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Abstract. Preeclampsia (PE) is a hypertensive disorder of 
pregnancy characterized by new‑onset hypertension and 
proteinuria after 20 weeks of gestation, which affects 3‑8% 
of pregnant individuals worldwide each year. Prevention, 
diagnosis and treatment of PE are some of the most important 
problems faced by obstetrics. There is growing evidence that 
circular RNAs (circRNAs) are involved in the pathogenesis 
of PE. The present review summarizes the research progress 
of circRNAs and then describes the expression patterns of 
circRNAs in PE and their functional mechanisms affecting 
PE development. The role of circRNAs as biomarkers for the 
diagnosis of PE, and the research status of circRNAs in PE 
are summarized in the hope of finding novel strategies for the 
prevention and treatment of PE.
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1. Introduction

Circular RNAs (circRNAs) are covalently closed circular 
non‑coding RNAs (ncRNAs) without a 5' cap and a 3' 
poly(A) tail (1). For decades, circRNAs were considered to 
be non‑functional byproducts of mis‑splicing (2,3). In recent 
years, circRNAs have been discovered in eukaryotes (4‑8). 
With the maturity of sequencing technologies and algorithms, 
thousands of circRNAs have been identified, and experiments 
have confirmed that such RNAs are no longer ‘splicing noise’, 

but functional molecules (7,9‑12). CircRNAs can share the 
microRNA (miRNA/miR) response elements targeted by 
mRNA, thereby regulating the expression of mRNA (13).

In addition, circRNAs have other biological functions, such 
as regulating gene transcription and translation, and binding 
to RNA‑binding proteins (9). CircRNAs can regulate tran‑
scriptional and post‑transcriptional gene expression in various 
diseases such as lung cancer and gastric carcinoma (14). These 
functional circRNAs are of significance for the maintenance of 
normal cell functions and the occurrence and development of 
abnormal biological functions. In addition to participating in the 
regulation of epigenetic, transcriptional or post‑transcriptional 
biological processes of various cells, circRNAs also play impor‑
tant roles in the signal pathways of cellular processes (15,16).

Preeclampsia (PE) is defined as new‑onset hypertension 
after 20 weeks of gestation, accompanied by proteinuria, 
headache, dizziness, nausea, vomiting and epigastric discom‑
fort (17). PE is a serious obstetric emergency worldwide, with 
an annual incidence of 3‑8%, and is a major cause of increased 
maternal and neonatal morbidity and mortality (18). Therefore, 
understanding the pathogenesis of PE remains imperative for 
obstetricians. A growing body of evidence supports that the 
pathogenesis of PE is multifactorial, including insufficient 
invasive ability of trophoblasts (19), failure of spiral artery 
remodeling (18), abnormal immune responses (18), inflamma‑
tory responses (20) and genetic factors (21). These pathogenic 
mechanisms can be regulated by epigenetics (21). As a type 
of ncRNA, circRNAs are widely involved in gene expres‑
sion, protein/RNA splicing or modification or protein‑coding 
process (22). Abnormally expressed ncRNAs associated 
with PE have been identified by genome‑wide analysis of 
placental‑derived circRNA (23). Studies have confirmed that 
circRNA plays an important role in regulating the develop‑
ment and function of the placenta and the pathogenesis of 
PE (24,25). The abnormal placental transcriptome of PE 
is affected by epigenetic regulation. However, the regula‑
tion of differentially expressed genes and transcripts on the 
occurrence and development of PE has not been fully clari‑
fied (26). The present review summarized studies on the role 
of circRNAs in the pathogenesis of PE.

2. Expression pattern and diagnostic value of circRNAs in 
PE

At present, in the field of PE, the study of circRNAs is mainly 
limited to diagnostic markers and pathogenesis. Risk factors 
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for PE include a history of PE in a previous pregnancy, chronic 
kidney disease, hypertension, diabetes, autoimmune diseases 
such as systemic lupus erythematosus, initial onset PE, age 
>40 years, inter‑pregnancy interval over 10 years, a body mass 
index >35 kg/m2, polycystic ovary syndrome and multiple preg‑
nancies (20). However, only 30% of individuals predisposed to 
PE can be detected based on these risk factors (27). Due to 
the heterogeneous presentation of PE, potential biomarkers are 
required for its early detection.

