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Abstract: In this work, an efficient nanocatalyst was developed based on nanoadsorbent beads.
Herein, carboxymethyl cellulose–copper oxide-cobalt oxide nanocomposite beads (CMC/CuO-
Co2O3) crosslinked by using AlCl3 were successfully prepared. The beads were then coated with
chitosan (Cs), Cs@CMC/CuO-Co2O3. The prepared beads, CMC/CuO-Co2O3 and Cs@CMC/CuO-
Co2O3, were utilized as adsorbents for heavy metal ions (Ni, Fe, Ag and Zn). By using CMC/CuO-
Co2O3 and Cs@CMC/CuO-Co2O3, the distribution coefficients (Kd) for Ni, Fe, Ag and Zn were
(41.166 and 6173.6 mL g−1), (136.3 and 1500 mL g−1), (20,739.1 and 1941.1 mL g−1) and (86.9 and
2333.3 mL g−1), respectively. Thus, Ni was highly adsorbed by Cs@CMC/CuO-Co2O3 beads. The
metal ion adsorbed on the beads were converted into nanoparticles by treating with reducing agent
(NaBH4) and named Ni/Cs@CMC/CuO-Co2O3. Further, the prepared nanoparticles-decorated
beads (Ni/Cs@CMC/CuO-Co2O3) were utilized as nanocatalysts for the reduction of organic and
inorganic pollutants (4-nitophenol, MO, EY dyes and potassium ferricyanide K3[Fe(CN)6]) in the
presence of NaBH4. Among all catalysts, Ni/Cs@CMC/CuO-Co2O3 had the highest catalytic activity
toward MO, EY and K3[Fe(CN)6], removing up to 98% in 2.0 min, 90 % in 6.0 min and 91% in 6.0 min,
respectively. The reduction rate constants of MO, EY, 4-NP and K3[Fe(CN)6] were 1.06 × 10−1,
4.58 × 10−3, 4.26 × 10−3 and 5.1 × 10−3 s−1, respectively. Additionally, the catalytic activity of the
Ni/Cs@CMC/CuO-Co2O3 beads was effectively optimized. The stability and recyclability of the
beads were tested up to five times for the catalytic reduction of MO, EY and K3[Fe(CN)6]. It was
confirmed that the designed nanocomposite beads are ecofriendly and efficient with high strength
and stability as catalysts for the reduction of organic and inorganic pollutants.

Keywords: chitosan; CMC; CuO-Co2O3; nanocomposite beads; inorganic and organic pollutants

1. Introduction

Water pollution and its treatment is one of the most serious issues worldwide. Effluent
discharge is produced from human activities including industrialization, which introduces
a considerable amount of wastewater into nature [1]. Organic contaminates are the most
noticeable water pollutants (e.g., organic dyes and nitrophenol compounds), which have
deteriorating effects on human health and other living organisms due to their carcinogenic
effect on nature [2]. Beside organic contaminations, inorganic pollutants are also considered
as the most serious environmental problem including heavy metal ions. According to the
literature, the accumulation of toxic metal ions in wastewater can cause genetic alteration,
which can affect hormone metabolism and lead to serious diseases such as cancer and fetal
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growth restriction. As reported in the literature, potassium hexacyanoferrate (III) is another
example of an inorganic pollutant; it can cause acute toxicity and carcinogenicity even at
trace levels [3,4].

Various procedures have been reported as effective methods for pollutants’ removal from
wastewater such as reverse osmosis, distillation, ion-exchange, coagulation–flocculation, fil-
tration, extraction and adsorption by nanoscale materials [5–7]. Recently, newly designed
cost-effective, economic, nontoxic and productive nanoscale materials have been gained
attention in various scientific areas such as the water treatment, drug delivery and solar
energy conversion fields. Adsorbent-based nanoscale materials are a highly effective way
to remove contaminates from wastewater [8–10]. Due to their ease of operation, conve-
nience, low-cost and high efficiency with respect to the removal of metal ions, minerals [11],
activated carbon [12], agricultural waste [13], metal oxide nanoparticles, etc., are widely
utilized as adsorbents. Among various nanoadsorbents, metal oxide is potentially an
excellent nanoadsorbent due to its unique optical properties, large surface area and low
toxicity, thus showing great potential in water treatment and high activities [14]. However,
combinations of metal oxide nanoparticles come across two main obstacles in their applica-
tion. Metal oxide nanoparticles tend to react with the surrounding media, and aggregation
easily occurs due of van der Waals interactions or agglomerates, leading to a loss in their
activity [15,16]. Separation of metal oxide nanoparticles from solutions for recycling is
another obstacle due to their small size. To solve this problem, metal oxide nanoparticles
can be coated with a supported polymer.

Eco-friendly polymeric materials have been rapidly developed for broad range of
applications and attracted much attention due to their unique proprieties, including im-
provement of the efficiency of adsorption, cost effectiveness, biocompatibility and their
promising results in the treatment of wastewater [17–19]. Among many other polymers,
carboxymethylcellulose (CMC) is a biopolymer of a cellulose derivative with multiple
carboxylic and hydroxyl functional groups. CMC has been applied in removal of dyes
and metal ions due to its low cost, nontoxicity, biodegradability, biocompatibility and re-
newability [4,20].There is one limitation of pure CMC, which is its low mechanical strength.
However, this drawback could be overcome by an addition of nanofillers or nanocompos-
ites to the CMC polymer. In recent years, researchers have focused on a combination of
CMC-nanocomposite beads due to their superior properties. CMC-nanocomposite beads
are physically or chemically crosslinked with trivalent metals such as Fe+3 or Al+3, forming
coordination bonds between metal ions and (–COOH) in the polymer side chain [4,21,22].

Chitosan with aminopolysaccharide is another biodegradable polymer, which has
been vastly studied for various applications due to its great characteristics (e.g., nontoxicity,
cost effectiveness, high water permeability, adhesion, cross-linker agent and good coating
ability). It has been reported that it has high adsorption aptitude as an adsorbent of heavy
metal ions because it has specific physicochemical characteristics (e.g., high hydrophilicity,
excellent chelation performance, great number of adsorption sites, high reactivity and
selectivity toward metal ions) [23,24]. Moreover, the NH2 and OH groups are the main
reactive groups, which are responsible for adsorption of metal ions. Thus, chitosan coating
has played a significant role in stabilizing the nanoparticles by coating the surface of
the nanosized metal oxide nanoparticles to prevent agglomeration during the adsorption
process [25].

