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Abstract

Mental simulation practices, such as motor imagery, action observation, and guided imag-

ery, have been an intervention of interest in neurological and musculoskeletal rehabilitation.

Application of such practices to postoperative patients in orthopedics, particularly after total

knee arthroplasty, has resulted in favorable physical function outcomes. In this systematic

review and meta-analysis, we wish to determine the effectiveness of mental simulation prac-

tices with standard physical therapy compared to standard physical therapy alone in

patients who underwent total knee arthroplasty in terms of postoperative pain, physical func-

tions, and patient-reported outcome measures. We identified randomized controlled trials

from inception to August 28, 2021, by using the PubMed, Cochrane Library, EMBASE, and

Scopus databases. Data collection was completed on August 28, 2021. Finally, eight arti-

cles (249 patients) published between 2014 and 2020 were included. The meta-analysis

revealed that mental simulation practices caused more favorable results in pain [standard-

ized mean difference = −0.42, 95% confidence interval (CI) (−0.80 to −0.04), P = 0.03],

range of motion [0.55, 95% CI (0.06–1.04), P = 0.03], maximal strength of quadriceps [1.21,

95% CI (0.31–2.12), P = 0.009], and 36-Item Short-Form Survey [0.53, 95% CI (0.14–0.92),

P = 0.007]. Our data suggest that mental simulation practices may be considered adjunctive

to standard physiotherapy after total knee arthroplasty in patients with knee osteoarthritis.
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Introduction

Osteoarthritis is a leading cause of disability in adults and frequently affects the knee. When

nonsurgical interventions fail to provide desired results in patients with advanced knee osteo-

arthritis, total knee arthroplasty (TKA) becomes the treatment of choice for ameliorating pain

and improving mobility, function, and health-related quality of life [1, 2]. Although TKA offers

long-term benefits [2], the immediate and subacute postoperative period is often associated

with pain [3], reduced range of motion [4], impairment of quadriceps strength [5], and

decreased physical and social functioning [6].

Traditional postoperative rehabilitation protocols have mainly focused on conventional

physiotherapy. Several modalities and techniques, such as hydrotherapy [7], cryotherapy [8],

neuromuscular electrical stimulation [9], and continuous passive motion therapy [10]. How-

ever, while some showed positive effects [9, 11], the clinical benefits of others remain uncertain

[4, 12, 13], and there remains an unmet need for innovative post-TKA rehabilitation

approaches that can provide significant clinical efficacy.

Over the last two decades, cognitive-based strategies, such as motor imagery and action

observation, have attracted attention for motor rehabilitation in patients with stroke [14] and

Parkinson’s disease [15, 16], and for the relief of musculoskeletal pain [17, 18]. Motor imagery

is a dynamic mental state in which an individual is given a motor movement for mental

rehearsal without overt motor output [19]. It is a cognitive simulation process that employs

motor task imagery for activating brain regions associated with movement preparation and

execution [20–22]. This process is based on the motor simulation theory, which suggests neu-

ral networks are involved during imagined and executed movement [22]. Indeed, many studies

have demonstrated an overlap in neural activation during actual physical movements and

motor imagery [23–25]. Because no movements are performed in the process, motor imagery

elicits no pain or other negative side effects that might be linked to routine physical therapy

[26, 27]. Another modality of mental simulation practice that is commonly used is action

observation, which requires patients to visually perceive specific motor gestures, thereby evok-

ing internal motor simulation [28]. Evidence of the mirror neuron system has suggested that

the group of neurons that are activated during certain motor acts are also activated when the

same or similar movement is observed [28].