Shao et al (28) studied the expression of circRNA in the 
blood of 82 pregnant individuals at 8‑20 weeks of gestation 
and revealed that the blood concentration of circ_101222 in 
patients with PE was significantly higher compared with that 
in healthy pregnant individuals. Other studies have analyzed 
the expression of several mRNAs, ncRNAs and circRNAs in 
the plasma or placentas of individuals with PE and healthy 
pregnant individuals to identify potential predictive markers 
of PE. The expression pattern of current potential circRNAs 
that may serve as diagnostic markers for PE is summarized 
in Table I.

Among all detected markers, hsa_circ_0036877 is 
recognized as a potential plasma biomarker for PE (29). Two 
biomarkers, hsa_circ_0004904 and hsa_circ_0001855, are 
involved in the pathogenesis of PE by activating miRNA 
sponges that directly target pregnancy‑associated plasma 
protein A (PAPP‑A). This indicates that PAPP‑A is present in 
the plasma of individuals with PE (30). However, the limita‑
tions of circRNAs as diagnostic markers must be considered. 
Pregnancy is a process, and the level of molecular expression 
in the placenta dynamically changes. More detailed grouping 
and long‑term studies are needed to determine the time point 
for screening circRNA as a diagnostic marker.

3. Mechanisms of circRNAs involved in PE

PE is a hypertensive disorder (31,32). Unfortunately, the 
etiology and pathogenesis of PE are still far from clear. 
However, accumulating evidence confirms that impaired spiral 
artery remodeling, placental dysfunction and insufficient 
trophoblast invasion may play critical roles in the develop‑
ment and progression of PE (33‑35). Furthermore, extensive 
or shallow invasion of extravillous trophoblasts (EVTs) at the 
maternal‑fetal interface has been identified as a major cause of 
placental failure, ultimately leading to PE (36,37). Restricted 
migratory activity of EVTs in the maternal decidua has been 
shown to impede trophoblast function, leading to PE (38). 
Some studies have investigated the pathogenesis of PE from 
the perspective of placenta (39,40). A large number of recent 
studies have shown that a variety of ncRNAs are associated 
with the pathogenesis of pregnancy disorders (41‑45).

From the perspective of pathogenesis, abnormal placental 
development is one of the main causes of PE. Zhou et al (46) 
have revealed that circRNA_3286, circRNA_5593 and 
circRNA_3800 are downregulated in placental tissues of indi‑
viduals with PE compared with healthy pregnant individuals. 
Melchiorre et al (39) have investigated the distribution of 
circRNAs in the placental tissues of individuals with PE and 
explored the potential impact of circRNA dysregulation on the 
progression of PE. A total of 300 circRNAs that are differ‑
entially expressed between individuals with PE and healthy 

pregnant individuals were identified. Reverse transcrip‑
tion‑quantitative PCR results showed that hg38_circ_0014736 
and hsa_circ_0015382 are highly upregulated, and 
hsa_circ_0007121 is downregulated in all patients with PE. 
The data showed that these three circRNAs are significantly 
associated with the regulation of transcription, proliferation, 
hypoxia response and protein binding (47). The studies on the 
role of circRNAs in the pathogenesis of PE are summarized 
in Table II, which is helpful to explore novel strategies for the 
treatment of PE.

In recent decades, researchers have confirmed that 
circRNAs are involved in a variety of diseases (48). However, 
to the best of our knowledge, there have been few studies on 
the role of circRNAs in the pathogenesis of PE (49‑51). The 
different mechanisms are described in detail below.