Many efforts have been carried out toward the development of CuO and Co2O3 as
a nanoadsorbent and a nanocatalyst [16,26]. At the same time, extensive efforts have
been conducted toward the development of different nanocomposites for different ap-
plications [27–34]. Based on our survey, CuO-Co2O3 with a combination of CMC and a
chitosan coating has not been reported yet. Thus, the combination of novel, facile and
green adsorbent nanocomposite beads (CMC/CuO-Co2O3) with a chitosan coating to
form Cs@CMC/CuO-Co2O3 beads was successfully prepared. Both adsorbents were uti-
lized for the removal of metal ions (Ni, Zn, Ag and Fe). In order to recycle the beads,
Ni(II)/Cs@CMC/CuO-Co2O3 and Ag(I)/CMC/CuO-Co2O3 were studied. They were
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treated by NaBH4 for the complete conversion to form Ni(0)/Cs@CMC/CuO-Co2O3 and
Ag(0)/CMC/CuO-Co2O3 nanoparticles and then utilized as efficient catalysts for reduction
of 4-NP, MO, EY and K3[Fe(CN)6]. The prepared nanocomposite beads and the beads were
characterized by various analytical techniques, including FT-IR, SEM, EDX and XRD.

2. Result and Discussion
2.1. Characterization
2.1.1. Field-Emission Scanning Electron Microscope (FE-SEM) Analysis

The surface morphology of the prepared materials, CuO-Co2O3, CMC, CMC/CuO-
Co2O3, Cs@CMC/CuO-Co2O3 and Ni/Cs@CMC/CuO-Co2O3, was examined by utilizing
FE-SEM, as seen in Figure 1. The low-magnification and high-magnification images for the
prepared nanocomposite beads are represented on the left and right sides in Figure 1. The
CuO-Co2O3 picture indicates the particles of CuO-Co2O3, in Figure 1a,b. The pure CMC
beads showed flat surfaces with less porosity [4,35], as seen in Figure 1c,d. On the other
hand, CMC/CuO-Co2O3 images illustrated that CuO-Co2O3 was planted very well on
the CMC surface, as seen in Figure 1e,f. As seen in Figure 1g,h for Cs@CMC/CuO-Co2O3,
chitosan was coated and filled the porous surface of the CMC/CuO-Co2O3. Moreover,
Figure 1i,j illustrates that Ni was rooted and dispersed on Cs@CMC/CuO-Co2O3, covering
most of the Cs@CMC/CuO-Co2O3 surface. The surface area of the metal increased due to
the presence of some functional groups such as COO– on CMC, and N-H2 and O–H on
chitosan [36].

2.1.2. Energy Dispersive X-ray (EDX) Analysis

For more confirmation of the prepared nanocomposite beads, EDX analysis was
applied. As clearly seen from Figure 2, the Cu and Co elements were present in the powder
CuO-Co2O3 and in all prepared beads (CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3 and
Ni/Cs@CMC/CuO-Co2O3), confirming the successful synthesis of proposed materials.
The carbon and oxygen elements were present in EDX images for CMC/CuO-Co2O3,
Cs@CMC/CuO-Co2O3 and Ni/Cs@CMC/CuO-Co2O3 due to chitosan and CMC functional
groups [37]. Al element was observed in all beads because AlCl3 was used as a cross-linking
agent in the formation of the beads.

2.1.3. X-ray Diffraction (XRD) Analysis

The crystal structures and phase purity of nanocomposite beads were examined by
XRD analysis. The X-ray diffraction patterns were collected in the 2θ range of 10–80◦, as
clearly indicated in Figure 3. As seen in Figure 3a, the XRD pattern of pure CMC showed a
broad peak located at 2θ = 22 owing to the amorphous CMC crystal [4]. The spectrum of
XRD for the CuO-Co2O3 nanocomposite (Figure 3e) showed diffraction bands at 2θ = 35.56,
38.64, 48.84, 49.2, 60.4, 65.0, 67.5, 70.3 and 75.2, confirming the monoclinic structure of
CuO, which were found at (110), (−111), (111), (−112), (−202), (020), (202) and (−311) [4].
The diffraction peaks at (311), (400), (511), (220) and (440) are responsible for the Co2O3
phase [38]. Therefore, CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3 and Ni/CMC/CuO-
Co2O3 have the same diffraction peaks of the CuO-Co2O3 nanocomposite, indicating the
successful preparation of the beads, as clearly seen in Figure 3b–d. Moreover, the XRD
patterns of Ni/Cs@CMC/CuO-Co2O3 beads showed peaks located at (111), (200) and (220),
which are attributed to the Ni phase on the surface of Ni/Cs@CMC/CuO-Co2O3 beads.
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2.1.4. FT-IR Analysis

Figure 4 represents the FT-IR spectra of all prepared beads, pure CMC, CMC/CuO-
Co2O3, Cs@CMC/CuO-Co2O3 and Ni/Cs@CMC/CuO-Co2O3 along with CMC/CuO-
Co2O3 powder. The spectrum of CuO-Co2O3 (Figure 4a) illustrated a band at 400–600 cm−1,
which was assigned to the metal oxides (M–O); besides a broad band for O–H (bend-
ing and stretching) [4]. FT-IR spectrum of CMC (Figure 4b) exhibited broad bands at
3300–3500 cm−1, 1422 and 1607, and 1000 and 1200 cm−1, which were assigned to the
stretching of -OH groups, symmetrical and asymmetrical stretching vibrations of the COO–
groups and –C–O stretching on the polysaccharide skeleton, respectively [4,39]. All the
bands were present in CMC/CuO-Co2O3 (Figure 4c), while for chitosan coating beads
Cs@CMC/CuO-Co2O3 (Figure 4d) new bands at 1155 and 1654 cm−1 appeared, which
were attributed to the saccharide and (–NH2) amine group in chitosan polymer [40]. All the
peaks that appeared in the Ni/Cs@ CMC/CuO-Co2O3 beads are clearly seen in Figure 4e.
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2.2. Metal Uptake Study

To evaluate the amount of metal adsorbed on the surface of Cs@CMC/CuO-Co2O3
and CMC/CuO-Co2O3 beads, distribution coefficient (Kd) and uptake capacity (qe) were
calculated using the following Equations (1) and (2) [41]:

Kd =
(Ci− Ce)

Ce
∗ V(ml)

m(g)
(1)

qe =
(Ci− Ce) ∗V(L)

m(g)
(2)

where Ci and Ce are the concentration of the metal ions before and after adsorption by
Cs@CMC/CuO-Co2O3 and CMC/CuO-Co2O3 nanocomposite beads, respectively. V refers
to the solution volume (L), and m is the mass of beads (g).