Recently, several randomized controlled trials (RCTs) have explored the effects of these

mental stimulation practices on patients after TKA. A meta-analysis concluded that mental

simulation practices exert positive effects on physical function in patients after total hip

arthroplasty (THA) or TKA [29]; but the included evidence had generally high heterogene-

ity. Moreover, the effect of post-TKA mental simulation intervention could not be isolated

in the previous study because its pooled data included both patients with THA and those

with TKA, and only four trials targeting patients with TKA were included. The present sys-

tematic review and meta-analysis included RCTs to analyze the effectiveness of mental sim-

ulation practices on pain, physical function, and other composite measures in patients after

TKA.

Methods

Study design and registration

This systematic review and meta-analysis was conducted in accordance with the Preferred

Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [30]. The

protocol was registered in the prospective international register of systematic reviews, PROS-

PERO (registration number: CRD42021293408)
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Search strategy

A literature search for scientific articles on the effectiveness of mental simulation practices in

patients who had undergone TKA was performed using PubMed, Cochrane Library, EMBASE

and Scopus databases from inception to August 28, 2021. The following keywords or their

combinations were employed for the search: “motor imagery,” “guided imagery,” “mental sim-

ulation,” “MSP,” “mental practice,” “action observation,” “AO,” “AOT,” “total knee arthro-

plasty,” “TKA,” “OA knee,” and “osteoarthrit�”. Search filters of the databases were used to

identify RCTs if applicable. No language restrictions were applied. The applied search strate-

gies of the databases can be found in S1 Table. The reference lists of the relevant articles were

manually reviewed for additional studies. The retrieved RCTs were imported into EndNote X9

(Clarivate Analytics) software and screened for relevance by two reviewers independently; first

based on title and abstract, and then by reviewing the full text. Any discrepancies were resolved

through discussion with a third reviewer.

Eligibility criteria

We included RCTs that deployed mental simulation practices, such as motor imagery, action

observation or guided imagery, alone or in combination with standard physical therapy (SPT)

in patients who underwent TKA for knee osteoarthritis with outcomes of pain, physical func-

tion, or patient self-reported measures assessed. We excluded RCTs that used treatment com-

binations that precluded the isolation of the effectiveness of mental simulation intervention.

Data extraction

The following parameters were extracted from each RCT by two reviewers independently: the

mean age, sex, and number of participants; the type of mental simulation practice used as

intervention and description on duration, frequency, and method of delivery; duration and

frequency of SPT; details of the placebo/control treatment; appraised outcome measures; and

follow-up duration.

Outcome assessment

The primary outcome measure was pain, assessed using a visual analog scale (VAS). Other out-

come measures in relation to physical functions of the lower extremities and composite mea-

sures that included activities of daily living, quality of life or general health status were also

considered. These included the following: the Timed Up and Go Test (TUG), Barthel Index,

the Oxford Knee Score (OKS); and spatiotemporal and kinematic parameters, such as gait

speed, cadence, stride length, and range of motion (ROM). Patient-reported outcome mea-

sures reflected by questionnaires, specifically the 36-Item Short-Form Health Survey (SF-36)

and Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores, were also

considered.

Risk-of-bias assessment

The methodological quality of each study was assessed by two independent reviewers using the

Physiotherapy Evidence Database (PEDro) scale [31]. The PEDro scale consists of 11 items

that are rated “Yes” or “No” (which corresponds to 1 or 0 points) depending on whether a cri-

terion is met by a study. The ratings of PEDro scale items 2–11 were summed to obtain a total

PEDro score between 0 and 10. Scores of<4 were considered “poor,” 4–5 were considered

“fair,” 6–8 were considered “good,” and 9–10 were considered “excellent” [32].
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Statistical analysis

Data management and analyses were performed using Review Manager 5.4.1 software (The

Cochrane Collaboration, London, United Kingdom). Continuous outcomes measured using

different scales were converted to a single scale and expressed as standardized mean differ-

ences (SMDs) and 95% confidence intervals (CIs). Data of outcomes that used the same mea-

surement scale were combined as mean difference (MD). A meta-analysis was conducted and

presented with a forest plot if two or more trials reported the same outcome. Pooled data were

analyzed using a random-effects model for all comparisons. Heterogeneity between studies

was investigated using the I2 statistics, with I2 > 50% indicating moderate heterogeneity [33].