Roles of circRNAs in regulating migration and invasion of 
trophoblasts. Insufficient invasion and migration abilities 
of trophoblasts are one of the major causes of PE (42,52). 
Studies have shown that circRNAs can affect the invasion and 
migration abilities of trophoblasts (53,54). Hsa_circ_0111277 
spliced from PAPP‑2A is highly expressed in the placentas of 
patients with PE. The expression level of Hsa_circ_0111277 
is proportional to the placental weight and urinary protein 
level, suggesting that it may be involved in PE (55). 
Subsequently, an in vitro experiment has demonstrated that 
Hsa_circ_0111277 regulates the Notch‑1 signaling pathway 
through the miR‑494/high‑temperature requirement‑A serine 
peptidase 1 axis, thereby inhibiting the migration and inva‑
sion of HTR‑8/Svneo and JEG‑3 cells (55). Notch‑1 signaling 
pathway play an important role in the migration and invasion 
of trophoblasts, decreased activity of which can significantly 
inhibit the invasive ability of trophoblasts (30,56).

However, hsa_circ_0002814 is downregulated in the 
placentas of individuals with PE. Overexpressed hsa_
circ_0002814 elevates Notch‑1 expression by suppressing 
miR‑21 (57), which has also been shown to bind FUS protein, 
thus increasing soluble fms‑like tyrosine kinase 1 (sFlt‑1) and 
VEGF protein (58). Hsa_circ_0008726 is highly expressed 
in the plasma and placentas of patients with PE (59). It regu‑
lates LIM homeobox transcription factor family (LHX6) 
and RING1 and YY1‑binding protein (RYBP) by adsorbing 
miR‑1290 and miR‑345‑3p, respectively, and regulates the 
migration and invasion abilities of trophoblasts (60,61). 
Hsa_circ_0007121 mediates the progression of PE through 
the miR‑182‑5p/placental growth factor (62). CircLRRK1 has 
been identified to inhibit trophoblast proliferation, migration 
and invasion through the miR‑223‑3p/PI3K/AKT axis (12).

Involvement  of  c ircR NAs in  the  regula t ion of 
epithelial-mesenchymal transition of trophoblasts. 
Epithelial‑mesenchymal transition (EMT) is a characteristic 
process during which polarized epithelial cells transform into 
a mesenchymal phenotype, including the changes in migra‑
tion and invasion abilities (63). The EMT of trophoblasts is 
considered to be one of the steps before efficient spiral artery 
remodeling (64,65). Hsa_circ_0006772 is upregulated in the 
placentas of individuals with PE compared with that in the 
placentas of healthy pregnant individuals. Overexpressed hsa_
circ_0006772 increases the expression of E‑cadherin protein 
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and decreases the expression of Vimentin protein, which are 
EMT‑related protein markers. It sponges miR‑762 to inhibit 
the miR‑762 expression and elevates the level of Grhl2 protein, 
an EMT‑related transcriptional factor (11). These findings 
demonstrate that circTNRC18 inhibits EMT of trophoblasts, 
suggesting that it may be involved in the progression of PE.

Regulation of cell proliferation and apoptosis by circRNAs. 
PAPP‑A, a key regulator of insulin‑like growth factor 
bioavailability, is essential for normal fetal development (66). 
Hsa_circ_0015382 is also derived from the splicing of 
PAPP‑2A transcript, which is upregulated in the placentas of 
individuals with PE (67). By regulating the expression of tissue 
factor pathway inhibitor 2 (TFPI2), hsa_circ_0015382 not only 
inhibits the migration and invasion abilities of trophoblasts, 
but also inhibits the proliferation of trophoblasts and promotes 
their apoptosis (68). Hsa_circ_0001326 is highly expressed in 
the placentas of individuals with PE, which can modulate the 
level of p27 Kip1 by absorbing miR‑186‑5p (12). Overexpressed 
hsa_circ_0001326 significantly upregulates p27 Kip1, cleaves 
caspase 3 and downregulates cyclin‑dependent kinase 2 
(CDK2) and cyclin E1, suggesting decreased viability and 
proliferation of trophoblasts. While hsa_circ_0001326 induces 
G0/G1 cell cycle arrest is attenuated in the case of p27 Kip1 
knockdown (69). These findings show that hsa_circ_0001326 
may be involved in the progression of PE. Hsa_circ_0017068, 
as a post‑transcriptional regulator of X‑linked inhibitor of 
apoptosis protein, has been reported to regulate the prolif‑
eration, cell cycle and apoptosis of trophoblasts by targeting 
miR‑330‑5p (51).

