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Recently, efforts have been made to add programming activities to the curriculum that
promote computational thinking and foster 21st-century digital skills. One of the
programming modalities is the use of Tangible Programming Languages (TPL), used in
activities with 4+ year old children. In this review, we analyze solutions proposed for TPL in
different contexts crossing them with non-TPL solutions, like Graphical Programming
Languages (GPL). We start to characterize features of language interaction, their use, and
what learning activities are associated with them. Then, in a diagram, we show a relation
between the complexity of the languages with factors such as target age and output device
types. We provide an analysis considering the type of input (e.g., TPL versus GPL) and
output devices (e.g., physical robot versus graphical simulation) and evaluate their
contribution to further insights about the general trends with respect to educational
robotic systems. Finally, we discuss the opportunities to extend and improve TPLs
based on the different solutions identified.

Keywords: tangible programming languages, educational robotics, computational thinking, language complexity,
human computer interaction

1 INTRODUCTION

Nowadays, the pervasiveness of technologies in people’s lives is unquestionable, particularly in
children’s lives, from a very early age. This technology, whose use begins in the family, quickly
extends to the school context, where we have tried to create spaces for its use in a meaningful way.

In the search for a child-centered implementation, which escapes a traditional educational
framework, the introduction of educational robotics in school contexts seeks to provide children
with the opportunity to research, discover, and apply knowledge in an authentic context
(Somyürek, 2015). In this constructivist perspective of learning, it is intended, as Biggs
(1996) points out, that students autonomously construct the meaning of their learning,
more than having the meaning transmitted from teacher to students. In this text,
educational robotics is understood as a set of activities designed to introduce students to
robotics and programming in an interactive way from an early age. Learning and development
does not happen alone but is built through the interactions that children have with their peers
and with people from their immediate context (Vygotski, 1978).

There are many advantages to using robots in an educational context. In the classroom, the
learning experiences intentionally designed by the teacher in educational robotics allow to provide
space for children to solve problems cooperatively, through active experimentation, the use of
language, explaining points of view, discussing, and analyzing the best solutions to solve problems
(Jia, 2010). This type of pedagogical strategy based on a cooperative learning logic, implies shared
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learning experiences between all students but, especially, between
the two genders. Studies point out the differences between the
genders’ views and also the differences in how they interact with
the technology, associating girls with more participatory activities
(Manero et al., 2017; Kinzie and Joseph, 2008; Sauer et al., 2020).
As indicated by Furtner et al. (2021), tasks with technology that
involve problem-solving and, so, cooperation among the
children, seems like an excellent strategy to promote girls’
involvement, “if they know that others contribute (more), they
are more likely to contribute as well” (p.47). In this sense,
applying this strategy using technology may contribute to
reducing the gap between genders, a problem that has been
tackled worldwide (García-Holgado et al., 2019). With the use
of robots in the classroom many other skills are developed and
valued in a significant way. In addition to the social aspects, the
use of these devices allows the development of several technical

and academic skills and have applicability with children with
learning disabilities, as we will see below.

In this perspective of meaningful learning, and as an
alternative to traditional programming interfaces, the
manipulation of physical objects or tangible devices for
programming is revealed as a fundamental learning strategy,
increasing the range of ages that could be considered suitable
for learning how to program. The concept of Tangible User
Interfaces (TUI) was first introduced by Ishii and Ullmer (1997)
as opposing to the Graphical User Interfaces (GUI). Therefore,
the concept of TPL adapts the idea of “augment the real physical
world by coupling digital information to everyday physical
objects and environments” (idem) to the programming activity
(see examples of these languages in Figure 1). The first
experiments with TPL were created at the MIT Logo Lab in
the mid-1970s controlling a floor turtle called TORTIS

FIGURE 1 | Classification of the tangible solutions based on input versus output devices, the complexity of programming language used and the year of their
release. Bellow the diagram, pictures from 0 to 3 depict TPL examples, organized in the different space dimensions. From left to right, the dinosaur Pleo (0) interacts with
touch, the Kibo (1) reads a sequence of commands, the Tern (2) represents the code in a space configuration and, finally, MOSS (3) uses a 3D space language in a mix
activity of programming and robot building.
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(Papavlasopoulou et al., 2017). Since then, a huge diversity of
solutions emerged, addressing preschoolers with 4 or 5 years
olds1.

TPL interfaces have been shown to increase active player
engagement in informal learning Melcer and Isbister (2018).
This more intuitive, playful and cooperative approach has the
potential to provide shared learning experiences, overcoming the
differences in the way both genders use the robots, as
mentioned above.

