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INTRODUCTION 
 

Aging is considered as a complicated physiological 

process associated with significantly decreased 

neuromuscular function and muscular performance 

capability, accompanied by structural disorganization of 

muscle tissue [1–8]. Mitochondria play a key role in the 

process of physiological aging and development of age-

dependent abnormalities [9–17]. It is mitochondria that 

undergo the greatest structural changes in the process of 

aging [18]. Age-dependent changes of mitochondrial 

ultrastructure have been studied for many years [19–27]. 

Only one model (flight muscle of insects) is widely 

known in which unique and specific age-dependent 

changes in mitochondrial ultrastructure were detected 

and their functional significance demonstrated. In the 

classic study of Sacktor and Shimada [28] of age-

dependent changes in mitochondrial morphology of the 

flight muscle of Phormia regina blowfly, the authors 

described local reorganization of inner mitochondrial 
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ABSTRACT 
 

The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats 
(Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that 
the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and 
represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 
years, a powerful mitochondrial structure is developed. By the age of 11 years, it become obvious that the 
mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles 
that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, 
percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The 
growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of 
mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. 
We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole 
rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing 
very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked 
mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny). 
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membrane into myelin-like structures progressively 

occupying the entire space of mitochondria leading to 

their structural damage. Based on the contemporary 

view of mechanisms of aging, Walker and Benzer [29] 

experimentally demonstrated the key influence of 

oxidative stress on the development of these age-

dependent changes in the ultrastructure of flight muscle 

mitochondria in Drosophila. 

 

At present, investigation of processes of aging focuses 

on species with naturally delayed aging. One of the 

representatives of such species is naked mole rat 

(Heterocephalus glaber). This is a miniature (up to 35 

g) rodent living in underground tunnels in arid and 

semiarid zones of Kenia, Somalia and Ethiopia [30]. 

One of the most interesting features of naked mole rat is 

its very long lifespan. The longevity record for the 

captured naked mole rat is currently over 31 years [31]. 

The available literature lacks data on the ultrastructural 

study of naked mole rat tissues except for the study by 

Onyango et al. [32] performed using the testis of naked 

mole rat, and the work of Stoll et al. [33] in which 

selected electron microscopic images are provided for 

illustration of histological and functional characteristics 

of naked mole rat. Our investigations [34] of the 

mitochondrial ultrastructure of cardiomyocytes of naked 

mole rat demonstrated that by the age of 11 years their 

mitochondria do not show any abnormalities. The 

mitochondrial ultrastructure corresponds to the 

phenotype of young animal which is one of the neotenic 

features in naked mole rat.  

 

According to the literature, mitochondrial apparatus of 

skeletal muscle fibers has complicated structural 

organization. As was shown in one of the first electron 

microscopic studios performed by Palade [35], 

mitochondria were shown to be arranged in rings or 

braces around the I bands of myofibrils and have 

stellate form. Later, Gauthier and Padikula [36] and 

independently Bubenzer [37], based on the analysis of 

separate sections of the rat diaphragm, suggested that 

there are three types of mitochondria in the skeletal 

muscles: 1) thin, branched, located across the muscle 

fibers; 2) thicker, oval-shaped, located along the muscle 

fibers; 3) spherical, located close to the cell ridges with 

offshoots leading to the cell center. Using multiple 

three-dimensional reconstructions, we demonstrated 

that all mitochondrial material in the diaphragm 

muscles is arranged through specific intermitochondrial 

contacts in a single mitochondrial network. Such a 

network is formed by giant, branched mitochondria 

present on both sides of the Z line and joined into single 

mitochondrial carcass by longitudinal mitochondria 

strands located along myofibril bundles. We defined 

this system as mitochondrial reticulum (Figure 1A, 1B) 

[38–40]. Using high-voltage electron microscopy, 

Kirkwood et al. [41] examined native tissue of three rat 

skeletal muscle fiber types and showed that 

mitochondrial reticulum is a structure existing in vivo 

and not a result of the fixation process or muscle tissue 

stagnation. Modern scanning microscopy have recently 

allowed to get a vivid, three-dimensional image of 

mitochondrial reticulum ultrastructure in mouse skeletal 

muscles (Supplementary Figure 1) [42]. At the same 

time, some authors considered the branched network 

detected in isolated sections of skeletal muscles and 

formed by elongated mitochondria as a result of 

congenital myopathy [43] or as a sign of aging [44].  