Other functions of circRNAs involved in PE. In one study, 
a microarray analysis was performed using placental tissue 

from pregnant individuals with PE (70), the results of which 
revealed that hsa_circRNA_100782, hsa_circRNA_102682 
and hsa_circRNA_104820 are highly upregulated in PE. The 
identified circRNAs have multiple binding sites for miRNA‑17, 
indicating that these circRNAs can regulate the expres‑
sion of miRNA‑17 in human placental tissues. A previous 
study showed that increased expression of miRNA‑17 in the 
placenta contributes to the development of PE by promoting 
trophoblast invasion (71). Therefore, the differential expres‑
sion of circRNAs in the placenta may lead to the upregulation 
of miRNA‑17 by activating the miRNA sponge, thereby 
enhancing the pathogenesis of PE. MiRNA‑17 has been 
introduced as an angiogenesis‑related miRNA and is highly 
expressed in PE (72).

The placentas of individuals with PE show endothelial 
cell swelling called endotheliosis and microvascular obstruc‑
tion (73). PE has been implicated in altered expression of 
angiogenic and antiangiogenic factors, sFlt‑1 or sVEGFR1, 
which is overproduced by the early placenta and secreted into 
the maternal peripheral blood. In the maternal bloodstream, 
it is considered to bind and neutralize VEGF and PlGF, a 
member of the VEGF subfamily, with high affinity, which 
results in a reduction of VEGF and PlGF in maternal blood 
and the disruption of VEGF signaling in endothelial cells 
due to reduced number of bound VEGF receptors (74‑76). 
In conclusion, the disturbed balance between PIGF and 
sFlt‑1 is one of the causes of PE. Hsa_circ_0063517 has a 
decreased expression in the placentas of patients with PE, 
and its knockdown reduces the expression of endothelin 
B receptor, VEGFA and VEGFR2 in HUVEC‑12 and 
HMEC‑1 cells by sponging miR‑31‑5p (77), which suggests 
that hsa_circ_0063517 is involved in the angiogenesis of 
placenta.

Table I. Diagnostic values of circRNAs in PE.

   Sample Area under    Study
ID Gene symbol Expression type ROC curve Sensitivity Specificity (Refs.) year

hsa_circ_0007121 ‑ Downregulated Plasma 0.72 0.77 0.70 (47) 2018
hsa_circ_0036877 FURIN Downregulated Plasma 0.85 0.85 0.73 (29) 2018
hsa_circ_0055724 ANKRD36 Downregulated Plasma ‑ ‑ ‑ (139) 2022
hsa_circ_0003496 UBAP2 Downregulated Plasma ‑ ‑ ‑ (131) 2021
hsa_circ_0002814 HERC2 Downregulated Plasma ‑ ‑ ‑ (80) 2022
hsa_circ_0003286 GTF2H2B Downregulated Plasma ‑ ‑ ‑ (140) 2018
hsa_circ_0004904 POLE2 Upregulated Plasma ‑ ‑ ‑ (30) 2018
hsa_circ_0001855 RNF38 Upregulated Plasma 0.62 0.53 0.70 (30) 2018
hsa_circ_0029601 TPTE2 Upregulated Plasma 0.87 0.71 0.80 (141) 2016
hsa_circ_0025992 SLC38A2 Upregulated Plasma 0.81 0.54 0.93 (142) 2021
hsa_circ_0001326 PHLDB2 Upregulated Placenta 0.79 ‑ ‑ (21) 2021
hsa_circ_0008726 DNAJB6 Upregulated Plasma ‑ ‑ ‑ (143) 2022
hsa_circ_0004904 POLE2 Upregulated Plasma ‑ ‑ ‑ (144) 2021
hsa_circ_0013301 HIAT1 Upregulated Plasma ‑ ‑ ‑ (145) 2021
hsa_circ_0007885 BRAP Upregulated Plasma 0.71 0.63 0.76 (64) 2022
hsa_circ_0058152 FN1 Upregulated Plasma 0.78 0.87 0.56 (146) 2022

circRNA, circular RNA; PE, preeclampsia.
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Table II. Mechanism studies of circRNAs in preeclampsia.