Moreover, if learning is favored when the task includes the
coordination of points of view and the exchange of ideas in a
cooperative logic, the use of “things” (tangibles, matters, objects,
artifacts, materials) in these collaborative activities is revealed as a
facilitating strategy for the learning processes, serving as
important mediators in this work logic (Heinemann et al.,
2011). Making learning more manipulative, particularly with
younger children, enables knowledge construction processes to
take place involving the physical exploration of objects,
particularly regarding the use of educational robotics
(Sapounidis et al., 2015).

There are two other reasons usually addressed for those
supporting TPL. The first is that Computer Thinking (CT) is
an important learning outcome for programming activity where
TPL apply better for younger children. The latter is that the use of
TPL promotes active learning in classes fitting to new teaching
methods such as Problem Based Learning or Project Based
Learning (Valls et al., 2018) which are known as motivating
and fostering active participation of children in classes.

In this sense, this paper seeks to offer an analysis of a wide
range of existing systems with TPL. It seeks to understand the
type of programming language they offer, the type of target
audience they are aimed at, as well as the types of output
devices, in an attempt in an attempt to better understand how
current solutions seek to respond to the needs of meaningful,
contextualized and relevant learning situations for children.

Along the review we apply the word object or, more generally,
system to all solutions that have a tangible interface as an input or,
in some cases, as an output. And we use device to identify each
entity of these systems.

2 DIMENSIONS ADOPTED FOR
BIBLIOGRAPHIC REVISION

The bibliographic revision was made considering two main
directions:

• To select TPL solutions that have impact at the moment
they were presented (e.g., Algoblocks Suzuki and Kato, 1995)
and that provide novelties in what might be considered the
mainframe (e.g., AR-MAZE Jin et al., 2018).

• To include the maximum number of different solutions, in
terms of robots and programming complexity (e.g., identifying
languages with and without function or variable concepts).

In Table 1 we compare different tangible solutions. We divide
the dimensions presented in the first row into two categories. The
first, technical, is related to the language of communication and
several of its characteristics. The latter is related to different
educational dimensions. The last column depicts the references to
the pedagogical features associated with the language. The search
was not exhaustive and its purpose was to find reports of the use
of languages in educational contexts.

The technical dimensions selected identify the type of TPL, the
year, the age range, if the TPL has or not embedded electronics,
the output interface (Device type) and how the system
communicates with it. It also indicates if the system provides
more than one level, i.e., if it is adaptable to users of other ages
(Multi-level). Finally, it divides the systems into low-cost (i.e., if
all proposed system components cost less than 100 euro) or non-
low-cost solutions.

Concerning TPL, we see an impressive diversity, which correlates
to the technical solutions provided by the languages used. Algoblock
proposes the idea of using blocks that fit together in a programming
sequence. That same idea is then used in E-BLOCK and also in Kibo.
QUETZAL has adopted a similar strategy, but now the blocks are
more like jigsaw puzzles because they attach together. This same idea
is used in Tractcode and also in TPL Thymio’s version but now as
tiles. The first column shows this diversity presenting different
acronyms for each solution, from blocks (Bks) and tiles (Tls) to
buttons or boards, filled with tiles instructions (Brd). Other solutions
are particular to the type of output device used. Pleo, a robotic
dinosaur, uses surface sensors (SfS), while Ozobot reads previous
programmed colour strips codes (CStr).

In a nutshell, the Table 1 provides the additional following
information:

• The use of TPL extends classes programming activity for the
range of 5+ years or even 4+ years old.

• First TPL adopted embedded electronics because of the
difficulty of using another type of communication at
the time.

• TPL are also used to control virtual entities in simulation
graphical environments (e.g., AR-MAZE or PROTEAS).

• All comercial TPL (with ©) are available2.

In educational terms, the tangible objects analyzed can be
considered from three major dimensions or analysis categories,
according to the skills they seek children to develop and their
functionality as a tool to facilitate learning in children with
learning disabilities. Thus, we found objects clearly directed
towards the development of technical and academic skills,
focused on aspects related to the nature of programming tasks
and the concepts associated with them, as well as academic
learning, is inherently enhanced through their use. These

