and survival of precursor

cells [76]. EPAS1 promotes the Oct4 expression which regulates the maintenance, differentia-

tion, and survival of stem cells thereby contributing to tumor-promoting activity [77]. More-

over, the interaction network result proposed that Oct4 communicated with mostly

transcription factors which play a key role in stem cell maintenance, pluripotency, angiogene-

sis, survival, and self-renewal and repress cell differentiation.

The various physicochemical properties are very important to characterize the protein

which was computed through the ProtParam Tool. The ProtParam Tool found that the molec-

ular weight of Oct4 was about 38.57 KDa. The isoelectric point (pI) is the pH where the protein

net charge will be zero but the surface will be enclosed with the charge which makes the

Fig 2. Protein-protein interaction map of Oct4 generated using online tool STRING. The pink colored rectangular node

represents the query protein (Oct4).

https://doi.org/10.1371/journal.pone.0255803.g002
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protein stable and compact. The pI of the Oct4 was 5.69 indicating the acidic nature (pI<7) of

the protein. The aliphatic index (AI) such as relative volume of the protein occupied by ali-

phatic side chains such as alanine, valine, isoleucine, and leucine considered as positive factors

for the increase of thermal stability of globular proteins [78]. The AI value of Oct4 was 66.61

indicating that Oct4 protein may be stable for a wide range of temperatures. Smaller than 40

instability index considered as stable protein, above 40 considered that the protein may be

unstable. The instability index of Oct4 is 53.24 which demonstrated that the protein is unsta-

ble. The GRAVY of Oct4 is -0.435 indicated the hydrophilic nature of the protein [79].

Protein structure prediction and stability evolution

Since we hunt to identify small molecule inhibitors to abolish the activity of Oct4 thereby we

focused on the Oct4 POU domain subdivided into POUs and POUHD domains (amino acid

residues 138–287) [80] which is the most critical part of the protein for iPSC generation [12,

14]. MODELLERv9.19 was utilized to generate 50 3D coordinates of the Oct4 POU domain

based on template PDB structure of Mus Musculus (PDB ID: 3L1P) with 88.67% identity and

100% query coverage (for residues 138–287) [81]. The model structure having a minimum

DOPE score was considered as the best model and subjected for validation through ProSA,

and SAVES server. The model structure was visualized and shown in Fig 3a and compared

with the backbone structure of the template in Fig 3b. The accurate model must have the root

mean square deviation (RMSD) value less than 2Å while the superimposed structure of the

model protein and template was found to be RMSD of 0.102Å using Pymol [82] indicating

both the proteins were well matched. PROCHECK examines the stereochemical quality of a

protein structure by analyzing residue-by-residue geometry and overall structure geometry

Table 1. Tabulated representation of interacting network of Oct4 with other important proteins from STRING database.

Node 1 Node 2 Coexpression Experimentally determined STRING database annotated Automated text-mining Total score

POU5F1� SALL4 0.162 0.465 0.9 0.882 0.994

POU5F1 SALL1 0.061 0.139 0.9 0.438 0.948

POU5F1 ZSCAN10 0.232 0.079 0.9 0.441 0.955

POU5F1 SMAD4 0 0.058 0.9 0.434 0.942

POU5F1 SOX17 0 0.475 0 0.9 0.945

POU5F1 SMAD2 0.049 0.064 0.9 0.555 0.955

POU5F1 ZIC3 0.097 0.152 0.9 0.504 0.957

POU5F1 STAT3 0.062 0.065 0.9 0.694 0.969

POU5F1 PRDM14 0.158 0.079 0.9 0.694 0.973

POU5F1 TDGF1 0.288 0.162 0.9 0.813 0.987

POU5F1 SOX2 0.089 0.538 0.9 0.984 0.999

POU5F1 KLF4 0.055 0.079 0.9 0.945 0.994

POU5F1 NANOG 0.278 0.262 0.9 0.985 0.999

POU5F1 CDX2 0.062 0.266 0 0.927 0.945

POU5F1 EPAS1 0 0.262 0.9 0.326 0.945

POU5F1 FOXD3 0.116 0.379 0.9 0.744 0.984

POU5F1 FGF2 0 0 0.9 0.804 0.979

POU5F1 DPPA4 0.273 0.118 0.9 0.663 0.975

POU5F1 LIN28A 0.356 0 0.9 0.943 0.996

POU5F1 PBX1 0 0.052 0.9 0.422 0.94

� POU5F1 generic name of Oct4.

https://doi.org/10.1371/journal.pone.0255803.t001
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and imparts amino acid residues distribution on the Ramachandran plot [83]. In comparison

with template structure (3L1P) Ramachandran plot, it was evident that 90.2% of the residues

from modeled Oct4 structure were in the most favoured region, 8.7% of the residues were in

the additional allowed region, 0.7% of the residues were in the generously allowed region and