       Study
circRNA ID Gene symbol Expression Cell Target Function (Refs.) year

hsa_circ_0055724 ANKRD36 Downregulated Trophoblast N‑cadherin Proliferation; migration; (147) 2022
     invasion  
hsa_circ_0003496 UBAP2 Downregulated Trophoblast FOXM1 Proliferation; migration (60) 2021
       
hsa_circ_0002814 HERC2 Downregulated Trophoblast Notch‑1, Proliferation; invasion (58) 2022
    CPEB2,   
    FUS/VEGF   
hsa_circ_0088227 PAPPA Downregulated Trophoblast HOXA7 Proliferation; migration; (143) 2022
     invasion
hsa_circ_0000284 HIPK3 Downregulated Trophoblast ‑ Migration; invasion; (148) 2019
     proliferation; angiogenesis  
hsa_circ_0003286 GTF2H2B Downregulated Trophoblast ‑ Invasion (46) 2018
hsa_circ_0032962 SMEK1 Downregulated Trophoblast PBX3 proliferation; migration; (143) 2021
     invasion; EMT  
hsa_circ_0005734 FAM53B Downregulated Trophoblast KCMF1 Proliferation; migration; (149) 2022
     invasion  
hsa_circ_0017068 B3GALNT2 Downregulated Trophoblast XIAP Proliferation; cell cycle; (150) 2022
     apoptosis  
hsa_circ_0063517 RANGAP1 Downregulated Vascular ETBR Proliferation; migration; (80) 2020
   endothelial cell  angiogenesis  
hsa_circ_0001326 PHLDB2 Upregulated Trophoblast p27 Kip1 Proliferation; migration (12) 2021
hsa_circ_0001326 PHLDB2 Upregulated Trophoblast IL16 Proliferation; EMT; (151) 2021
     migration; invasion.  
hsa_circ_0008726 DNAJB6 Upregulated Trophoblast LHX6 Proliferation; migration; (143) 2022
     invasion  
hsa_circ_0008726 DNAJB6 Upregulated Trophoblast RYBP Migration; invasion; EMT (60) 2021
hsa_circ_0004904 POLE2 Upregulated Trophoblast ATG12, Proliferation; invasion; (144) 2021
    FUS/VEGF autophagy  
hsa_circ_0007445 OPHN1 Upregulated Trophoblast THBS2 Proliferation; migration; (57) 2022
     invasion  
hsa_circ_0007611 FAM193B Upregulated Trophoblast IL1RAP Proliferation; (152) 2022
     angiogenesis  
hsa_circ_0007885 BRAP Upregulated Trophoblast HIF‑2α, Proliferation; invasion (61) 2022
    sFLT1  
hsa_circ_0058152 FN1 Upregulated Trophoblast ATF2 Proliferation; migration; (149) 2022
     invasion; apoptosis  
hsa_circ_0015382 PAPPA2 Upregulated Trophoblast TFPI2 Proliferation; migration; (94) 2021
     invasion; EMT; apoptosis;  
     cell cycle  
hsa_circ_0088196 TNC Upregulated Trophoblast ABL1 Migration; invasion (149) 2022
hsa_circ_0088196 TNC Upregulated Trophoblast LIF, jak‑stat ‑ (153) 2019
hsa_circ_0000566 VRK1 Upregulated Trophoblast PTEN, Akt Migration; invasion; EMT (154) 2021
hsa_circ_0085296 RIMS2 Upregulated Trophoblast THBS2 Proliferation; migration; (58) 2022
     invasion; angiogenesis  
hsa_circ_0085296 RIMS2 Upregulated Trophoblast E‑cadherin Proliferation; migration; (80) 2020
     invasion  
hsa_circ_0111277 PAPPA2 Upregulated Trophoblast HTRA1, Migration; invasion (55) 2020
    Notch‑1   
hsa_circ_0011460 AK2 Upregulated Trophoblast PGT ‑ (51) 2019
hsa_circ_0011460 AK2 Upregulated Trophoblast THBS2 Proliferation; migration; (145) 2021
     invasion  
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Circ_0001438 aggravates human villous trophoblast 
dysfunction by mediating the miR‑942/NLRP3 axis (78). 
It has been reported that circCRAMP1L, circSFXN1 and 
circ_0085296 are involved in the pathogenesis of PE to varying 
degrees (50,79,80).