As can be seen from Table 1, Ni has the highest removal percentage with Cs@CMC/CuO-
Co2O3 compared to other metals, (66, 86.06, 70 and 79%) for Ag(I), Ni(II), Zn(II) and Fe(II),
respectively. When compared the adsorbed metals, Ag(I) has the highest adsorption (%)
with CMC/CuO-Co2O3 up to 95%. This result indicates that Ag(I) was more adsorbed by
CMC/CuO-Co2O3 beads, and Ni(II) was more adsorbed by Cs@CMC/CuO-Co2O3 beads.
However, the Cs@CMC/CuO-Co2O3 adsorbent was more effective than the CMC/CuO-
Co2O3 beads toward all metals, as shown in Figure 5. The reason for this is that chitosan
has strong chelating proprieties toward metal ions due to the high content of amino and
hydroxyl groups present in the composition of chitosan, which act as active sites [15,42,43].
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Table 1. Uptake capacity of Ni, Fe, Zn and Ag ions on CMC/CuO-Co2O3 and Cs@ CMC/CuO-Co2O3 beads.

Metal Ions Wavelength
Detection (nm)

Initial Conc.
(mgL−1)

CMC/CuO-Co2O3 Cs@CMC/CuO-Co2O3

Final Conc.
(mgL−1)

qe
(mgg −1)

Kd
(mLg−1)

R
(%)

Final Conc.
(mgL−1)

qe
(mgg−1)

Kd
(mLg−1)

R
(%)

Ni(II) 221.648 5 4.8 0.2 41.666 4 0.697 4.3 6173.6 86.06
Zn(II) 213.9 5 4.6 0.4 86.956 8 1.5 3.5 2333.3 70
Fe(II) 248 5 4.4 0.6 136.363 12 2 3 1500 60
Ag(I) 243.778 5 0.23 5 20,739.1 95.4 1.7 3.3 1941.1 66
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Figure 5. Removal percentage of metal ions using 5 mg of CMC/CuO-Co2O3 and Cs@CMC/CuO-
Co2O3 vigorously shaken for 60 min at RT (25 ± 1 ◦C).

2.3. Optimization of Ni(II) Adsorption
2.3.1. Effect of Initial Concentration of Ni(II) Solution

As shown in Figure 6a, the influence of different concentrations of Ni(II) ions was tested
to evaluate the adsorption isotherms. According to literature, the adsorption efficiency
decreases with the increase in Ni(II) concentration as proved in most studies on heavy
metals removal. The possible explanation is that the adsorbent surface sites are enough to
accommodate the metal ions in solution and the sorption rate gets faster. However, when
the metal concentrations are increased, the adsorbent surface sites will not be enough to
capture all the metal ions present in the solution [44].

2.3.2. Effect of pH of Ni(II) Solution

The effect of pH was the most significant controlling parameter in the adsorption
study. Adsorption of heavy metals depends on the pH and the type of ions solution. For
heavy metal adsorption, a pH range of 5.0–8.0 is usually sufficient. Due to the decrease in
H+ concentration, heavy metal ions exist as free ions with an initial pH range of 4.0–5.0 and
can be adsorbed onto chitosan at higher pH values. Because H+ concentration is high at
lower pH values, protonation of amino groups can cause electrostatic repulsion between
protonated group and heavy metal ions. The net negative charge on the surface of chitosan
increases when the pH value rises, and the ionic point of ligands such as –COOH, –OH
and –NH2 groups becomes free, enhancing binding with the heavy metal ions. It has been
reported that at pH values less than 6.5, chitosan has strong cationic charges and strong
anionic charges at pH higher than 6.5. In our adsorbent beads, the carboxylic (–COOH)
and amino (–NH2) groups existing in the beads are responsible for the binding of Ni(II).
Therefore, various values of pH for Ni ions solution were examined using the adsorbent
Cs@CMC/CuO-Co2O3 nanocomposite beads, as illustrated in Figure 6b. It was clearly
found that the adsorption of Ni ions increased with an increase in pH from 3 to 7 (neutral);
and the removal efficiency was 1%, 29% and 83% for pH values 3, 5 and 7, respectively.
However, the adsorption then reduced greatly with an increase in the pH from 7 to 9. The
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reduction in adsorption at high pH may be either due to aggregation of chitosan polymer
because of the hard protonation of its amino groups, or may be due to the precipitation of
metal ions or Ni ions in the alkaline medium as Ni(OH)2. [45]. Therefore, the neutral pH
was selected as an optimal condition for further experiments. The same effect was reported
in the literature [26,46,47].
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2.3.3. Effect of Ni(II) Adsorption Contact Time

The effect of contact time is a significant factor in adsorption study. In fact, the
adsorption property is very dependent on the time required for equilibrium between the
adsorbent and adsorbate. The adsorption of Ni ions was carried out by applying different
contact times (10, 30, 60, 120, 240 min). As clearly seen from Figure 6c, 48.6% of Ni(II) was
removed in 10 min and reached 88.7% in 60 min before it gradually decreased to 62% at
240 min. The explanation for this phenomenon is that in the first 60 min, the surface of
the Cs@CMC/CuO-Co2O3 was filled with the Ni(II), and the whole surface was occupied,
but the adsorption process was gradually reduced after 60 min due to the saturation of
active sites on the beads’ surface. This result is in accordance with previous published
findings [48].
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2.3.4. Effect of Adsorbent Dose

The adsorbent dose is also an important factor in adsorption. To evaluate the effect
of the adsorbent amount on Ni removal, three different doses of CS@CMC/CuO-Co2O3
beads (2.5, 5 and 10 mg) were used for a fixed initial Ni(II) concentration (5 mg L−1) at
25 ◦C with a contact time of 60 min. As clearly seen in Figure 6d, the removal percentage
of Ni(II) was increased from 53% to 83% when the number of beads increased from 2.5 to
5 mg, respectively. However, the removal percentage was then decreased with an increase
in bead dosage from 5 to 10 mg. The best explanation for this phenomenon is that the
CS@CMC/CuO-Co2O3 beads have more active sites, which remined unsaturated during
the adsorption procedure. Therefore, 5 mg was fixed for further study as the optimum
adsorbent dose.

Moreover, the isotherm and kinetic adsorption were studied as follows: The two
isotherm models, Langmuir and Freundlich, are given in Table 2 (Equations (4) and (5)) to
model the adsorption process of our system. According to the data obtained, the correlation
coefficient (R2) values for isotherm models, Langmuir was discovered to be a suitable model
to represent the sorption system, which assumed a monolayer of analyte establisher on a
homogeneous surface of the adsorbent. Linearity of plotting Ce/qe vs. Ce was achieved
with R2 of 0.9433. The Langmuir constant (qm) was calculated to be 12.00 mg g−1, which is
close to the experimental value of the adsorption capacity (11.00 mg g−1). The Langmuir
constant (b) is equal to 0.08 L mg−1, which explains the strong affinity of the Ni(II) ions to
the adsorbent beads. The essential factor RL was calculated using Equation (3) [44].