 

We have studied skeletal muscle tissue of naked mole 

rat in order to detect specific age-dependent changes in 

the ultrastructure of mitochondrial apparatus. This work 

is a follow-up study to our previous research [17, 45]. 

The present paper describes the results of the study of 

the mitochondrial ultrastructure of the naked mole rat 

skeletal muscles of the following age groups: 1 week, 6 

months, 5 years, 7 years and 11 years. 

 

RESULTS AND DISCUSSION 
 

In Figure 2A, 2B, the ultrastructure of mitochondria in 

skeletal muscle of naked mole rat at the age 1 week is 

presented. At the longitudinal (Figure 2A) and cross 

sections (Figure 2B) of the muscle fiber small, widely 

spaced mitochondria can be seen. In our previous 

studies [40], the number of mitochondria in the skeletal 

muscles of rats has been reported to increase 

significantly shortly after birth. Moreover, mitochondria 

demonstrated stepwise fusion and formation of three-

dimensional reticulum. This process is completed by the 

age of 1.5-2 months. As for mitochondria of 6-month-

old naked mole rats they were still small and isolated 

from neighbors in both cross and longitudinal sections 

of the muscle fiber (Figure 3A–3C). By the age of 5 

years, the ultrastructure of mitochondrial apparatus of 

naked mole rat undergoes acute changes. It can be 

clearly seen in Figure 4 that the number and size of 

mitochondria became significantly higher, 

mitochondrial clusters have appeared not only in the 

perinuclear and subsarcolemmal areas but also between 

myofibrils (indicated by arrows in Figure 4A, 4B). 

However, mitochondrial network is not formed. 

 

At the age of 7 years, further increase of number and 

size of mitochondrial clusters located along myofibrils 

(indicated by arrows in Figure 5C) and in the 

subsarcolemmal area (arrow 1 in Figure 5A) were 

observed. Besides, very large isolated mitochondria 

appear in the subsarcolemmal area with non-typical 

morphology for skeletal muscle (Figure 5A, arrow 2). 

Figure 5B shows an image of the same mitochondrion 

at higher magnification. The whole intermembrane 
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space of the mitochondrion is filled with cristae in the 

form of curled, wave-like structures (indicated by arrows). 

It should be noted that previously we found mitochondria 

of similar ultrastructure in cardiomyocytes of naked mole 

rat aged above 5 years [34]. 

The same trend in the development of mitochondrial 

apparatus in skeletal muscle was detected in animals 

aged 11 years. The characteristic feature of the 

ultrastructure of skeletal muscle fibers in this group of 

animals is very large mitochondrial clusters both in the

 

 
 

Figure 1. Mitochondrial reticulum in diaphragm of a two-month-old rat. (A) Longitudinal section. (B) Cross section through isotropic 

region. (from Bakeeva et al. [40]). 
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subsarcolemmal area and between myofibrils (indicated 

by arrows 1 and 2 in Figure 6A). 

 

In addition, one prominent feature of mitochondrial 

ultrastructure in this group of naked mole rats is its 

internal organization which previously has not been 

observed in skeletal muscles of any animals. Figure 6B 

shows densely packed, wave-like mitochondrial cristae. 

Depending on the section plane, it can be seen that 

cristae are arranged in separate convoluted stacks. In

 

 
 

Figure 2. Ultrastructure of mitochondria in skeletal muscle of one-week-old naked mole rat. (A) Longitudinal section. Arrows 

indicate mitochondria. (B) Cross section. Widely spaced, small mitochondria are observed on the longitudinal and cross section of muscle 
fiber. Arrows indicate mitochondria. 
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Figure 7A, 7B shows the ratio of size and ultrastructure 

of mitochondria in skeletal muscle fibers of naked  

mole rat aged 6 months and 11 years at the same 

magnification. Significantly increased size of 

mitochondria, number of cristae, density of the matrix 

can be observed.  