4. Mechanisms and clinical application of circRNAs

Although the functions of most circRNAs remain unclear, only 
a small fraction of identified circRNAs have been studied for 
their biological significance (81‑85). A study has shown that 
circRNAs have binding sites for microRNAs and RNAs, and 
can act as RNA sponges to regulate the expression levels of 
target genes (86). The most representative circRNA is ciRS‑7, 
which contains >70 conserved binding sites for miR‑7 (87‑89). 
A study has shown that circCDR1as and circMTO1 bind to 
miR‑7 and miR9, respectively, and affect gene regulation, 
thereby indirectly suppressing or stimulating tumors (90). 
In addition, subsequent studies have also demonstrated the 
presence and importance of ciRS‑7 as a miR‑7 sponge in a 
number of pathophysiological processes, such as insulin 
secretion, myocardial infarction, hepatocellular carcinoma 
and gastric cancer progression (88,91‑93). Based on the afore‑
mentioned theory, artificial sponge technology is a method of 
manufacturing molecules that can specifically bind to target 
miRNAs so that they can specifically adsorb target miRNAs. 
According to the partial base sequence of the target miRNA, 
circRNAs are artificially processed, then packaged with 
plasmids and transfected into cells or tissues, while circRNA 
acts as a miRNA ‘sponge’ to adsorb a large number of target 
miRNAs (64). Fan et al (94) found that the expression of 
circNR3C2 significantly enhances the tumor suppressive 
effect of HRD1 by sponging miR‑513a‑3p.

CircRNAs can also regulate biological processes by 
binding to proteins such as transcription factors. After 
binding to peccadillo homolog 1, circANRIL affects 
exonuclease‑mediated pre‑ribosomal (r)RNA processing and 
ribosome biogenesis (95). Circ‑Foxo3 binds to CDK2 and 
cyclin‑dependent kinase inhibitor 1 to form a ternary complex, 
thereby inhibiting the function of CDK2 and blocking cell 
cycle progression (10,96). Circ‑Foxo3 also has a high binding 
affinity to anti‑aging inhibitor of DNA binding 1, transcrip‑
tion factor E2F1 and anti‑stress proteins FAK and HIF1a, and 
retains them in the cytoplasm, leading to increased cellular 
senescence (10). Circ‑poly(A)‑binding protein nuclear 1 
(PABPN1) binds to HuR, thus preventing HuR from binding 

to PABPN1 mRNA to reduce PABPN1 translation (61,97). 
However, not all circRNAs that interact with proteins inhibit 
protein function. Ectopic circ‑Amotl1 interacts with and stabi‑
lizes the nuclear oncogene c‑myc, thereby upregulating c‑myc 
targets and promoting tumorigenesis (98,99).

An early study by Chen and Sarnow in 1995 (100) demon‑
strated that synthetic circRNAs can recruit the 40S ribosomal 
subunit and initiate the translation of detectable peptides in 
human cells through internal entry sites. Studies have shown 
that, if an internal ribosome entry site (IRES) is inserted 
upstream of the start codon, whether in vivo or in vitro, 
circRNAs that are similar to certain RNAs without a 5' cap 
structure and a 3' (polyA) tail structure can be translated into 
proteins (101,102). Although IRES‑mediated translation was 
first discovered in RNA and DNA viruses, it has subsequently 
been discovered in mRNAs such as immunoglobulin heavy 
chain binding protein mRNA, fibroblast growth factor and 
VEGF mRNA (103‑105).