RL =
1

1 + bCo
(3)

where Co is the initial concentration of Ni(II) (mgL−1), and b is the Langmuir constant. The
calculated RL was found to be 0.50, which is in the range of 0 < RL > 1, referring to favorable
adsorption. Thus, this confirmed that the adsorption of Ni(II) ions by Cs@CMC/CuO-
Co2O3 is favorable, as shown in Table 3.

Table 2. Mathematical equations and isotherm models [49–51] used in this study.

Models Linear Equations Plot

Isotherm
Langmuir Ce

qt
= 1

qmKL
+ Ce

qm
(4) Ce

qt
vs. Ce

Freundlich logqe = log K f +
1
n log Ce (5) logqevs. log Ce

Kinetic
Pseduo-first-order log(qe − qt) = logqe − (k1/2.303)t (6) log(qe − qt) vs. t

Pseduo-second-order t
qt

= 1
vo

+ 1
qe

t (7) t
qt

vs. t

Table 3. Data of isotherm models for Ni(II) adsorption using Cs@CMC/CuO-Co2O3.

Langmuir Model Freundlich Model

Metal Ion qmax R2 RL b (Lmg−1) R2 k f n
Ni(II) 12.00 0.943 0.50 0.08 0.553 9.10 5.06

The pseudo-first-order model and second-order model were applied to the adsorption
system for an explanation of kinetics, as shown in Table 2 (Equations (6) and (7)). Both
slope and intercept were calculated using the plot log (qe − qt) vs. t, and t/qt vs. t for
the pseudo-first order and the pseudo-second order, respectively. Based on the calculated
values, the pseudo-first-order more suitably explained the adsorption. The pseudo-second-
order model was close to the adsorption capacities obtained from experiments; Langmuir
isotherm and pseudo-second-order kinetic models were compatible, as illustrated in Table 4.
The obtained data were compared with other studies for removal of Ni(II), as represented
in Table 5.
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Table 4. Kinetic models data for Ni(II) adsorption by using 5 mg of Cs@CMC/CuO-Co2O3.

qe (mg g−1)
Experiment

Pseudo-First-Order Pseudo-Second-Order

Metal Ion R2 K1
(min−1)

qe
mg g−1 R2 K2

(g mg−1min−1)
qe

mg g−1

Ni(II) 11.00 0.703 0.0011 2.72 0.986 −0.222 4.05

Table 5. Comparison of this study with other reported studies in literature.

Adsorbent Metal Ion Condition qmax (mg g−1) Ref.

CS/TEOS/APTES Ni(II) pH 5.2, 30 ◦C, 30 min 696.2 [48]
Chitosan-g-maleic acid Ni(II) pH 8, room temperature, 60 min 73.5 [26]
Flower globular FGMH Ni(II) pH 6–7, 20 ◦C, 50 min 248 [52]

Chitosan-MOF Ni(II) pH 5, 20 ◦C, 480 min 56 [53]
Cs@CMC/CuO-Co2O3 Ni(II) pH 7, room temperature, 60 min 11 This study

2.4. Adsorption Mechanism

The possible adsorption mechanism is illustrated in Figure 7. The adsorption of heavy
metals with Cs@CMC/CuO-Co2O3 might be due to strong attraction of metal ions to
nanocomposite beads, which contain active sites (COO–, OH, Cu–O, Co–O, –O– and –NH2).
These groups can easily attract and combined with metal ions. However, the amino group
in chitosan has a significant role in the adsorption because the chitosan completely coats the
surface of CMC/CuO-Co2O3. The chemical nature of chitosan, hydrophilicity due to the
large number of (–OH) and the presence of (–NH2) can determine the adsorption of chitosan
toward the heavy metal. According to the literature, the adsorption of heavy metal ions
by chitosan functional groups can occur based on different mechanisms (e.g., electrostatic
attraction and chelation). Chitosan (NH2) groups are responsible for the adsorption of
metal cations by a chelation mechanism. In fact, the adsorption can be affected by the pH of
the metal ion solution where the NH2 group (free-electron doublet on nitrogen) can attract
cations at neutral pH [24,54,55].

2.5. Catalytic Reduction Study

The catalytic ability of all prepared catalysts, including CuO-Co2O3, CMC/CuO-
Co2O3, Cs@CMC/CuO-Co2O3 and Ni/Cs@CMC/CuO-Co2O3, was examined for the
reduction of two anionic dyes (MO and EY). MO dye was chosen as a model dye for this
study. MO solution (0.01 mM) was placed into a UV-cuvette and mixed with a reducing
agent, NaBH4. Further, each catalyst was added to the mixture of MO and NaBH4 as
mentioned previously. Afterward, the reduction reaction of MO was examined by the
UV–Vis spectrophotometer every min as the reaction proceeded. Initially, pure MO solution
(0.01 mM) was recorded by UV–Vis, and two absorbance bands appeared at λmax = 460 nm
and 270 nm, as shown in Figure 8. There was no change observed when the reducing agent
(NaBH4) was added because NaBH4 cannot reduce the dye even with an excess amount,
as reported in the literature [56]. However, after the addition of both reducing agent and
catalysts, the color of MO dye disappeared gradually from orange to colorless. The reason
for this that MO was converted to hydrazine derivatives by breaking the azo bond (-N=N-)
and transforming it to -NH2 (amino). During the reduction, the peak at lmax = 460 nm
was decreased gradually [57,58]. The reduction percentage of MO was 92 % in 4 min with
Ni/Cs@CMC/CuO-Co2O3 while it reached to 85%, 90% and 33.5 % with CuO-Co2O3,
CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3 in 5, 20 and 14 min, respectively. Moreover,
the reduction of MO was studied by using the Ag/CMC/CuO-Co2O3 under the same
conditions. It was found that Ag/Cs@CMC/CuO-Co2O3 can reduce 88% of MO in 6 min.
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and (e) Ag/CMC/CuO-Co2O3. (f) ln(Ct/Co) versus time for the transformation of MO using
prepared catalysts.
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The kinetic behavior of four prepared catalysts toward the reduction of MO dye was
evaluated by applying the pseudo-first-order kinetics. The rate constants were calculated
from the slope of lnCt/C0 vs. time, as seen in Figure 8f. The rate constant K value per second
and R2 correlation coefficient of decolorization of MO dye with Ni/Cs@CMC/CuO-Co2O3
was 1.02 × 10−2 s−1 and 0.964, respectively, which is higher than other catalysts, using
Cs@CMC/CuO-Co2O3 (4.4 × 10−4 and 0.953), CMC/CuO-Co2O3 (2.6 × 10−3 and 0.915)
and CuO-Co2O3 (6.11 × 10−3 and 0.868). This clearly indicates that Ni/Cs@CMC/CuO-
Co2O3 is the most active catalyst among other prepared catalysts toward the reduction of
MO dye.