0.4% of the residues were in the disallowed region while for template structure (3L1P) 90.2%

of the residues were in the most favoured region, 8.3% of the residues were in the additional

allowed region, 1.1% of the residues were in the generously allowed region and 0.4% of the res-

idues were in the disallowed region (Fig 3c). The model validation results from PROCHECK

informed that the backbone dihedral angles of ψ and φ angles in the model were reasonably

accurate. The secondary structure of the protein was predicted by PSIPRED [84] and provided

in S1a Fig. ERRAT uses the statistical relation of non-bonded interactions between different

atom types to analyze the structure. It evaluates the overall quality of the model and produces

values around 95% or higher for high-resolution structures and values around 91% for low-

resolution structures [85]. ERRAT predicted value of 92.53% for model structure and 94.66%

for 3L1P suggested that the overall quality factor of the protein structure was satisfactory (S1b

Fig). Furthermore, the predicted 3D coordinates of Oct4 was subjected to ProSA for checking

the potential errors. ProSA calculates the Z-score which includes the overall quality of the

model and deviation of total energy in the random conformation concerning to the energy

Fig 3. Best 3D structure of the homology model Oct4 and validation result. a) Model structure predicted through modeler where green color circle

represented the POUs domain and red color showed POUH domain. b) Structural alignment of model structure with the crystal structure (PDB ID:

3L1P) where model structure displayed in blue color and crystal structure in deep pink color; c) Ramachandran plot for model structure (top) and

template structure (3L1P) (bottom) showing the energetically allowed regions for backbone dihedral angles ψ against ϕ of amino acid residues; d) The

calculated quality (Z) scores generated by ProSA in the context of all experimentally determined protein structures. The top panel Fig represents the

modeled structure and the bottom panel represents the template structure (PDB ID: 3L1P).

https://doi.org/10.1371/journal.pone.0255803.g003
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distribution of the predicted model [36]. The Z-score of the template 3L1P and target was

-4.68 and -4. 38 respectively indicating that the model structure was similar to the template

structure (Fig 3d). The knowledge-based energy for model structure and template structure

was displayed the S1c Fig. The results from various servers recommended that the predicted

model was more reliable in terms of main chain stereochemistry and overall quality factors.

Stability and fluctuations in the model protein Oct4 were evaluated by subjecting molecular

dynamics (MD) simulation using Desmond utility implemented in the Schrodinger’s Maestro

suite. Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of

gyration (ROG), and Secondary structure element (SSE) of Oct4 was monitored during the

100ns MD simulation. The backbone RMSD graph presented in Fig 4a explored that the

model structure was quite unstable throughout the simulation with an RMSD value from 6Å
to 17Å. The C-alpha RMSF supported RMSD results with an RMSF value of 3Å to 12Å and

inferred that the whole region of the model protein fluctuated with higher structural motion

(Fig 4b). ROG was analyzed to examine the compactness of the model protein which showed

that the structure was highly destabilized till 50ns with 18Å to 24Å leading to the loss of protein

compactness and the deviation was reduced after 60ns (Fig 4c). SSE was investigated to check

overall protein structure stability which confirmed that the protein structure had average con-

formation with 60% SSE, mainly composed of helices and loops rather than strands and turns

that showed conformational changes during MD simulation (Fig 4d). As per the report from

Yesudhas et al., Oct4 displayed more deviation due to only separation of 3 base pairs from the

Fig 4. Stability evaluation results of predicted 3D coordination of Oct4 through molecular dynamics simulation. a) Backbone RMSD; b) C-

alpha RMSF of Oct4; c) ROG for Oct4; d) SSE percentage and its occupancy of helices (orange), strands, turns and loops (white) over 100ns time

period with reference to the index of the residue.

https://doi.org/10.1371/journal.pone.0255803.g004
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Oct4 and Sox2 DNA-binding sites [86] then it is obvious to exhibit high deviation and instabil-

ity of Oct4 without any interacting proteins or DNA. The dynamics results suggested that the

system showed a noticeable aspect of conformational changes which may be stable in the pres-

ence of some macromolecules or small molecules.

Druggable pocket prediction, ligand filtration, and identification of potent

inhibitors through virtual screening

The final validated model was used as an input structure to identify potentially druggable

pocket for virtual screening using the SiteMap tool of Schrodinger. SiteMap predicted three

druggability sites i.e. Site-1, -2, and -3 with site scores 0.730, 0.718, and 0.614 respectively.

Details of other outputted results from this calculation presented in Table 2. The site score was

calculated by analyzing various physical descriptors such as size, degree of enclosure, degree of

exposure, tightness, hydrophobic, hydrophilic, hydrogen bonding possibilities, and linking site

points that contribute to the binding of ligand with protein [87]. By considering site score,

druggability score (Dscore), and volume, Site-1 was considered for further screening of potent

small molecules and displayed in Fig 5a. The site score and Dscore of one or above for each

considered a suitable site for the ligand binding and regulating the activity of protein with

compounds [87]. The selected site having scores near to one was thought to be an appropriate

active pocket for binding of the drug-like compounds. Further, the accuracy of the predicted

binding site was evaluated by superimposing with the template structure 3L1P (complex with

DNA) which showed that the selected druggability pocket (Site-1) was well placed at the bind-

ing site of DNA in the crystal structure (Fig 5b). Site-1 was found on the POUHD domain of

Oct4 which interacts with the DNA sequences. The superimposition of DNA and modeled

Oct4 protein labeled with active site residues has been displayed in Fig 5c. Some studies veri-

fied through crystal structure [88] and simulation [89] that POUHD Domain bound to noncon-

sensus DNA sequences which is a key in the biological function of Oct4 including stem cell

maintenance, self-renewal, and pluripotency [90, 91]. The validated results indorsed that

druggability Site-1 was the best site to generate a receptor grid for further molecular docking

studies.