When the results were statistically significant with a I2 > 50%, a sensitivity analysis was con-

ducted for the verification of effect. The results were considered statistically significant at

P� 0.05 in the z-tests of equivalence. A funnel plot was used to test for publication bias if 10

or more studies were included in the analysis.

Results

Study selection

A total of 541 articles were retrieved through the search of electronic databases and one

additional article was identified through a manual search of references. Of these studies, 147

were subsequently removed as duplicates and 377 articles were excluded after title and

abstract screening. The full texts of the remaining 18 RCTs were screened, of which ten

were excluded for various reasons: inaccessibility of full text, nonrandomized study design,

review articles, conference paper, study protocols, and not meeting eligibility criteria.

Among the eight articles that met the eligibility criteria, two reported different but pertinent

outcomes from the same study. Finally, seven RCTs (eight journal articles) [27, 34–40], all

parallel studies, comparing the effects of mental simulation practices and SPT on pain and

physical function were included in the meta-analysis. A flow chart of the study selection

strategy is presented in Fig 1.

Study characteristics

The selected studies were published between 2014 and 2020 and included a total of 249

patients (124 and 125 patients in the intervention and control groups, respectively). Four stud-

ies used motor imagery as the choice of mental simulation practice [27, 34–37], two adopted

action observation [38, 40] and one used guided imagery [39]. All patients in the intervention

and control groups received SPT as the baseline treatment. All studies reported pain as an out-

come by using a VAS [27, 34, 35, 37–40]. Five trials assessed ROM by using active knee flexion

[27, 34, 35, 37, 38]. Four trials reported TUG [27, 34, 37, 40] by measuring the time taken to

complete the walk test. Patient-reported health status, such as WOMAC [35, 39, 40], SF-36

[38, 39], and OKS [27, 37] were each evaluated by two studies. The Barthel Index, a measure of

the performance of activities of daily living, was reported by two studies [34, 38]. Spatiotempo-

ral and kinematic parameters, including quadriceps strength [27, 37], gait speed [34, 36], stride

length [34, 36], and cadence [34, 36], were each assessed by two studies. The main characteris-

tics of the seven RCTs are summarized in Table 1.

Risk-of-bias assessment results

All studies reported adequate baseline comparability, between-group statistical comparison,

point estimates, and variability measures for at least one key outcome. All studies corre-

sponded to random allocation, one study [35] mentioned achievement of concealed allocation.
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Participants in all the studies were not blinded. Three studies clearly stated blinding of thera-

pists [27, 37, 39] and/or assessors [35, 38, 39]. All studies reported more than 85% follow-up

for at least one key outcome. Four studies [27, 35, 37, 38] were analyzed by the intention-to-

treat approach.

All PEDro scale scores in the included studies were between 5 and 8; two studies [34, 40]

were considered “fair,” five studies [27, 35, 37–39] were considered “good”. The scores of each

item on the PEDro scale are summarized in Table 2.

Fig 1.

https://doi.org/10.1371/journal.pone.0269296.g001
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Table 1. Characteristics of included studies.

Study Participants Intervention Control Assessed outcome measures

Experimental

group

Control group

n (men/

women)

Mean

age

(SD)

n (men/

women)

Mean

age

(SD)

Zapparoli

et al., 2020

[34]

24 (13/

11)

66.2

(8.0)

24 (7/17) 66.6

(7.5)

SPT + MI (2�30 min/d, for an

average of 11 d) by visual and

audio stimuli

SPT (70 min/d, 6 d/wk)

+ nonmotorized cognitive

training (2�30 min/d, for an

average of 11 d)

Pain (VAS), TUG (s), ROM (˚),

Barthel Index, self-selected gait speed

(m/s), gait cadence (steps/min), stride

length (m)