Moreover, the catalytic reduction was tested toward the degradation of EY. The de-
colorization of EY was conducted by using the same procedure described previously for
catalytic reduction of MO (Figure 9). EY had an absorbance band at 510 nm, which gradu-
ally decreased. During the reduction, the EY color changed from orange to pale yellow and
then turned to colorless, indicating the formation of ESH2 [59]. Ni/Cs@ CMC/CuO-Co2O3
was the highest efficient catalyst toward EY. According to data obtained, around 90% of EY
was decolorized in 9 min by Ni/Cs@CMC/CuO-Co2O3, while reduction of 71%, 94% and
35% were obtained in 24, 15 and 25 min with Cs@CMC/CuO-Co2O3, CMC/CuO-Co2O3
and CuO-Co2O3, respectively. The rate constant and R2 were found to be 4.58 × 10−3

and 0.936, 7.71 × 10−4 and 0.968, 3.2 × 10−3 and 0.928 and 2.95 × 10−4 and 0.989 for
Ni/Cs@CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3, CMC/CuO-Co2O3 and CuO-Co2O3,
respectively (Table 6). Among all prepared catalysts, Ni/Cs@CMC/CuO-Co2O3 is the most
active catalyst toward EY dye. The catalytic activity of the Ni/Cs@CMC/CuO-Co2O3 to-
ward MO and EY was compared with other reported catalysts in the literature, as illustrated
in Table 7.
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Table 6. Rate constant and R2 for the degradation of EY and MO and reduction of 4-NP and
K3[Fe(CN)6].

Rate Constant K (s−1) and Adjacent R2 Value

Compound CuO-Co2O3 CMC/CuO-Co2O3 Cs@CMC/CuO-Co2O3 Ni/Cs@CMC/CuO-Co2O3

MO 6.11 × 10−3 and 0.865 2.6 × 10−3 and 0.915 4.4 × 10−4 and 0.953 1.06 × 10−2 and 0.964
EY 2.95 × 10−4 and 0.989 3.2 × 10−3 and 0.928 7.71 × 10−4 and 0.968 4.58 × 10−3 and 0.936

4-NP 2.7 × 10−3 and 0.855 2.62 × 10−3 and 0.842 1.7 × 10−5 and 0.824 4.26 × 10−3 and 0.912
K3[Fe(CN)6] 3.6 × 10−3 and 0.964 1.69 × 10−3 and 0.835 1.8 × 10−3 and 0.909 5.1 × 10−3 and 0.975
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Table 7. Comparison of Ni/Cs@CMC/CuO-Co2O3 catalyst toward the reduction of MO, EY, 4-NP
and K3[Fe(CN)6] with other reported catalysts.

Pollutant Catalyst Time
(min)

Rate
Constant Ref.

MO Ni/Cs@CMC/CuO-Co2O3 2 1.06 × 10−2 This study
MO TO-CoNPs 60 - [60]
MO AuNPs 8 1.7 × 10−3 [61]
MO WBs loaded with Ni NPs 15 2.37 × 10−3 [62]
EY Ni/Cs@CMC/CuO-Co2O3 6 4.58 × 10−3 This study
EY Chitosan-capped AuNPs 50 - [63]

4-NP Ni/Cs@CMC/CuO-Co2O3 13 4.26 × 10−3 This study
4-NP CMC-Cu 35 9.1 × 10−4 [64]
4-NP PdNPs doped chitosan 15 3.63 × 10−3 [65]
4-NP Ni/CS-FP 28 - [66]

K3[Fe(CN)6] Ni/Cs@CMC/CuO-Co2O3 6 5.1 × 10−3 This study
K3[Fe(CN)6] NiWO4 Nanoparticles 240 - [67]
K3[Fe(CN)6] Fe3O4-CuAg NPs 3 19.3 × 10−3 [68]
K3[Fe(CN)6] CMC/CuO-NiO 0.5 6.88 × 10−2 [4]

Figure 10 shows the possible reduction mechanism of MO and EY. The reduction
occurs mainly through the transfer of electrons via nanocatalyst facilitation. Firstly, the
NaBH4 dissociates to BH4

− ions and Na+, in which BH4
− acts as a source of e− and

H+. Further, the catalyst Ni/Cs@CMC/CuO-Co2O3 transfers e− from the BH4
− ion to

dye molecules for catalytic reduction. For MO dye, the azo bonds are activated by the
electron transfers by BH4

− ion via Ni/Cs@CMC/CuO-Co2O3 nanocomposite beads. The
MO molecules are bounded to the nanocomposite beads by oxygen and sulfur atoms.
Thus, the first step is the conversion of the –N=N– bond into –HN–NH– bond followed by
bond-breaking to form aromatic amines. In fact, this happens because e− are accepted from
nanocomposite beads catalyst and H+ from BH4

−. Thus, the orange color of the MO dye is
turned colorless, indicating the completion of the reduction of MO. On the other hand, the
EY is adsorbed on the surface of Ni/Cs@CMC/CuO-Co2O3 nanocomposite beads because
of the electrostatic attractive force between Ni/Cs@CMC/CuO-Co2O3 nanocomposite and
anionic dye. Afterward, the electron is transferred by Ni/Cs@CMC/CuO-Co2O3 from
BH4