In this study, optimized natural compound databases ZincNPD, NCINPD, and NPB con-

taining a total of 155819, 55958, and 8395 compounds (with their conformers) were subjected

to ADME filtration to discriminate the drug-like compounds targeting the central nervous sys-

tem. This process provided the advantages to reduce false positives and elude compounds hav-

ing poor pharmacokinetic outlines [92]. As mentioned in the materials and method section,

the significant ADME parameters were calculated using QikProp [52] and a standalone library

was formed compressing a total of 101572 compounds as results of the defined filtration crite-

ria. Further, the filtered compounds were carried forward for receptor-based virtual screening

(RBVS) to identify potent small molecule inhibitors against Oct4. Before performing RBVS,

the receptor grid was generated by prearranging a selected sitemap (Site 1) on the protein

active site to calculate the potential docking score of the drug-like compounds. A multi-tried

screening protocol was performed starting from high throughput virtual screening (HTVS),

Table 2. SiteMap generated druggability site score results.

Number of Sites Site Score Dscore Volume Number of Amino acid residues

Site 1 0.730 0.682 134.799 234,235,246,237,280,281,273,284,242, 276,277

Site 2 0.718 0.652 68.257 146,139,190,192,193,194,142,197,143, 198

Site 3 0.614 0.497 64.141 169,224,225,227,228,229,172,173,178

https://doi.org/10.1371/journal.pone.0255803.t002
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followed by standard precision (SP) to extra precision (XP) where ligand was considered as

flexible and protein as rigid [59, 93]. HTVS screens large databases very fast by reducing the

number of intermediate conformations with rough scoring function while SP is ten times

slower and more accurate than HTVS. XP performs extensive sampling by employing a more

sophisticated scoring function than the SP scoring function. XP specifically eliminates false

positives that collected through SP by penalizing the ligands based on the ligand-receptor

shape complementarity [48, 54]. Top 10157 (10% of 101572) compounds were considered

from the HTVS docking and subjected to SP docking. Among 10157 compounds, 1015 com-

pounds from the SP docking were passed through XP docking. Lastly, we got 101 complexes as

a result of XP docking. The top 30 complexes were examined through visualization in ordered

to better understand the binding mechanism of the compounds (S1 Table in S1 File). Based

on docking score and interaction study 13 compounds were chosen and subjected to induce fit

docking for further estimation of binding mode. The predicted drug-like properties of the

selected compounds were listed in S2 Table in S1 File. All the selected compounds displayed

good pharmacokinetic properties under the satisfactory range including CNS activity, blood-

brain barrier permeability, and human oral absorption which appeared to be suitable as leads

for further development of anti-GBM drugs.

Fig 5. The identified druggability region of Oct4 by SiteMap. a) the active region of Oct4 with the different colored surface where red represents

negative, blue represents positive and yellow represents hydrophobic regions; b) Superimposition of predicted druggability pocket with the co-crystal

DNA complex protein (PDB ID: 3L1P) where model structure displayed in blue color and crystal structure in deep pink color; c) close-up

representation of binding site with amino acid name and numbers.

https://doi.org/10.1371/journal.pone.0255803.g005
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Lead conformation validation through induce fit docking (IFD) and pose

rescoring with MMGBSA

The thirteen selected compounds were redocked through induce fit docking to evaluate the

binding mode. The most important feature of IFD is that the ligand, active site residues of the

protein and its vicinity are considered as flexible for better assessment of protein-ligand inter-

actions [62, 94]. The IFD results of 13 compounds were given in Table 3 and shown in Fig 6a

which clarified that the screened compounds had more affinity to Oct4 with docking score

from -6.099 to -9.895Kcal/mol. The docking results demonstrated that ZINC20410920 exhib-

ited the highest IFD score (-338.45Kcal/mol) and docking score (-9.895Kcal/mol) with the

development of five hydrogen bonds with R242, I237, S236, N280, and R234 and one salt

bridge with K284. ZINC02145000 was the second-highest scored hit with an IFD score of

-333.34Kcal/mol which communicated with Oct4 by establishing three hydrogen bonds with

T235, R242, and N280; one salt bridge with K284; and one pi-pi interaction with W277. The

compounds NPB7083 and ZINC00519647 interacted with protein by forming six hydrogen

bonds with IFD scores of -329.30Kcal/mol and -329.10Kcal/mol respectively. Both NPB7083

and ZINC00519647 established nearly similar interactions with less differentiation, for

instance, four common hydrogen bonds with R281, N280, W277, R234, and R242. The varia-

tion was that NPB7083 showed one hydrogen bond interaction with K284; two pi-cat interac-

tions with K284, and R234; and one pi-pi connection with W277 whereas ZINC00519647

showed only one hydrogen bond with T235. The amino acid residues R232, R234, W277, and

N280 of the protein involved in hydrogen bond interactions and K231 participated in salt

bridge formation with compound NSC292567. Mostly, all the selected hits showed common

interactions with the amino acid residues R281, N280, W277, R234, T235 and R242 which

showed similar interactions as stated by literature that the amino acid residues R234, R242,

Table 3. Induce fit docking results of top thirteen screened potential compounds with different score and interactions with protein.