1In contrast to TPL, block based programming languages used in a Graphical User
Interface will appear in the text as Visual Programming Language (VPL) or
Graphical Programming Language (GPL). 2Note that Moerman and Jansens (2020) uses a modified version of Pleo software.
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TABLE 1 | Comparing different tangible solutions. Programming languages were defined as blocks with switches (BwS), buttons (Bts), sequence of commands board (Brd), surface sensors (SfS), paper tiles (Tls), colour
strips (CStr)and embodied (E). The communication to the output device is hardwired (H), by Bluetooth (B), image processing (I), wireless (W), optical device (O), RFID (RFD) or embedded (E). The output device is a robot
(R) or a screen (S), a screen with augmented reality (AR), an electronic board (eB) or an electronic blocks configuration (Bc). Technical and Academic Skills were identified as computational thinking (CT), logical (LT) and critical
thinking (CrT), problem-solving skills (PS), using drawings for programming (Dr), ability to use and understand programming language (PL), sequencing (S), developing of multisensory (MsL) and sensorimotor (SmE) skills. At
Social and Personal skills, collaborative learning (CL), negotiation (N), creativity (Cr), Cooperation and collaboration (Cp) motivation (M), communication (Cm), active participation (AP), playful or fun (PL) were found in the
bibliography. Finally, for Learning disabilities were identified Autism Spectrum Disorders (A), children in hospitalization (H), Down Syndrome (D), special needs(SE) and visual disabilities (V).

Language
type

Year Age Emb.
electronics

Communication Multi-
level
(input)

Device
type

(output)

Low-
cost

system?

Pedagogical
kit?

Tech.
and
acad.
skills

Social
and
pers.
skills

Learn.
disabilities

—

Algoblock BwS 1993 5–9 y H n S n n LT PS CL — Suzuki and kato (1995)
Bee-bot©
Pro-bot©

Bts 2000 4–6 Y B y R y y — CL A Vázquez et al. (2019)

Blue-bot© Bts Brd 2005 5+ y B y R y y — CL A Bellegarde et al. (2019)
Pleo©† SfS 2006 5+ y B y R y y Dr Cr Cp H Moerman and Jansens. (2020),

Ryokai et al. (2009)
QUETZAL Bks 2007 12+ n I n S/R n n PS PL Cp — Horn and Jacob (2006)
PROTEAS
T_ProRob
T_Butterfly

Tls 2011 6+ n H/B n R n n — Cp Cr N H Sapounidis et al. (2015), Sapounidis
et al. (2019)

CHERP Bks 2012 4–6 N W n R y n CT PS S — — Kazacoff et al. (2012)
E-BLOCK Bks 2012 4–10 Y W n S y n MsL PS CL Cp SE Wang et al. (2013)
Ozobot© CStr 2012 6+ Y O/B n R n y CT PS Cp M — Žáček and Smolka. (2019)
CUBETTO© Brd 2013 3–9 N B n R n y PS S Cp — Anzoátegui et al. (2017), Berson et al.

(2019), Murcia et al. (2019)
Tanpro-Kit Bks 2013 5–8 y W n eB n n PS Cp — Wang et al. (2013)
Cublets© E 2014 6–16 y E n Bc n N PS Cp A Jung et al. (2020)
Kibo© Bks 2014 4+ n O y R N y — Cp A D Albo-Canals et al. (2018),

González-González et al. (2019)
STRAWBieS Tls 2015 5+ n I n S N n PS SmE CL — Hu et al. (2015)
AR-MAZE Bks 2018 5–9 n I n S AR Y n LT PS — — Jin et al. (2018)
Tactcode Tls 2018 6+ n n R y n — — — Cardoso et al. (2018)
Kubo© Tls 2019 4+ y RFD y R N y CrT Cp

Cm Cr
— Bertel et al. (2019)

Thymio TPL© Tls 2019 4+ n I n R n y — AP
Cp PL

— Mussati et al. (2019)

TORINO E 2020 7–11 y E n R n n — — V Morrison et al. (2020)
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technical and academic skills, present in practically all the objects
targeted for analysis, have to do with , for example, the
understanding and mobilization of concepts in the
construction of Computational Thinking (CT3) (Sáez-López
et al., 2019; Uşengül and Bahçeci, 2020; Žáček and Smolka,
2019), the ability to use and understand the programming
language (PL) (Horn and Jacob, 2006; Uşengül and Bahçeci,
2020; Žáček and Smolka, 2019; Riedo et al., 2013), sequencing (S)
(Anzoátegui et al., 2017; Berson et al., 2019), problem-solving
skills (PS) (Sáez-López et al., 2019; Jin et al., 2018; Jung et al.,
2020; Sapounidis et al., 2015; Wang et al., 2013), the ability to
develop logical (LT) (Jin et al., 2018) and critical thinking (CrT)
(Bertel et al., 2020), or the development of multisensory (MsL)
(Wang et al., 2013) and sensorimotor (SmE) skills (Hu et al.,
2015). Finally, there is one reference to programming using
drawings (Dr)(Moerman and Jansens, 2020).