− to EY for its catalytic reduction [4].
Additionally, an evaluation of CuO-Co2O3, CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3

and Ni/Cs@CMC/CuO-Co2O3 as catalysts toward the catalytic reduction of 4-NP was
performed. By using the same procedure mentioned previously, the reaction of 4-NP
was performed by utilizing CuO-Co2O3, CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3 and
Ni/Cs@CMC/CuO-Co2O3 as catalysts in the presence of NaBH4. In the beginning, the
absorbance band of 4-NP appeared at λmax = 317 nm. As observed, the yellow color of 4-NP
changed directly to dark yellow in the presence of (0.5 mL) NaBH4 with a new UV–Vis
band appearing at 400 nm. This indicates the transformation of 4-NP to 4-nitrophenolate.
Then, the CuO-Co2O3, CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3 and Ni/Cs@CMC/CuO-
Co2O3 catalysts were added and tested separately for the reduction of 4-nitrophenol. The
band at λmax = 400 nm disappeared gradually, and a new absorbance band at λmax = 320 nm
appeared along with the disappearance of dark yellow color, proving the formation of
4-AP because of 4-NP reduction. It was found that among all the catalysts, the prepared
Ni/Cs@CMC/CuO-Co2O3 was the most effective catalyst because 4-NP was completely
reduced to 4-AP in 13 min, while it was reduced in 19 and 20 min by using CuO-Co2O3 and
CMC/CuO-Co2O3, respectively. However, the reduction of 4-NP by Cs@CMC/CuO-Co2O3
took 20 min (Figure 11a).
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The rate constant and R2 were found to be 4.26 × 10−3 s−1 and 0.912, 17 × 10−5 s−1

and 0.824, 2.62 × 10−3 s−1 and 0.842 and 2.7 × 10−3 s−1 and 0.855 for Ni/Cs@CMC/CuO-
Co2O3, Cs@CMC/CuO-Co2O3, CMC/CuO-Co2O3 and CuO-Co2O3, respectively, as shown
in Table 6 and Figure 11b. The data for 4-NP reduction was compared with other catalysts
and is illustrated in Table 7.

The catalytic reduction of K3[Fe(CN)6] was also examined to evaluate the catalytic ac-
tivity of CuO-Co2O3, CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3 and Ni/Cs@CMC/CuO-
Co2O3. The UV-vis absorption of the catalytic reduction of K3[Fe(CN)6] was monitored
every minute to check the progress of the K3[Fe(CN)6] reduction. As the catalytic reaction
proceeded in the presence of NaBH4 and the catalyst, the absorption band of K3[Fe(CN)6]
at λmax = 420 nm gradually decreased in 6 min when using Ni/Cs@CMC/CuO-Co2O3
along with disappearance of the yellow color, indicating the reduction of K3[Fe(CN)6]
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to K4[Fe(CN)6] [69]. In contrast, the reduction reaction took longer times of 8, 13 and
18 min when using CuO-Co2O3, CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3, respec-
tively. The efficient transformation of K3[Fe(CN)6] to K4[Fe(CN)6] was obtained by ap-
plying the Ni/Cs@CMC/CuO-Co2O3 catalyst (91%), while 85, 73.5 and 83% reduction
were obtained by using Cs@CMC/CuO-Co2O3, CMC/CuO- Co2O3 and CuO-Co2O3, as
shown in Figure 12a. Based on findings, the catalytic reduction reaction of K3[Fe(CN)6]
follows the pseudo-first-order, as seen in Figure 12b. Subsequently, the rate constant and R2

were found to be 5.1 × 10−3 s−1 and 0.975, 1.8 × 10−3 s−1 and 0.909, 1.69 × 10−3 s−1 and
0.835 and 3.6 × 10−3 s−1 and 0.964 for Ni/Cs@CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3,
CMC/CuO-Co2O3 and CuO-Co2O3, respectively, as shown in Table 6.
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The possible mechanism for the reaction of K3[Fe(CN)6] in the presence of both catalyst
beads and NaBH4 is illustrated in Figure 10. Based on the reported studies, the catalytic
reduction of [Fe(CN)6]−3 to form [Fe(CN)6]−4 is an electron-transfer route, as shown in the
reaction below [3]. Therefore, the catalytic reaction mechanism of K3[Fe(CN)6] involves
two main steps. Initially, polarization of the catalyst nanocomposite beads occurs by the
reducing agent NaBH4. Afterward, e− are transferred from the catalyst surface to the
[Fe(CN)6]−3 and get reduced to [Fe(CN)6]−4, as shown in Equation (8):

BH4
− (aq) + 8[Fe(CN)6]3− (aq) + 3H2O (aq)→ H2BO3

− (aq) + 8[Fe(CN)6]4− (aq) + 8H+ (8)

2.6. Catalytic Optimization
2.6.1. Effect of Contaminant Concentrations

The effect of concentration was examined for all compounds (4-NP, EY, MO and
K3[Fe(CN6)]) by using a certain catalyst (Ni/Cs@CMC/CuO-Co2O3) since it is more effec-
tive than others (Cs@CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3, CMC/CuO-Co2O3 and
CuO-Co2O3). As clearly seen in all figures below (Figure 13), when the concentration of
pollutants was increased the time taken for reduction was increased. This finding indicates
that the concentration of the pollutants has an essential role and Ni/Cs@CMC/CuO-Co2O3
was found to be more efficient catalyst with a low concentration of MO, EY, 4-NP and
K3[Fe(CN)6], which was found to have similar effect as reported in literature [70].
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2.6.2. Effect of NaBH4 Concentration

The impact of NaBH4 concentration on the catalytic reduction of pollutants is a very
important parameter. Therefore, a range of NaBH4 concentrations (0.2, 0.1 and 0.05 M)
were used to evaluate its effect on the reduction of target pollutants in the presence of
Ni/Cs@CMC/CuO-Co2O3 beads as a catalyst. As the data demonstrate, the reducing agent
has an important role in the reduction reaction of pollutants in the presence of an effective
catalyst. However, this reducing agent has no activity or ability to reduce toxic compounds
even at high concentrations. Therefore, an effective catalyst should be added to enhance
the reduction. A high concentration of NaBH4 (0.2 M) in addition to an effective catalyst
such as Ni/Cs@CMC/CuO-Co2O3 can promote the reduction reaction of MO at a faster
rate, decolorizing it in only 2 min, as shown in Figure 14a. However, when the reducing
agent (NaBH4) concentration was decreased, the reduction reaction rate was influenced
and decreased. This means that the reduction reaction requires more time to complete.
Indeed, MO was reduced in 4 min and 12 min when the NaBH4 concentration was 0.1
and 0.05 M, respectively, as shown in Figure 14a. EY was also reduced in 6 min by using
a high NaBH4 concentration, while this reduction took 9 min and 14 min using 0.1 and
0.05 M NaBH4, respectively, as shown in Figure 16b. The same effect was observed for
K3[Fe(CN)6] (Figure 14c) and 4-NP (Figure 14d), and a similar impact was reported in
literature [70].
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2.6.3. Effect of Number of Ni/Cs@CMC/CuO-Co2O3 Beads