Sl. No. Compound ID IFD Score Docking Score Glide energy Glide e-model H-bond interacting residues Other interacting residues

1. ZINC20410920 -338.45 -9.895 -55.504 -57.821 R242, I237, S236, N280, R234 �Sltb: K284

2. ZINC02145000 -333.34 -9.441 -52.716 -67.745 T235, R242, N280 �Sltb: K284

Pi-pi-W277

3. NSC292567 -331.08 -8.389 -42.882 -53.854 R232, R234, W277, N280 �Saltb: K231

4. NPB7083 -329.30 -7.391 -61.011 -90.673 R281, N280, W277, R234, K284, R242 Pi-pi: W277

#Pi-cat: K284, R234

5. ZINC00519647 -329.10 -7.687 -43.550 -49.652 R281, N280, W277, R234, T235, R242

6. ZINC85876856 -328.87 -6.099 -45.740 -63.145 W277, K284, R234, T235 #Pi-cat; R242, R234

7. ZINC08764609 -328.40 -8.775 -48.687 -56.841 N280, K284, R234, R242

8. ZINC15967742 -328.27 -7.493 -56.415 -67.500 R234, T235, R242, K285 �Sltb: R232

Halogen: K233

#Pi-cat: R242

9. ZINC32124203 -328.13 -7.164 -45.871 -60.598 K284, N280, W277, R242 �Sltb: R234

#Pi-cat:K284

10. ZINC02092319 -326.68 -6.862 -57.754 -87.322 K284, N280, T235 #Pi-cat: K233

11. ZINC14759216 -326.18 -6.964 -46.202 -67.032 E246, N280, T235 Pi-pi: W277

12. NSC83439 -325.06 -8.359 -33.945 -46.796 R242, K284, T235, N280 �Sltb: K284

13. NPB4533 -324.95 -6.466 -47.752 -66.822 K284, N280, R234, I237

� Sltb: Salt Bridge.

# Pi-cat: Pi-cation.

https://doi.org/10.1371/journal.pone.0255803.t003

PLOS ONE Octamer-binding transcription factor 4 blockers identification through computational approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0255803 October 6, 2021 14 / 30

https://doi.org/10.1371/journal.pone.0255803.t003
https://doi.org/10.1371/journal.pone.0255803


K254, R275, N280 and Q283 from POUHD domain were establishing consistent interactions

with DNA [13, 86]. The 3D interaction of the best five compounds of IFD docking was illus-

trated in Fig 6b-6f where hydrophobic interactions were presented in LigPlot schematic dia-

grams [95]and other compound interactions displayed in S2 Fig. The XP docking followed by

IFD docking results concluded that a funnel base docking can provide effective compounds

[46].

In the comparison of IFD with XP docking scores and interactions, it was evidenced that

ZINC20410920 and ZINC02145000 maintained the same interactions and docking scores as

XP docking (Table 3 and S1 Table in S1 File). All compounds showed variable IFD score and

Fig 6. A close view of interacting residues of Oct4 establishing connections with screened compounds. a) A glance of thirteen

screened compounds binding mode inside the Oct4 DNA binding pocket; b) the 3D image of ZINC20410920 displayed its

communication with Oct4 by forming H-bonds and 2D interaction map generated by LigPlot representing the hydrophobic interaction;

c) ZINC02145000 interacting image; d) NSC292567; e) NPB7083; f) ZINC00519647.

https://doi.org/10.1371/journal.pone.0255803.g006
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docking energy in comparison to XP docking but when we considered interaction wise, we

found that the selected compounds established almost the same interactions as XP docking

along with some extra connections. For instance, NSC292567 developed interactions with

R232, R234, W277, N280, and K231 in IFD docking whereas in XP docking it showed its

engagement with T235, R234, and R232 residues only. The compound NPB7083 displayed its

connection with R281, N280, W277, R234, K284, and R242 in IFD docking however in XP

docking it communicated with only amino acid residues N280, K284, T235, and R234 of Oct4.

Table 4. Calculated binding free energies (Kcal/Mol) of the screened compounds.