In parallel, in several objects it is possible to identify a set of
personal and social competencies that are important in the
learning process that take place simultaneously with the
development of technical and academic competencies. The
development of these competencies is related to the creation
of collaborative spaces that encourage interaction between
students. At the social level, most of these competencies relate
to cooperation or collaboration (Cp) which is promoted with the
implementation of group programming activities and the
exchange of experiences (Albó-Canals et al., 2018; Heljakka
and Ihamäki, 2019; Jung et al., 2020), but also to collaborative
learning (CL) which takes place in these types of activities (Pérez-
Vázquez et al., 2019) and negotiation (N) (Sapounidis et al., 2019;
Sapounidis et al., 2015). The use of tangible objects also allows the
development of a set of personal aspects such as creativity (Cr)
(Bertel et al., 2020;Moerman and Jansens, 2020; Riedo et al., 2013;
Ryokai et al., 2009), motivation (M), communication (Cm)
(Bertel et al., 2020), the playfulness or fun they promote
(PL)(Sáez-López et al., 2019; Sapounidis et al., 2015;
Sapounidis et al., 2019) or allowing the child to have active
participation in the process (AP) (Mussati et al., 2019).

We also identified objects that, although they can be used by
any child, have applicability with learning disabled children, in
particular children with Down Syndrome (D) (Albó-Canals et al.,
2018), Autism Spectrum Disorders (A) (Jung et al., 2020; Pérez-
Vázquez et al., 2019; González-González et al., 2019), special
needs (SE) (Bertel et al., 2019) children in hospitalization (H)
(Moerman and Jansens, 2020), and specifically with children with
visual disabilities (V) (Morrison et al., 2020). In the table, a system
is considered a pedagogical kit when, along with it, a set of
resources (e.g., manuals, exercises adapted to specific school
years) can be acquired by the user. Usually, a multi-level
approach comports the use of a pedagogical kit but not
necessary the other way around.

Finally, the objects can demonstrate their longevity. Pleo,
thanks to its open-code facility, allowed new experiences
transforming the way children could interact with it
(Moerman and Jansens, 2020).

3 PROGRAMMING USING TANGIBLE
DEVICES

To characterize programming languages, we organize seven
different dimensions associated to each object, as depicted in
the diagram in Figure 1, as follows:

• x-axis identifies haptic user interface dimensions associated
with programming activities;

• y-axis divides language complexity into basic imperative or
event-based languages (i.e., without the use of variables),
imperative or event-based (with the use of variables) and
languages with the use of variable and functions;

• Each object has its release year divided into three intervals,
i.e., those released before 2010, those released between 2010
and 2015 and those released after 2015;

• The objects are divided into two groups based on the
minimum age indicated by the authors or researchers
who tested the device, i.e., suitable for children under
6 years old (pre-school children) versus over 6 years old;

• Each object is characterized by its input and output type: a
GUI, TUI or an embedded device and;

• Each object is identified if it is a commercial product.

The first feature to notice in the diagram is the representation
of the input versus output devices using squares and triangles to
distinguish tangible solutions from graphical ones. As a support to
this representation, we use the more general concepts of TUI and
GUI to distinguish the devices used by each system for
programming and executing activities. For example, T-Maze
input device is a TUI type (square) because it uses a TPL for
programming while the screen output device is a GUI type
(triangle). Thymio VPL input device is a GUI (triangle) using a
VPL for programming and the output device is TUI type (square),
using a robot. The embedded interface types correspond to the
cases that a tangible object works both as an input and output
device. A paradigmatic example are the popular Bee-bot and Blue-
bot robots. This classification allowed us to include non-TPL
solutions (e.g., Lego or mBot) and they were added to extend the
analysis to the language dimension complexity.

As the haptic sense is directly related to space, we use the spatial
metaphor to classify input and output device interaction. The
simplest is a punctual interaction, extended into a linear when a
sequence of instructions controls the output. We call planar
interaction adding alternatives or loops, as it could be
represented as a path in a plain. If the input and output
devices are embedded, this interaction could be driven by the
pathway of their spatial topology configuration, which we see as a
3D interaction. In general, this last type of interaction includes
hardware (or embodied) programming where the robot’s behavior
is defined by the embedded sensors and actuators, like in Cubelets.