At present, several translated circRNAs have been identi‑
fied to play key roles in human diseases, especially cancer. 
In gliomas, circSHPRH, produced by the SNF2 histone 
linker PHD RING helicase (SHPRH) gene, encodes a novel 
146‑amino acid protein (SHPRH‑146aa), which exhibits inhib‑
itory activity during tumorigenesis and glioma activity and 
also serves as a biomarker (106‑108). Another glioma study 
revealed that circLINC‑PINT is derived from a long intergenic 
non‑coding RNA p53‑induced transcript (LINC‑PINT), which 
encodes an 87‑amino acid peptide (PINT87aa). It interacts 
with the PAF1 complex in the nucleus to inhibit the tran‑
scriptional elongation of multiple oncogenes, thus playing a 
tumor suppressor role in the control of cell proliferation and 
tumorigenesis (106).

There are also studies showing that circ‑F‑box and 
WD‑repeat domain containing 7 (FBXW7) can inhibit the 
development of glioma (109,110). CircFBXW7 is produced 
by the tumor suppressor E3 ligase FBXW7, which encodes a 
185 amino acid peptide (FBXW7‑185aa), that plays the role 
of a tumor suppressor in glioma (111). Another recent study 
showed that FBXW7‑185aa can inhibit the proliferation and 
migration of triple‑negative breast cancer cells by increasing 
FBXW7 abundance and inducing c‑Myc degradation (112).

In hepatocellular carcinoma, GSK3β‑induced phosphoryla‑
tion and degradation of β‑catenin lead to activation of the Wnt 
pathway, which is associated with poor hepatocellular carci‑
nogenesis and prognosis (113,114). In circBase, circβ‑catenin 
is the only isoform that can be expressed in hepatocellular 

Table II. Continued.

       Study
circRNA ID Gene symbol Expression Cell Target Function (Refs.) year

hsa_circ_0011460 AK2 Upregulated Trophoblast HTRA1 Proliferation; migration; (94) 2021
     invasion  
hsa_circ_0006772 TNRC18 Upregulated Trophoblast Grhl2 Migration; EMT (154) 2019

circRNA, circular RNA; LHX6, LIM homeobox transcription factor family; RYBP, RING1 and YY1‑binding protein; EMT, epithelial‑mesen‑
chymal transition; TFPI2, tissue factor pathway inhibitor 2; XIAP, X‑linked inhibitor of apoptosis protein; ETBR, endothelin B receptor.
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carcinoma (115). Circβ‑catenin produces a 370 amino acid 
peptide (β‑catenin‑370aa), and can promote the growth of liver 
cancer cells by activating the Wnt pathway (116,117).

Other studies have confirmed that circRNAs can activate 
the encoded protein through the m6a mechanism (118,119). 
The modification of m6A is completed by methyltransferase 
complexes such as methyltransferase‑like (METTL)‑3, 
METTL‑14, Wilms Tumor 1‑associated protein, RNA‑binding 
motif protein 15 and zinc finger CCCH domain‑containing 
protein 13 (4,120‑124). Various internal or external factors, 
such as cell type, developmental stage, nutrient supply, 
circadian rhythm and environmental stresses initiate m6a 
translation (125). The 5'UTR m6A residue can directly recruit 
eukaryotic initiation factor 3, which is sufficient to recruit 
the 43S pre‑initiation complex and bypass the m7G capping 
requirement to initiate translation, thus enabling translation 
initiation in the absence of the cap‑binding factor eIF4E 
model (126).