S. No. Compound ID ΔG Bind ΔG Bind coulomb ΔG Bind vdw ΔG Bind covalent ΔG Bind solv GB ΔG Bind Lipo ΔG Bind Hbond

1. NPB7083 -85.28 -42.64 -51.76 3.34 45.19 -29.99 -4.72

2. ZINC02092319 -81.91 -30.95 -49.58 1.50 27.82 -24.34 -2.58

3. ZINC15967742 -66.16 -188.44 -40.03 4.11 180.02 -12.98 -6.64

4. ZINC20410920 -82.80 -385.72 -37.16 2.01 358.51 -13.62 -6.60

5. ZINC02145000 -59.46 -477.75 -31.57 1.31 465.59 -12.08 -3.28

6. ZINC08764609 -71.18 -176.91 -36.39 1.29 170.70 -23.72 -4.31

7. NPB4533 -59.72 -32.02 -40.74 2.11 31.48 -17.80 -2.72

8. ZINC14759216 -66.36 -31.36 -33.19 1.05 25.33 -20.06 -2.99

9. ZINC32124203 -59.26 -221.64 -36.54 1.28 218.43 -12.18 -4.19

10. ZINC85876856 -60.03 -35.88 -31.31 -0.22 31.26 -13.48 -4.15

11. ZINC00519647 -55.79 -231.64 -34.05 5.04 225.82 -15.25 -2.97

12. NSC292567 -70.97 -208.81 -37.47 2.52 193.07 -13.17 -7.11

13. NSC83439 -51.52 -145.10 -28.66 3.47 137.66 -15.37 -3.52

https://doi.org/10.1371/journal.pone.0255803.t004

Fig 7. Docking energy and binding energy comparison of screened compounds.

https://doi.org/10.1371/journal.pone.0255803.g007

PLOS ONE Octamer-binding transcription factor 4 blockers identification through computational approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0255803 October 6, 2021 16 / 30

https://doi.org/10.1371/journal.pone.0255803.t004
https://doi.org/10.1371/journal.pone.0255803.g007
https://doi.org/10.1371/journal.pone.0255803


ZINC00519647 exhibited six interactions in IFD docking with the amino acid residues R281,

N280, W277, R234, T235, and R242 and it showed connections with the residues K284, N280,

T235, and R234 in XP docking. Based on both rigid and flexible receptor with better scoring

and interacting amino acid residues, the screened hits were taken for further validation

through binding free energy calculation and molecular dynamics simulation.

The confirmations of the docking results and ligand efficiency were determined by calculat-

ing binding free energy through prime-MM/GBSA (Molecular Mechanics/Generalized Born

Surface Area) [60]. Additionally, the MM-GBSA scoring usually provides a significant correla-

tion with experimentally determined data [96, 97]. The calculated binding free energy for the

screened compounds using the OPLS-AA force field and the GBSA continuum solvent were

represented in Table 4. The calculated binding free energy of the different screened hits was

ranged from -51.52 to -85.28Kcal. The ligand molecule was considered as best which utilizes

less energy to comfort inside the active pocket of the protein [94]. Docking energy and binding

energy were compared to validate the docking pose and the comparison result was displayed

in Fig 7. As predicted by MMGBSA, NPB7083 exhibited the highest negative binding free

energy (-85.28Kcal/mol) which correlated well with the docking energy (-61.011Kcal/mol).

The compound ZINC20410920 was predicted as the second-best binder by the MM/GBSA cal-

culation with a calculated binding free energy of -82.80Kcal/mol and docking energy of

-55.504Kacl/mol. some results of MM/GBSA imparted dissimilarity with the docking energy,

for instance, NSC292567 was established to possess less docking energy (-42.882Kcal/mol) but

showed good binding free energy (-70.97Kcal/mol). Another example of the variation between

MM/GBSA and docking energy was that the compound ZINC02145000 exhibited good dock-

ing energy of -52.716Kcal/mol however displayed low binding free energy of -59.46Kcal/mol.

The compound NSC83439 hypothesized to have the poorest binding free energy (-51.52Kcal/

mol) than all selected compounds which were also matched its docking energy (-33.945Kcal/

mol). In summary, MM/GBSA calculation classified the binding affinity of the top highest and

lowest compounds in the exact place as docking energy while there were little changes in the

order for intermediate docking energy holding compounds. Thereby, we have taken all the

selected complexes for the further validation of the compound stability through molecular

dynamics simulation.

Interaction and stability validation of selected leads through molecular

dynamics simulation

To investigate the effective conformation of hits, the stability of the protein and ligands,

RMSD was examined for each complex with respect to the initial structure through molecular

dynamics simulation for 50ns. RMSD determined the stability of the protein comparative to

its conformation by analyzing the deviation produced during the simulation. The smaller

RMSD value signifies the more stable structure of the protein. The average RMSD of each

complex and free model of Oct4 was calculated after 50ns and plotted in Fig 8a. The backbone

RMSD plot of selected complexes concerning their initial structures indicated that most of the

complexes showed high deviation throughout the simulation which showed the active form of

the ligands inside the binding pocket. Four complexes such as NPB7083, NSC292567,

ZINC08764609, and ZINC14759216 showed major differences in RMSD with average RMSD

value of 12.85 Å, 15.2 Å, 12.08 Å, and 11.54 Å respectively when compared with the free form

of Oct4 (average RMSD of 11.11Å). Further, NPB4533, NSC83439, ZINC02145000, and

ZINC32124203 complexes exhibited the least deviation with average RMSD values of 6.17Å,