Briones-

Cantero et al.,

2020 [35]

12 (8/4) 72 (6) 12 (7/5) 72 (5) SPT + MI (30 min/session, 5

sessions in total)

SPT (30 min/session, 5

sessions in total)

Pain (VAS), ROM (˚), WOMAC,

Paravlic et al.,

2020 [27]

13 (7/6) 61.7

(5.2)

13 (7/6) 58.9.0

(5.2)

SPT + MI (hospitalization: 15

min/d, home: 5 times/wk for 4

weeks via audiotape provided at

the time of discharge)

SPT (15 min/d by verbal

communication in hospital

and by telephone after

discharge)

Pain (VAS), TUG (s), ROM (˚),

MViC (Nm/kg),

Paravlic et al.,

2019 [36]

(same as

above)

(same

as

above)

(same as

above)

(same

as

above)

(same as above) (same as above) Self-selected gait speed (m/s), gait

cadence (steps/min), stride length

(m)

Moukarzel

et al., 2017

[37]

10 (2/8) 70.3

(2.5)

10 (2/8) 68.9

(1.8)

SPT + MI (15 min/d, 3 d/wk for 4

weeks) by self-visualization of

movements

SPT (60 min/d, 3 d/wk for 4

weeks)

Pain (VAS), ROM (˚), TUG (s),

MViC (Nm/kg),

Jacobson et al.,

2016 [39]

42 (31/8) 65.0

(8.6)

40 (19/

21)

63.7

(8.8)

SPT + GI (19−21 min/d, 7 d/wk

for 5 weeks) by audio-recordings

SPT (17−21 min/d, 7 d/wk for

5 weeks) by audio-recordings

Pain (VAS), WOMAC,

WOMAC-Stiffness,

WOMAC-Function, SF 36-physical

function, SF 36-mental health

Villafañe et al.,

2016 [38]

14 (7/7) 70.4

(7.5)

17 (3/14) 70.1

(7.7)

SPT + AO (2 sessions/d, 5 d/wk

for 2 weeks) by a video of

exercises being performed

SPT (2�30 min/d, 5 d/wk for 2

weeks) + video of scenes in

nature

Pain (VAS), ROM (˚), Barthel Index,

SF 36-physical function, SF

36-mental health

Park et al.,

2014 [40]

9 (NA) 72.7

(12.3)

9 (NA) 70.6

(11.0)

SPT + AO (10 min/d, 3 d/wk for

3 weeks) by video clip

SPT (30 min/d, 3 d/wk for 3

weeks)

Pain (VAS), TUG (s),

WOMAC-Stiffness,

WOMAC-Function,

AO, Action observation; d, day(s); GI, Guided imagery; MI, Motor imagery; min, minute(s); MViC, Maximal voluntary isometric contraction; n, number; NA, Not

applicable; ROM, Range of motion; s, second(s); SF-36, 36-Item Short Form Survey; SD, Standard deviation; SPT, Standard physical therapy; TUG, Timed Up and Go

Test; VAS, Visual analogue scale; wk, week; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

https://doi.org/10.1371/journal.pone.0269296.t001

Table 2. Summary of methodological quality based on PEDro scale.

PEDro scale items PEDro score

Studies included 1� 2 3 4 5 6 7 8 9 10 11 (0–10) Methodological quality

Briones-Cantero, 2020 Y Y Y Y N N Y Y Y Y Y 8 Good

Jacobson, 2016 Y Y N Y N Y Y Y N Y Y 7 Good

Moukarzel, 2017 N Y N Y N Y N Y Y Y Y 7 Good

Paravlic, 2020 Y Y N Y N Y N Y Y Y Y 7 Good

Park, 2014 Y Y N Y N N N Y N Y Y 5 Fair

Villafañe, 2016 N Y N Y N N Y Y Y Y Y 7 Good

Zapparoli, 2020 Y Y N Y N N N Y N Y Y 5 Fair

Items: 1- Eligibility criteria specified; 2-Random allocation; 3-Concealed allocation; 4-Baseline comparability; 5-Blinded participants; 6-Blinded therapists; 7-Blinded