Unlike conventional forward splicing, circRNAs originate 
from the same precursor as linear RNA transcripts, which 
is formed by a process called back splicing. Back‑splicing 
creates a covalently closed loop that is characterized by a 
non‑linear back‑splicing junction between the splice donor 
and upstream splice acceptor, and it lacks a 5'cap and a 3' 
poly(A) tail (127). Due to this structural feature, circRNA 
can resist digestion by nucleic acid ribozymes (such as RNase 
R) and is more difficult to be degraded by exonuclease, so 
it is more stable compared with linear RNAs, with a longer 
half‑life of up to 10 times that of linear RNA (128). These 
attributes make circRNA a potential biomarker for disease 
diagnosis and prognosis (85). CircRNA is stable and not easy 
to be degraded in blood and exosomes. It can be quantitatively 
detected by reverse transcription followed by qPCR (85). At 
the same time, compared with the complex antigen‑antibody 
reaction and unclear parameters of protein detection, 
circRNAs are always expressed in a tissue‑ or cell‑specific 
manner and can be detected by qPCR and in situ hybridiza‑
tion, which makes circRNA an ideal molecule for clinical 
diagnosis or prognosis detection of diseases, with landmark 
significance (1,7,129‑131).

CircRNAs have been implicated in a variety of diseases, 
such as bone‑osteosarcoma, colon‑colorectal adenocarcinoma, 
kidney‑renal cell carcinoma, liver‑hepatocellular carcinoma, 
lung‑lung adenocarcinoma and stomach‑gastric adenocarci‑
noma (132). Due to the observed association between circRNA 
abundance and cancer, circRNA may serve as a cancer 
biomarker with good diagnostic performance (133). A study 
has also shown that circRNAs are present in human body fluids 
such as saliva, plasma, plasma and exosomes at relatively high 
steady‑state levels, making them candidate biomarkers for 
non‑invasive liquid biopsies (127). Zhang et al (79) found that 
circSATB2 is highly expressed in non‑small cell lung cancer 
cells and tissues. CircSATB2 is highly expressed in plasma 
exosomes of patients with lung cancer with high sensitivity 
and specificity for clinical detection, and is associated with 
lung cancer metastasis (134). Wang et al (134) found that 
circRNA‑002178 is detectable in the plasma exosomes of 
patients with lung adenocarcinoma (LUAD) and can be used 
as a biomarker for early diagnosis of LUAD. These studies 
provide a certain basis for the use of circRNAs as molecular 

markers for disease diagnosis and provide a new method for 
clinical screening of diseases.

5. Conclusion

PE is defined as new‑onset hypertension after 20 weeks of 
gestation, so early diagnosis is crucial for PE. Due to the 
current lack of sufficient data or the heterogeneity of the 
recruited population, circRNA is not sufficient as a marker 
for PE monitoring and screening. Given the molecular 
advantages of circRNAs over linear RNAs, studies on 
circRNAs are more focused on possible screening purposes. 
Although some studies have reported the possible screening 
performance of circRNAs in the first or second trimester 
of pregnancy, a single circRNA has not been successfully 
used in any PE screening program (135‑137). One study 
has found that the area under the curve (AUC) of plasma 
hsa_circ_0001855 is 0.62. While using the plasma protein 
PAPP‑A in combination with hsa_circ_0001855 and 
hsa_circ_0004904, the AUC increases to 0.94, with a sensi‑
tivity of 0.87 and a specificity of 0.97 (30). In another study 
combining plasma hsa_circ_0007885 level, plasma sFLT1 
level and abnormal uterine artery pulsatility index (UtA‑PI), 
the AUC is 0.85, and the sensitivity and specificity are 0.80 
and 0.86, respectively (138). The predictive power for PE is 
far stronger compared with any previous single molecular or 
ultrasound data (61). In summary, circRNAs can be combined 
with some specific molecules or clinical examination data 
such as PPAP‑As, sFlt‑1 and UtA‑PI for prediction as a new 
strategy for early clinical diagnosis of PE.

The present review summarizes the study progress of 
circRNAs in PE in recent years. The endogenous competitive 
mechanism of circRNAs occupies the majority, which is of 
help for understanding the pathogenesis of PE. However, the 
research on circRNAs has only revealed the tip of the iceberg, 
such as RNA‑binding proteins and encoded proteins, which 
have potential for the prevention and treatment of PE. With the 
development of sequencing technology, more circRNAs will 
be discovered and new methods will be used to study PE. We 
hope that this review has provided help for the diagnosis and 
treatment of PE.
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