6.489, 5.7Å, and 6.1Å respectively suggesting that these complexes were more stable than other

complexes (separately depicted in S3a Fig). From these four least RMSD complexes, the
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complex NPB4533 remained unstable in the first 16ns of the simulation and after 16ns sus-

tained stability till the end of 50ns simulation with RMSD of 4.5 Å. Although the

Oct4-NSC83439 complex displayed the least average RMSD value, it was characterized by a

higher RMSD deviation during the simulation. The complex ZINC02145000 persisted in

steady form during the entire simulation run with RMSD value ranging from 5Å to 6Å. From

the starting of the simulation (1ns), the ZINC32124203 complex exhibited a higher RMSD of

~7.5Å due to the presence of a linker region between POUs and POUHD domains. The pla-

teau was observed after approximately 11ns for ZINC32124203 and continued until the end of

the simulation.

The residual fluctuation of all the complexes was analyzed by C-alpha motion and local

changes in the secondary structure elements to monitor the various flexible region involving

in the ligand binding (Fig 8b). The C-alpha Root mean square fluctuations (RMSFs) of all

complexes revealed that most of the complexes experienced high fluctuation and supported

the RMSD results. The mean variation plot was plotted to examine the average RMSF value of

the compounds (Fig 8b). Results from the average RMSF analysis unveiled that except

NPB7083 and NSC29567 complexes, all other complexes exhibited less average RMSF value

than the free form of Oct4. The RMSF result of four selected complexes from RMSD analysis

was examined separately which showed maximum fluctuation at the linker region (amino acid

Fig 8. Molecular dynamics simulation results over 50ns. a) Time dependent RMSD (Å) of backbone atoms of protein displayed with

average mean variation b) C-alpha RMSF of various mobile regions of the complexes with respect to the residues and mean variation plot of

average RMSF values.

https://doi.org/10.1371/journal.pone.0255803.g008
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residues 213–229) (S3b Fig). Further, the ligand-bound protein experienced a low fluctuation

in comparison to free Oct4 protein despite the presence of the linker region (amino acid resi-

dues 213–229) which enabled the compounds to establish strong interaction with the protein

during the whole simulation period. The POUs domains of the ZINC32124203 and

ZINC02145000 complexes also displayed the least variation which was mainly due to the inter-

action of compounds with this region.

The SSE was monitored and analyzed to investigate the overall protein structure stability

after ligand binding throughout the simulation (S4 Fig). Results from SSE demonstrated that

all the structures maintained the structural conformation with an approximate SSE of 60%

constituting helices rather than strand or loops, with some exceptions of NPB7083,

ZINC20410920 and ZINC08764609. Table 5 displayed the ratio of SSE in initial structure (apo

Oct4) and its complexes which suggested that all the complexes possessed stable conformation

during the simulation. The SSE results also confirmed that the structure of the selected four

complexes maintained the stable conformation during the entire time of simulation shown in

Fig 9. Additionally, the linker region (amino acid residues 76–92) of four complexes showed

stable conformational changes like from loop to alpha-helix formation throughout the simula-

tion whereas the free model did not display any significant changes (Fig 9). Interestingly in the

complex NPB4533, it was observed that the loop region at the position 36–40 and 95–98 con-

verted to strands at 22ns and continued till 27ns which indicated that binding of the ligand

possibly affecting the overall stability and conformational status of the structure.

The 50ns long simulation trajectories were inspected to evaluate the stability of the hydro-

gen bonds (H-bond) formed by screened compounds with Oct4 at the ligand-binding site (Fig

10a). The total number of H-bonds were calculated for all 13 complexes and demonstrated in

Fig 10b. More interestingly, the results exposed that most of the compounds formed H-bond

with W277 of Oct4 and occupied more than 90% of the simulation time (Fig 10c-10f and S5

Fig). There were a continuous disappearance and reappearance of the H-bonds found in

between screened compounds connecting with different amino acid residues of Oct4 during

the time of simulation in comparison to docking interaction. For instance, docking of the

compound ZINC20410920 showed interactions with R242, I237, S236, N280, and R234 while

in simulation W277 and K284 exhibited greater occupancy (S5 Fig). This may be to adopt a

favorable ligand binding site due to the initial docking conformational changes during the

Table 5. Showing the ratio of secondary structure elements distributed by the protein throughout the simulation.

Sl. No. Protein/complex name %helix %strand %total SSE

1. Apo Oct4 56.24 0.00 56.24

2. NPB4533 59.31 0.08 59.40

3. NPB7083 53.78 0.00 53.78

4. NPB83439 60.71 0.00 60.71

5. NSC292567 58.09 0.00 58.09

6. ZINC00519647 57.48 0.00 57.48

7. ZINC02092319 59.01 0.00 59.01

8. ZINC02145000 58.29 0.00 58.29

9. ZINC08764609 53.23 0.06 53.29

10. ZINC14759216 56.58 0.00 56.58

11. ZINC15967742 57.62 0.00 57.62

12. ZINC20410920 52.63 0.00 52.63

13. ZINC32124203 57.84 0.00 57.84

14. ZINC85876856 59.31 0.00 59.31

https://doi.org/10.1371/journal.pone.0255803.t005
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time of the simulation. Further, a special investigation of selected four complexes revealed that

the compounds ZINC02145000 and ZINC32124203 sustained stable and strong interactions

with Oct4 during the simulation. ZINC02145000 compound presented similar kind of interac-

tions with the T235, R242, N280, K284 (salt bridge), and W277 (Pi-pi) as found in the initial

docking conformation, with some exception such as the interaction of R280 shifted to R281

and extra involvement of K284, and W277 in hydrogen bond formation with high occupancy