assessors; 8-Adequate follow-up; 9-Intention-to-treat analysis; 10-Between-group comparisons; 11-Point estimates and variability. �Not included in the calculation of

the total score

Methodological quality: Excellent, 9–10 points; Good, 6–8 points; Fair, 4–5points; Poor, 0–3 points; Yes (Y), 1 point; No (N), 0 point.

https://doi.org/10.1371/journal.pone.0269296.t002
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Knee pain

All studies [27, 34, 35, 37–40] reported VAS scores of the targeted knee at the acute to subacute

period after surgery, ranging from 10 days to 4 weeks post-TKA. Heterogeneity existed

between the seven trials (I2 = 49%, P = 0.07); hence, a random-effects model was adopted. The

meta-analysis revealed that the pain score was significantly lower in the mental simulation

practice group than in the control group [SMD = −0.42, 95% CI (−0.80 to −0.04), P = 0.03]

(Fig 2).

ROM

ROM was reported in five studies [27, 34, 35, 37, 38], with a total of 137 patients (67 in the

mental simulation practice group and 70 in the control group). Heterogeneity was considered

moderate (I2 = 48%, P = 0.10). The overall pooled data suggested that mental simulation prac-

tice can significantly improve active knee flexion range of motion in patients after TKA

[SMD = 0.55, 95% CI (0.06−1.04), P = 0.03] (Fig 3).

Muscle strength

The voluntary isometric contraction of knee extensors on the operated leg was assessed by two

studies [27, 37], with 23 patients each in the mental simulation practice and control groups.

Moderate heterogeneity was observed between the two studies (I2 = 47%, P = 0.17). The results

indicated that compared with the control group, mental simulation practice was associated

Fig 2.

https://doi.org/10.1371/journal.pone.0269296.g002

Fig 3.

https://doi.org/10.1371/journal.pone.0269296.g003
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with significantly improved quadriceps strength [SMD = 1.21, 95% CI (0.31−2.12), P = 0.009]

(Fig 3).

TUG test

Four of the RCTs [27, 34, 37, 40], including 112 patients (56 each in the mental simulation

practice and control groups), provided data on the Timed Up and Go Test (TUG). Moderate

heterogeneity was observed among the studies (I2 = 61%, P = 0.07). No significant difference

was observed in the TUG between the mental simulation practice group and control group

[SMD = 0.59, 95% CI (−0.06 to 1.23), P = 0.07] (Fig 3).

WOMAC scores

Three studies compared the WOMAC score; of them, two studies assessed the total WOMAC

scores (49 and 51 patients in the mental simulation practice group and control groups, respec-

tively) [35, 39], and two assessed the function and stiffness subscales (46 and 48 participants in

the experimental and control groups, respectively) [39, 40].

No heterogeneity was observed in the two studies that compared total WOMAC scores (I2

= 0%, P = 0.34). The overall estimate revealed no significant difference between the mental

simulation practice and control groups in total WOMAC score [SMD = −0.23, 95% CI (−0.62

to 0.17), P = 0.26] (Fig 4).

Pooled results revealed no significant difference between the experimental and control

groups in function and stiffness subscale scores [SMD = −0.80, 95% CI (−2.21 to 0.62),

P = 0.27 for functional score, SMD = −0.47, 95% CI (−1.84 to 0.91), P = 0.51 for stiffness

score]. Significant heterogeneity was noted in both comparisons (functional: I2 = 83%,

P = 0.02 and stiffness: I2 = 83%, P = 0.01) (Fig 4).

36-Item Short Form Health Survey

Two studies assessed patient-reported health status by using the SF-36 questionnaire [38, 39].