Morphometric analysis was performed in order to assess 

muscle-specific mitochondria development. Figure 8A 

shows the results of counting the number of 

mitochondrial sections per 1 μm2 of the muscle fiber. At 

the age of 6 month, mean number of mitochondria in 

the skeletal muscle were 0.23 ± 0.02 items/μm2 with the

 

 
 

Figure 3. Ultrastructure of mitochondria in skeletal muscle of six-month-old naked mole rat. (A) Cross section of muscle fiber. 
Small, isolated mitochondria and group of mitochondria, which ultrastructure is demonstrated at higher magnification in (B) is indicated by 
an arrow. (C) Longitudinal section of muscle fiber. Small, widely spaced mitochondria. 
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more than two-fold increase in 5-year-old animals (up 

to 0.47 ± 0.03 items/μm2). The reported differences 

are significant at p<0.05. In 11-year-old naked mole 

rat, the number of sections was ever larger (0.75 ± 

0.07 items/μm2). The differences are significant at 

p<0.05. 

The second parameter characterizing age-dependent 

changes of the mitochondrial structure of muscle tissue 

of naked mole rat is the mean area of a single 

mitochondrion cross-section. In 6-month-old naked 

mole rats, the value of this parameter was at 0.21 ± 0.01 

μm2. By the age of 5 years, its value has increased up to

 

 
 

Figure 4. Ultrastructure of mitochondria in skeletal muscle of 5-year-old naked mole rat. (A) Longitudinal section of muscle fiber. 
Rows of mitochondria arranged along myofibrils can be observed, mitochondrial cluster is indicated by arrow. (B) Longitudinal section of 
muscle fiber. Large clusters of mitochondria in the perinuclear and subsarcolemmal areas are indicated by arrows. 
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0.26 ± 0.03 μm2. The differences are significant at p < 

0.05. By the age of 11 years, it increased further, up to 

0.34 ± 0.03 μm2 (Figure 8B). 

 

Third morphometric parameter calculated was volume 

fraction of mitochondria from the total volume of 

muscle fiber (Figure 8C). At the age of 6 months, the 

fraction was 4.77 ± 0.42%. By the age of 5 years, it 

has significantly increased by almost three times – up 

to 12.77 ± 1.81%, p < 0.05. By the age of 11 years, 

mitochondrial volume fraction of naked mole-rat  

was found to reach mean value of 25.68 ± 3%, with 

almost two-fold increase compared to 5-year-old 

animals. 

 

 
 

Figure 5. Ultrastructure of mitochondria in skeletal muscle of 7-year-old naked mole rat. (A) Cross section of muscle fiber. 

Clusters of large mitochondria in the subsarcolemmal area are indicated by arrows 1. Mitochondrion of specific ultrastructure, which is 
demonstrated in Figure 5B, is indicated by arrow 2. (B) Mitochondrion which specific ultrastructure, cristae in form of curled, wave-like 
structures are indicated by arrows. (C) Longitudinal section of muscle fiber, large clusters of mitochondria localized along myofibrils are 
indicated by arrows. 
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It should be stressed that by the age of 11 years the 

general architecture of mitochondria in skeletal muscle 

of naked mole rat has been found to undergo 

reorganization with the formation of ultrastructure 

features typical for cardiomyocytes. Indeed, 

longitudinal sections of muscle fibers show arrangement 

of mitochondrial clusters along myofibrils, and cross 

sections of muscle fibers show a great number of large 

mitochondria instead of thin elongated organelles 

(Figure 6C). According to the literary date, similar

 

 
 

Figure 6. Ultrastructure of mitochondria in skeletal muscle of 11-year-old naked mole rat. (A) Longitudinal section of muscle 

fiber. Arrows 1 indicate large clusters of mitochondria located along myofibrils; arrows 2 indicate large clusters of mitochondria in the 
perinuclear and subsarcolemmal areas. Mitochondrion which specific ultrastructure is demonstrated under higher magnification in Figure 6B 
is indicated by arrow 3. (B) Mitochondrion which specific ultrastructure, convoluted stacks of cristae are indicated by arrows. (C) Cross 
section of muscle fiber. Similar ultrastructural pattern in the cross-section of muscle fiber is typical of cross-sections of cardiomyocytes, 
excluding subsarcolemmal localization of the nucleus. 
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ultrastructural pattern of the cross section of muscle fiber 

is typical for cardiomyocytes [46–50]. A question arises 

why mitochondria in skeletal muscles of adult naked mole 

rat resemble cardiomyocytes (a bunch of large round 

mitochondria connected to each other with 

intermitochondrial four-membrane contact) than 

mitochondria in rat myocytes (mitochondrial reticulum, 

i.e. a network of elongate branched organelles). Perhaps, 

the reason for such a difference is due to continual activity 

of muscular work in naked mole rats, small animals 

burrowing very long holes in stony earth. Such a work 

resembles continual activity of the heart muscle, rather 

than usual skeletal muscle of, say, Wistar rats, where that 

activity is alternates with rather long period of the rest. 