The influence of amount of Ni/Cs@CMC/CuO-Co2O3 was tested by utilizing three
different amounts of Ni/Cs@CMC/CuO-Co2O3 bead catalyst (3 mg, 5 mg and 8 mg) in the
presence of reducing agent (0.2 M NaBH4). This effect was tested using 0.01 mM MO and
0.05 mM K3[Fe(CN6)], as seen in Figure 15. In fact, the amount of catalyst is an important
factor in the reduction reaction. The results demonstrate that a larger catalyst amount (8 mg
of Ni/Cs@CMC/CuO-Co2O3) could enhance the reaction of MO causing decolorization by
98% in 2 min and 92% in 2 min using an amount of 5 mg. However, MO was reduced by
97% in 6 min by using a low amount of catalyst, as shown in Figure 15a. A similar effect
was found for K3[Fe(CN6)], as clearly seen in Figure 15b.
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2.7. Recyclability of Ni/Cs@CMC/CuO-Co2O3 Beads

Recyclability of the catalyst is a significant factor during a catalytic reduction study.
Most of the catalysts become deactivated after the first or second use. In our study,
Ni/Cs@CMC/CuO-Co2O3 was able to be reused up to five times without deactivation or
any loss of the catalyst beads. Consequently, Ni/Cs@CMC/CuO-Co2O3 beads were tested
in the reduction of MO, EY and K3[Fe(CN)6] for several time to check the recyclability of the
catalyst. As mentioned previously, the same procedures were followed, except the beads
were washed by deionized water and then MeOH, followed by deionized water several
times, and then dried for the next use. This process was repeated five times to assess the
reusability of the Ni/Cs@CMC/CuO-Co2O3 beads. Figure 16 shows the time taken for each
reduction cycle of MO, 4-NP and K3[Fe(CN)6] using Ni/Cs@CMC/CuO-Co2O3 beads.
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2.8. Application to Real Samples

The catalytic activity of Ni/Cs@CMC/CuO-Co2O3 beads was also assessed in four
types of real samples with spiked MO (0.06 mM). The real samples used for this study
were full-fat milk and three juice samples (orange, pineapple and apple), and they were
obtained from a local market (Jeddah, Saudi Arabia). The preparation of real samples was
performed by taking around 1 mL of each sample and diluting it in 100 mL of deionized
water individually. Further, 2.5 mL of each real sample was placed into a UV-vis cuvette,
and 0.5 mL of 0.06 mM MO was added followed by addition of 0.5 mL of 0.1 M NaBH4.
Finally, 5 mg of Ni/Cs@CMC/CuO-Co2O3 was added. The catalytic degradation of MO
was monitored by a UV-vis spectrophotometer. As clearly seen from data presented in
Table 8, full-fat milk was the only sample that took a longer time (15 min) with a very
low reduction % (65%). This is due to the high interference found in the milk, which
can influence the reduction of MO. In contrast, the reduction of MO in the three juice
samples occurred in 5–6 min with 91–97%. The data confirm that the Ni/Cs@CMC/CuO-
Co2O3 is effective and reliable since it was able to decolorize and effectively reduce MO in
real samples.
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Table 8. Application of four real samples spiked with MO.

Real Sample Reduction Time (min) Reduction %

Full-Fat Milk 15 min 65.5
Orange Juice 6 min 91.4

Pineapple Juice 5 min 95
Apple Juice 5 min 97

3. Conclusions

CuO-Co2O3 was synthesized, mixed with CMC and turned into beads by the crosslink-
ing agent (AlCl3) before being coated with chitosan. XRD, FT-IR, SEM and EDX were used
to characterize CuO-Co2O3, CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3 and CuO-Co2O3.
The findings confirm that Cs@CMC/CuO-Co2O3 is an efficient adsorbent toward Ni ions
compared to other selected metal ions. Additionally, Ni/Cs@CMC/CuO-Co2O3 was used
as a catalyst for degradation of MO and EY as well as catalytic reduction of K3[Fe(CN)6] and
4-NP. This catalyst could be recycled and was able to be used up to five times, confirming
the effectiveness and the stability of catalyst.

4. Experimental
4.1. Materials

Metal salts of CoSO4·6H2O (99.998%), CuSO4·5H2O (≥98.0%), Ni(NO3·6H2O, (99.999%)
FeSO4·7H2O (≥99.0%), AgNO3, ZnSO4·7H2O (≥99.0%) and AlCl3 (99.999%) were obtained
from Sigma-Aldrich. Biopolymers: chitosan and carboxymethylcellulose were obtained
from BDH chemicals. Organic compounds including dyes (Methyl Orange (MO, (85 %)) and
Eosin yellowish (EY, (5 wt.% in H2O)) and 4-nitrophenol (4-NP, (≥99%)) were obtained from
Sigma-Aldrich. Potassium hexacyanoferrate (III), (99%) and the reducing agent (sodium
borohydride, (99%)) were obtained from Sigma-Aldrich. In all preparations, deionized
water was utilized.

4.2. Synthesis of Nanocomposites and Beads
4.2.1. Preparation of CuO-Co2O3 Nanocomposite

The nanocomposite, CuO-Co2O3 was prepared by co-precipitation method. Firstly,
0.1M CuSO4·5H2O was mixed with 0.1 M CoSO4·6 H2O in a (50:50) ratio. Then, NaOH was
added dropwise to adjust the pH, 10–11. The preparation was carried out at 80 ◦C with
stirring for 4 h. Finally, the precipitate was collected via filtration, then washed several times
with deionized water and dried overnight. Afterward, the CuO-Co2O3 nanocomposite was
calcined at 500 ◦C for 5 h.

4.2.2. Synthesis of Cs@CMC/CuO-Co2O3 Beads

The novel nanocomposite beads were synthesized in two main steps. The method
was reported by our group with some modifications [4,21]. The first step, CMC (0.5 g)
was dissolved in (25 mL) with stirring for 2 h at 50 ◦C. Meanwhile, 60 mg of CuO-Co2O3
powder was dissolved in 5 mL of deionized water and further sonicated for around 10 min
for suspension of CuO-Co2O3. Subsequently, CuO-Co2O3 dispersed solution was added
into CMC solution with continuous stirring for 1 h at 50 ◦C, and half an hour at RT (24 ◦C).
The mixture was transferred to 3 mL syringe and dropped into 0.2 M AlCl3 solution for
crosslinking and formation of beads. The beads were kept in AlCl3 solution for 12 h and
then collected and washed three times using deionized water. Secondly, Cs solution was
prepared in 1% acetic acid distilled water mixture and stirred for 3 h at 50 ◦C. The washed
beads were transferred to Cs solution and kept for 1 h. Finally, the Cs@CMC/CuO-Co2O3
beads were separated and dried at RT for 24 h. Dry CMC/CuO-Co2O3 beads were flat,
while the dry Cs@CMC/CuO-Co2O3 beads had a circle shape due to their chitosan coating,
Figure 17.
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Figure 17. Preparation of CMC/CuO-Co2O3 and Cs@CMC/CuO-Co2O3 nanocomposite beads. CMC
was dissolved in (25 mL) with stirring for 2 h under 50 ◦C. CuO-Co2O3 was dissolved in 5 mL of
D.H2O and sonicated for around 10 min. CuO-Co2O3 solution was mixed with CMC solution at
50 ◦C.