No heterogeneity was found between the two trials (I2 = 0%, P = 0.51). The results

Fig 4.

https://doi.org/10.1371/journal.pone.0269296.g004
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demonstrated a significant improvement in SF-36 scores in the mental simulation group com-

pared with the control group [SMD = 0.53, 95% CI (0.14 to 0.92), P = 0.007] (Fig 5).

Barthel Index

The two studies that explored Barthel Index scores showed high heterogeneity (I2 = 70%,

P = 0.07) [34, 38], and the pooled data exhibited no significant difference between the inter-

vention and control groups [SMD = 0.21, 95% CI (−0.63 to 1.05), P = 0.62] (Fig 5).

OKS

Two studies used the OKS [27, 37]. No significant difference was noted between the two

groups [SMD = 0.77, 95% CI (−0.52 to 2.06), P = 0.24]. Substantial heterogeneity was also

observed between the two trials (I2 = 77%, P = 0.04) (Fig 5).

Gait parameters

Stride length, cadence, and gait speed were evaluated by two studies with moderate to substan-

tial heterogeneity (I2 = 66%, P = 0.09 for stride length; I2 = 89%, P = 0.003 for cadence; and I2

= 88%, P = 0.003 for gait speed) [34, 36]. In all three comparisons, no significant difference

was found between the mental simulation practice and control group [SMD = 0.58, 95% CI

(−0.20 to 1.36), P = 0.14 for stride length; SMD = 0.58, 95% CI (−0.84 to 1.99), P = 0.43 for

cadence; and SMD = 0.52, 95% CI (−0.85 to 1.88), P = 0.46 for gait speed] (Fig 6).

Adverse effect

Given that mental simulation is a cognitive process that involves the mental rehearsal of per-

ceptual information in the absence of actual motor output, it is usually conducted noninva-

sively, with limited adverse effects and complications [41]. None of the included studies

reported any adverse events related to mental simulation intervention.

Discussion

In this systematic review and meta-analysis, we synthesized evidence of the effectiveness of

mental simulation practices, specifically motor imagery, action observation and guided imag-

ery, in pain, patient-reported outcome measures, as well as clinical and kinematic parameters

Fig 5.

https://doi.org/10.1371/journal.pone.0269296.g005
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of patients who underwent TKA exclusively. The results indicated that the use of mental simu-

lation practice significantly improved pain, ROM, muscle strength of knee extensors, and SF-

36 score but not cadence, gait speed, stride length, Barthel Index, or TUG, WOMAC, and its

subscale scores.

The motor simulation theory, which postulates that various action-related cognitive states,

such as imagery and observation, activate motor systems in the brain that are similar to those

triggered during actual action [21, 42, 43], may provide an explanation for these results. Neuro-

imaging studies have revealed that both imagined and real movements share a common neural

substrate [44], and mental simulation practice may be useful in preventing the loss of physical

function in both upper [45] and lower extremities [46]. The proposed underlying mechanisms

range from selective modulation of corticospinal system excitability [47] to activation of the

mirror neuron system [48]. Although the precise mechanism remains unclear [42], discussion

on mental simulation interventions is warranted due to the expected clinical benefits.

Discussion on the representation and simulation of motor acts dates back to as early as

1825 by the German philosopher and psychologist, Johann Friedrich Herbart, who proposed

that the imagery of perceptual effects can elicit related movements [49]. It has since then been

explored in various aspects of sports [50] and medicine [14–18, 51]. Mental simulation prac-

tice has been used to rehabilitate motor deficits in various neurological [52] and musculoskele-

tal disorders [17, 18, 51]. A systematic review and meta-analysis reported multiple positive

effects on measures of physical function recovery compared with SPT in patients after TKA or

THA [29]. Positive effects were observed in the maximal strength of knee extensors and vari-

ous mobility measures, including gait speed, TUG, joint flexion, and joint extension assess-

ments. For overall physical function, the study collectively assessed numerous variables by

using composite effect size which has also shown favorable effects. However, substantial het-

erogeneity within effect estimates of several outcomes was noted. The study also did not

include an assessment of important patient-subjective outcomes, such as pain.