(Fig 10d). ZINC32124203 changed its communication with Oct4 from N280, W277, R242,

R234 (salt bridge) and K284 (Pi-Cation) in the initial docking conformation to I237 and V273

with the additional connection of R234 and K284 with 70–80% occupancy during the simula-

tion (Fig 10f). The compound NSC83439 shifted its H-bond interactions from R242, K284,

T235, and N280 from initial docking conformation to R232, L233, R287, and I237 during the

simulation time (Fig 10c). The H-bond interactions were less prominent for compound

NPB4533 while it formed hydrophobic interactions instead of H-bonds to remain inside the

binding pocket of Oct4 (Fig 10e). Other than H-bonds, all the compounds engaged the protein

by the hydrophobic, salt bridge and water-mediated communications. Altogether, H-bond

analysis explored that all compounds established strong and stable connections with the

POUHD domain. From H-bond analysis, we were surprised that despite strong and stable

interactions formed by all the compounds with the DNA binding residues of the POUHD

Fig 9. Time evaluation of secondary structure elements for model structure and in complex with four selected compounds.

https://doi.org/10.1371/journal.pone.0255803.g009

PLOS ONE Octamer-binding transcription factor 4 blockers identification through computational approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0255803 October 6, 2021 20 / 30

https://doi.org/10.1371/journal.pone.0255803.g009
https://doi.org/10.1371/journal.pone.0255803


domain, the backbone and C-alpha of Oct4 were showing high deviation during 50ns long

simulation.

Therefore, we compared the simulation results with the docking energy and biding free

energy we found that NPB7083 and ZINC20410920 having higher scores but showing high

deviation whereas ZINC32124203 and ZINC02145000 possessing medium score exhibited sta-

ble conformation. For the further confirmation of the atomic movement and their collective

or correlated residual motions in the complexes, principal component analysis (PCA) in com-

bination with cross-correlation analysis were executed to obtain insight into the protein

domain movement in four complexes and compared with apoprotein. PCA, a powerful tool

that has been widely used to probe experimentally detected conformational variations [98].

PCA was applied to the backbone atoms in free Oct4 and four complexes. The principal

motion of protein can be visualized and interpreted as porcupine plots by representing the

eigenvectors that show the direction and magnitude of each of the backbone atoms [99]. The

complete PCA analysis and the contributions of the different regions from the free Oct4 and

four complexes were illustrated in Fig 11. The direction of arrows attached to the backbone

atom of proteins signified the specific direction of motion, while the length of the arrows char-

acterized the strength of the movement and also defined the essential conformational variation

exhibited by the protein. The obtained plot illustrated that free protein inhabited compara-

tively more prominent motions and showed higher fluctuations in contrast to the compound

bound proteins suggesting the major conformational variation occurred in apoprotein during

Fig 10. The intermolecular hydrogen bonds formed by screened compounds with Oct4 during the 50ns molecular dynamics simulation. a)

Number of H-bonds established between protein-ligand complexes; b) Average mean variations plot of H-bond interaction; c) The H-bond occupancy

throughout the trajectory for NSC83439, (d) ZINC02145000, (e) NPB4533 and (f) ZINC32124203 where the top panel represents the overall interaction

of the protein with ligands and bottom panel unveiled the name of interactive amino acid residues.

https://doi.org/10.1371/journal.pone.0255803.g010
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the simulation. From Fig 11, it was also evidenced that there was a minimal contribution of

motions from the POUHD domain after the binding with compounds. More specifically, pro-

tein bound to the compounds ZINC32124203 and ZINC02145000 experienced negligible

movement in both domains (POUS and POUHD) and also linking region. Particularly, only

the C-terminal region and some parts of the POUs loop region showed more flexibility in the

ZINC02145000 complex. From this study, we speculated that compound ZINC32124203 and

ZINC02145000 may have possessed some communication with the POUs domain rather than

only with the POUHD domain.