Following the horizontal axis direction from left to right, we
can classify the proposed systems based on the complexity of the
used language. Furthermore, following from bottom to top, one
can identify the physical dimension of the language used. One
highlight is that objects can have many types of input interactions
centered on a specific robot device. As an example, the Thymio3See Table 1 to associate to the object.
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objects are presented in the figure with four different
configurations. At the left, Thymio/button robot responds
directly to the touch of a button. Then, in the 1D linear
interaction, the Thymio is programmed by GPL or TPL (or
paper-code) languages. Finally, using Aseba language, which
uses loops and alternatives, the same robot moves into the
planar interaction increasing the programming complexity.

In summary, we can identify the trends that are explicit in the
diagram as follows:

• As expected, the top right side of the diagram concentrates
most objects with TPLs. In contrast, in the bottom left, the
solutions are mostly the GPL associated with specific robots;

• The solutions with more simple languages are also used by
the youngest children with the darkest solutions at the
bottom left in the diagramwith few exceptions such as Kubo;

• Along the years there is a significant increase of commercial
products available, possibly due to the sprawl of the
importance of Computational Thinking and the maturity
of solutions found.

Digging into the details of the solutions proposed, we found
trends that could be detected but that somehow are not directly
visible in the diagram. They are:

• New objects can use Artificial Intelligence (AI) in their
conception or apply AI algorithms in their behaviors (e.g.,
COZMO, Robobo);

• Some systems can offer effective complex TPL (e.g., Kubo);
• Consolidated solutions tend to adopt languages with
increasing complexity to provide solutions adapted to
different ages (e.g., Thymio);

• Several solutions explore sensory interactionmethods, using
touch or sound to program (e.g., TORINO, Pleo);

• New objects improve their “social connection” by improving
their empathy to users (e.g., Dash and Dot, COZMO).

4 CONCLUSION

In this review, we identify a considerable diversity of TPL solutions
analyzed in different dimensions and following two different
approaches. In the first, we explore technical issues and how
researchers see their use in educational environments, in Table 1.
In the latter, a diagram characteries the type of interfaces, extending
the objects to TPL and GPL interaction types, and how solutions
spread in haptic and language complexity dimensions, inFigure 1. As
expected, TPL addressesmainly the solutions with languages with less
complexity and the number of recent commercial products shows the
increasing interest in this type of interaction. The diversity of
solutions is visible by the number of different input devices and
how they communicate to the output devices as well as by the
dimensions of interactions provided.

In educational terms, this analysis demonstrates, on the one hand,
the relevance of tangible objects to educational processes and spaces
that are increasingly useful in defining strategies that seek their
development in a more meaningful, active and interesting way for

children and young people. All of them are focused on the acquisition
of skills related to programming and computational thinking at
different levels of complexity. However, many of them go beyond
those mere technical skills, enhancing social interactions,
collaborative learning, communication, playfulness, problem-
solving and the promotion of learning in specific areas of
knowledge. The use of these objects for special educational
purposes is also interesting, contributing tomore inclusive education.

However, this focus on developing programming skills and other
learning associated with them for children and young people’s
academic and professional development is beginning to prove, to
some extent, reductive or simplistic. Bers (2019) draws attention to
the need to look at computer science in schools, particularly from
early childhood education, as a tool for the training of future active
and participatory citizens and to understand programming as
another form of literacy, close to the emergent perspective of
Ferreiro and Teberosky (1996) or Sulzby (1985), proposing a
new way of approaching computer science in early childhood
education called “Coding as Another Language” (CAL). In any
case, it is about bringing the way programming happens closer to
the way young children think about written language, contributing
to the construction of thinking about languages, regardless of their
nature, an aspect that should deserve particular attention in future
research in this area, due to its relevance in terms of approaching
aspects of child development.

Finally, this analysis provided insights related to recent
proposals and highlights inevitably exciting novelties in the
following years. One is the combined used of TPL with
augmented reality (e.g., AR-MAZE), allowing young children
to program tangibly and test their code in an environment
with additional support, such as debugging tools. Another is
the embodied code interpreted solution (e.g., Kubo), where robots
read and interpret code, giving feedback about possible codifying
errors. This solution seems to bring robots closer to its users by
including them in the programming task, and enhancing its social
interaction role. Also, with the increasing technology complexity,
more solutions provide sophisticated behaviors in robots adding
new valencies that extend communication capabilities, enlarging
the target of children with learning disabilities and transforming
the way children communicate with the robotic systems.
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