Increasing evidence suggests that mental simulation can decrease pain in various situations

of musculoskeletal pain [17, 18], including postamputation phantom limb pain [41] and com-

plex regional pain syndrome [53]. Despite successful joint replacement, many people continue

to experience significant pain and functional problems. A systematic review concluded that

unfavorable long-term pain outcomes were seen in 10%−34% of patients after knee arthro-

plasty [54]. Our data revealed that mental simulation practice significantly reduces early to

intermediate-term postoperative pain (SMD, −0.42), as evidenced by VAS, in patients who

Fig 6.

https://doi.org/10.1371/journal.pone.0269296.g006
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have endured TKA. Considering that several studies have reported positive associations

between intermediate-term postoperative pain and long-term pain outcomes [55, 56], mental

simulation practices may be useful in reducing intermediate-phase postoperative pain, thereby

potentially leading to improved longer-term pain control.

TKA alleviates pain and improves mobility, but functional deficits may persist in the long

term [6] compared with healthy adults; for example, a study demonstrated 18% and 51%

slower walking and stair-climbing speed, respectively, and approximately 40% deficits in quad-

riceps strength in patients after TKA [57]. Our data indicated significant differences in the

active ROM and quadriceps strength of the operated leg with moderate heterogeneity after

application of mental simulation practice to SPT. No significant improvements in TUG, gait

speed, cadence, and stride length were observed after the implementation of mental simulation

techniques. The conflicting finding in TUG of the previous and current meta-analysis may be

because the previous meta-analysis assessed combined results of TKA and THA, as TUG

requires both hip and knee functionality. Nevertheless, pooled data indicated that mental sim-

ulation training may improve gait and motor performance, as represented by a faster TUG.

This study also included various tools to comprehensively appraise different perspectives of

mental simulation effects. Aside from SF-36, no significant improvement was noted in any

other composite measures—the Barthel Index, WOMAC, WOMAC-function, WOMAC-stiff-

ness, and OKS—after mental simulation intervention was added to SPT. This may be due to

the limited number of studies reporting these outcomes (two each). Nevertheless, assessment

of these composite outcomes revealed that mental simulation practices may improve quality-

of-life measures, represented by SF-36, with limited effect on activities of daily living, func-

tional mobility, gait and general health explored by the Barthel Index, WOMAC, WOMAC-

function, WOMAC-stiffness, and OKS.

This study has several limitations. First, owing to the nature of the intervention, therapist

and assessor blinding were not conducted in some studies. Patient blinding was unachievable

in all included trials, potentially leading to performance bias. Second, a relatively small sample

size was investigated across the studies, which may have limited the strength of the results.

Third, mental simulation protocols varied amongst the included trials, which may have

resulted in the moderate-to-substantial heterogeneity observed across some trials. Fourth, the

follow-up duration in the included studies was not sufficiently long for assessing long-term

outcomes, and the different follow-up durations may have contributed to bias. Finally, our

findings might not apply to patients who underwent TKA for reasons other than knee osteoar-

thritis. Further larger-scale studies with high methodological quality are required to determine

the optimal mental simulation practice protocol and its long-term effects.

Conclusion

In this systematic review and meta-analysis of RCTs of patients with knee osteoarthritis who

underwent TKA, mental simulation practices were noted to produce beneficial effects on pain,

ROM, maximal quadriceps strength, and general health status expressed by the scores of SF-36

in the intermediate postoperative period compared with SPT alone, with no adverse effects.

Although mental simulation interventions may be considered adjunctive to standard postoper-

ative physiotherapy in patients with knee osteoarthritis after TKA, future research is needed

for the investigation of its long-term effects.
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