Structural differences between the five systems were further reviewed where we inspected

dynamic cross-correlated motions (DCCM) in the individual systems. The DCCM depicts

total correlated motions between the protein residues, where the strongly correlated motions

among specific residues are indicated by red color and highly anti-correlated residues are

Fig 11. Mode vector analysis. Porcupine plots depicting the dominant motions exhibited by the backbone atom of apoprotein (a)

and the compounds NPB7083 (b), ZINC20410920 (c), ZINC02145000 (d), and ZINC32124203 (e) bound proteins. The arrows

attached to each backbone atom indicate the direction of movement of protein and the length of each arrow shows the magnitude of

the motions.

https://doi.org/10.1371/journal.pone.0255803.g011
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specified by blue color (Fig 12). As evident in Fig 12, the global dynamics of the apoprotein

system were disparities to that of all compound bound complexes, implying that substrate

binding imposed some significant secondary structure alterations to the protein which was

verified through SSE analysis. However, the ZINC20410920 system showed more no-correla-

tion motions between the amino acids in contrast to other complex systems. Moreover,

Fig 12. Dynamic Cross-correlation Matrix (DCCM) of the backbone atoms during100 ns simulations. The range of the

correlated and anti-correlated motions indicated in various colors in the panel where red color denotes positive correlation

and blue color specified negative correlation.

https://doi.org/10.1371/journal.pone.0255803.g012
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NPB7083 exhibited a combination of highly correlated and anti-correlated motions whereas

highly correlated motions than anti-correlation motions were observed in ZINC32124203 and

ZINC02145000 complexes. Overall, PCA and DCCM analysis explored that the binding of

compounds ZINC32124203 and ZINC02145000 decrease the flexibility and increase the corre-

lation motion.

But still, our question remained unanswered why NPB7083 and ZINC20410920 possessed

high deviation while ZINC32124203 and ZINC02145000 showed stable conformation. Further

molecular dynamics visual inspection unveiled that ZINC32124203 and ZINC02145000 estab-

lished connections with the POUHD domain as well as POUS domain while NPB7083 failed to

make any communication with the POUs domain and also verified from H-bond analysis.

Then we examined all the complexes and found that the compound which formed any interac-

tion with the POUs domain showed stable conformation such as NPB4533, NSC83439, and

NSC292567 (high RMSD value but stable conformation). This may be due to the open space

provided by simulation while Glide provides a constrained space for docking. From RMSD

results, we concluded that a high degree of deviation of the proteins might have come due to

considering the two domains of protein along with the linker region for simulation rather than

considering only the POUHD domain. From interaction analysis, we found that more interac-

tion with POUHD and POUS domain more was the stability. From PCA and DCCM analysis,

we evidenced that the binding of compounds ZINC32124203 and ZINC02145000 minimized

the flexibility and escalated the correlations between the amino acid residues of Oct4. More

interestingly, from the current investigation, we anticipated that all compounds are active

compounds which can block the activity of the POUHD domain of Oct4 but two compounds

(ZINC32124203 and ZINC02145000) having some extraordinary power to block both domain

functions.

Conclusion

Oct4, a master regulator of stem cell maintenance can induce pluripotency in somatic cells

which cannot be substituted by any paralogous family member. Alone or in cooperation with

Sox2, Nanog and other members, Oct4 activates both protein-coding genes and noncoding

RNAs necessary for pluripotency and self-renewal of glial stem cells reprogramming glioblas-

toma and other cancers. The overexpression of Oct4 contributes to the presence of undifferen-

tiated cells (GSCs) with self-renewal and tumorigenic potential that lead to tumor initiation,

invasion, post treatment relapse, and therapeutic resistance. Therefore, we strive to abolish the

activity of Oct4 by identifying natural product small molecule inhibitors using computational

approaches. Initially, we analyzed the whole sequence to predict the order and disordered

regions which demonstrated that Oct4 consists of more disordered regions than the ordered

regions and possessing protein-protein interaction regions important for the regulation of

GSCs. The order region POU domain containing two subdomains POUS and POUHD is the

most pivotal region to induce pluripotency in somatic cells which bind with their respective

half motif DNA independently. Subsequently, we endeavored to examine the protein-protein

interaction which depicted that Oct4 mostly interacting with those proteins which are respon-

sible for the maintenance of stem cells, self-renewal, proliferation, pluripotency and lineage

differentiation. It is also interacting with some proteins which regulate the expression of

VEGF for developing the new blood vessels. Furthermore, to screen small molecule inhibitors

targeting the POUHD domain of Oct4 we pre-filtrated three natural product databases

(ZincNPD, NCINPD, and NPB) to discriminate the druggable molecules and applied recep-

tor-based virtual screening protocol. Receptor based virtual screening delivered 30 compounds

having good docking scores and docking energy. Through visual investigation of interaction,
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13 compounds were selected for further analysis. Moreover, the correlation between docking

energy and binding free energy provided a significant correlation with 13 ligand efficiency.

Furthermore, the conformational stability of the protein after ligand binding was evaluated

through molecular dynamics simulation. The simulation results unveiled two compounds

ZINC02145000 and ZINC32124203 showing stable backbone and strong interaction with

Oct4 even in the presence of linker region and POUs domain and in dynamic condition. More

interestingly, ZINC02145000 and ZINC32124203 compounds engaged the POUHD domain as

well as POUs domain evidenced from PCA analysis indicating the credible potency against

Oct4 function. Lastly, our examination delivered two effective compounds i.e. ZINC02145000

and ZINC32124203 which can impede the Oct4 function and act as anti-GBM or anti-cancer

drugs to treat GBM as well as various types of cancer patients with fewer side effects. These

new compounds can also show better results in in vitro and in vivo validation.
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