4.3. Metal Uptake Adsorption

In order to evaluate the selectivity of the prepared nanocomposite beads (Cs@CMC/
CuO-Co2O3 and CMC/CuO-Co2O3), adsorption methods of metal ions were developed
toward certain metal ions including Ni(II), Ag(I), Zn(II), and Fe(II). Certain amounts of
Cs@CMC/CuO-Co2O3 and CMC/CuO-Co2O3 (5.0 mg) were added individually into 5 mL
of 5 ppm of sample solution of selected metal ions for 1 h at RT (25 ± 1 ◦C). The beads were
separated from the solutions and dried at RT. The inductively coupled plasma−optical
emission spectroscopy (ICP-OES) was employed to detect the concentration of each metal
ion before and after adsorption on Cs@CMC/CuO-Co2O3 and CMC/CuO-Co2O3 beads.
Optimization of parameters of the selected metal ions Ni(II) was carried out as mentioned
later. Moreover, the Ag (I) beads were also kept after adsorption and converted to NPs for
further studies.

For isotherm study, 5 mg of each adsorbent Cs@CMC/CuO-Co2O3 and CMC/CuO-Co2O3
beads was added to 5 mL of Ni solution with initial concentrations from (5–100 mg L−1). The
pH value of Ni solution was adjusted to pH = 7, with mechanical shaking for 60 min.

Moreover, for kinetic study, 5 mg of each adsorbent Cs@CMC/CuO-Co2O3 and
CMC/CuO-Co2O3 bead was added to 5 mL of 5 mgL−1 Ni solution. The pH value of Ni
solution was adjusted to pH = 7. The concentration of Ni ions was tested at different times
(10, 30, 60, 120, 240 min).
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4.4. Formation of Zero-Valent Nanoparticles

Ni(II)/Cs@CMC/CuO-Co2O3 and Ag(I)/CMC/CuO-Co2O3 beads were collected and
dried. These dried beads were later utilized for the synthesis of nanoparticles (Figure 18) by
loading them into a freshly prepared 0.05 M NaBH4 aqueous solution for 20 min in order
to complete the reduction of Ni(II) and Ag(I) to Ni(0) and Ag(0) zero-valent nanoparticles,
respectively, as shown in the following Equations (9) and (10).

M2+ + 4BH4
− + 12H2O→ 2M0 + 14H2 + 4B(OH)3 (9)

M+ + 2BH4
− + 6H2O→M0 + 7H2 + 2B(OH)3 (10)
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4.5. Catalytic Reduction Experiments

The catalytic ability of prepared catalysts, Ni/Cs@CMC/CuO-Co2O3, Cs@CMC/CuO-
Co2O3, CMC/CuO-Co2O3 and CuO-Co2O3, was investigated toward organic and inor-
ganic pollutants. Firstly, 0.01 mM MO and EY, 0.1 mM 4-NP and 0.5 mM K3[Fe(CN)6]
were tested using 0.1 M NaBH4 and 5 mg of each prepared catalyst individually, in-
cluding Ni/Cs@CMC/CuO-Co2O3,Cs@CMC/CuO-Co2O3, CMC/CuO-Co2O3 and CuO-
Co2O3. Different concentrations of MO and EY (0.01, 0.04 and 0.08 mM), 4-NP (0.1 and
0.04, 0.08 mM) and K3[Fe(CN)6] (0.1 mM, 0.5 mM) were then examined by utilizing
Ni/Cs@CMC/CuO-Co2O3 nanoparticles beads. Additionally, different concentrations
of NaBH4 (0.05, 0.1 and 0.2 M) were tested using 0.01 mM MO and EY, 0.1 mM 4-NP and
0.5 mM K3[Fe(CN)6] with 5 mg of Ni/Cs@CMC/CuO-Co2O3 nanoparticles bead catalyst.
Moreover, different amounts (3, 5 and 8 mg) of Ni/Cs@CMC/CuO-Co2O3 beads were
tested using 0.01 mM MO and 0.5 mM K3[Fe(CN)6] with 0.2 M NaBH4.

The catalytic procedure was performed by placing 2.5 mL of each pollutant (MO, EY, 4-
NP and K3[Fe (CN)6]) in a UV cuvette, and 0.5 mL of a freshly prepared solution of NaBH4
(0.1 M) was added. Then, 5 mg of the prepared catalyst and NaBH4 were both added
to the mixture in the cuvette. Catalytic activity was continuously examined via UV-vis
spectrophotometer with every 1 min interval. The recyclability of Ni/Cs@CMC/CuO-
Co2O3 beads was tested in the catalytic reduction of MO, EY and K3[Fe(CN)6]. This catalyst
was used up to five times after washing with deionized water and MeOH and dried for the
next cycle.

The conversion (%) of all compounds was calculated by utilizing Equation (11):

%R =
C0 − Ct

C0
∗ 100 (11)

where C0 (mgL−1) is the initial concentration of compounds, and Ce (mgL−1) is the final
concentration.
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The rate constant K and adjacent R2 values were determined from pseudo-first-order
kinetics as described below in Equation (12):

ln
Ct

C0
= −Kt (12)

4.6. Characterization

The morphologies and structures of Ni/Cs@CMC/CuO-Co2O3, Cs@CMC/CuO-
Co2O3, CMC/CuO-Co2O3 and CuO-Co2O3 were characterized by scanning electron micro-
scope (SEM) (of JEOL, JSM-7600F, Japan). For SEM analysis, Ni/Cs@CMC/CuO-Co2O3,
Cs@CMC/CuO-Co2O3, CMC/CuO-Co2O3 and CuO-Co2O3 were individually fixed on
the stub using carbon tape as a binder and then sputtered with platinum for 15 s. In
addition, X-ray diffraction (XRD) was employed to examine the phase structure of all pre-
pared catalysts. Elemental analysis of Ni/Cs@CMC/CuO-Co2O3, Cs@CMC/CuO-Co2O3,
CMC/CuO-Co2O3 and CuO-Co2O3 was analyzed by energy dispersive spectrometer (EDS).
FTIR spectrometer was applied to analyze the spectra of all prepared materials. The cat-
alytic reduction studies were recorded by UV–vis spectra, (Thermo Scientific TM Evolution
TM 350 UV–vis spectrophotometer).
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