 

This finding is especially important as it is completely 

different to the data on age-dependent ultrastructural 

changes of the mitochondrial apparatus in skeletal 

muscles of short-lived rodents. Currently, it is generally 

accepted that the severity of sarcopenia and its 

 

 
 

Figure 7. Comparison of ultrastructures of mitochondria in skeletal muscle fibers of naked mole rats of two different ages is shown at the 

same magnification: (A) Skeletal muscle mitochondria at the age of 6 months; (B) Skeletal muscle mitochondria at the age of 11 years. 



 

www.aging-us.com 24533 AGING 

 
 

Figure 8. (A) Average values of the number of mitochondria per 1 μm2 of muscle fiber in naked mole rats of different ages. (B) Average 

values of sectional area of muscle fiber mitochondria in 6-month-old, 5-year-old and 11-year-old naked mole rats. (C) Area occupied with 
mitochondria in muscle fibers in naked mole rats of different ages (%). * The difference is significant at p < 0.05. Error bars on all the graphs 
correspond to the standard error. 
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consequences for the state of skeletal muscles increase 

with age [51].  

 

Naked mole rat is commonly compared with mice as they 

both are small rodents approximately of the same size and 

have rather similar constitution. Our studies have shown 

that mitochondrial apparatus degeneration in skeletal 

muscles of mice (unpublished date) and rats [52] is 

observed by the age of 2-2.5 years. Integrated system of 

mitochondrial reticulum present as a network of branched 

extended mitochondria in the isotropic band of the muscle 

fiber is impaired. Only isolated elongated mitochondria of 

irregular convoluted shape could be observed 

(Supplementary Figure 2A, 2B). At the same time 

association of mitochondria in the isotropic band areas 

into integral mitochondrial system along the whole 

muscle fiber through longitudinal strands of mitochondria 

located along the bundles of myofibrils is also lost. There 

are mostly only small mitochondria observed on the 

longitudinal sections of the muscle fiber (Supplementary 

Figure 3A, 3B). Morphometric analysis also shows 

decreased ratio of the total mitochondrial area to the total 

area of muscle fiber. At the same time, there is a more 

than 5-fold increase in the proportion of the mitochondria 

area compared to the total muscle fiber area in the skeletal 

muscle (4.8±0.4% to 25.7±3%) of the naked mole rat 

 aged 6 months to 11 years without ultrastructural  

signs of aging.  

 

It is well known that one of the characteristic signs of 

aging common to almost all animals is sarcopenia, an age-

dependent degradation of structural and functional 

condition of skeletal muscles associated with both 

impaired redox processes and decreased muscular work 

which is largely related to energy metabolism in muscle 

tissue. The leading role of mitochondrial apparatus in this 

process is generally acknowledged: its degradation is of 

pivotal role along with mitochondrial dysfunction [1, 2, 9, 

11, 12–22]. Our studies have shown that even at 11 years 

of age naked mole rats don’t have any pathological 

changes of skeletal muscle mitochondria, but on contrary 

substantial growth and development of the mitochondria.  

 

We suppose that specific structure of mitochondrial 

apparatus developed in the skeletal muscle of naked mole 

rats by the age of 11 years ensures the appropriate level of 

oxidation-reduction processes in muscles preventing 

performance decrease and sarcopenia development. 

 

MATERIALS AND METHODS 
 

Animals 

 

Naked mole rats 

Five groups of naked mole rats (1-week, 6-month-,  

5-year-, 7-year- and 11-year-old) were used. Each 

group contained four animals. Naked mole rat 

colonies are kept at the Leibniz-Institute for Zoo and 

Wildlife Research (Berlin) in artificial plexiglass 

labyrinths. The temperature in the system was 

maintained at 26-29° C, and relative humidity was 60-

80%. The boxes contained wooden litter, small twigs, 

and pieces of paper. Fresh food was available daily 

without restrictions and included sweet potatoes, 

carrots, apples, fennel, groats with vitamins and 

minerals, and oat flakes. Experiments were approved 

by the Ethics Committee of Landesamt für Gesundheit 

und Soziales, Berlin, Germany (#ZH 156; G 0221/12; 

T 0073/15). 

 
Electron microscopy  

 
This part of the study was done in Belozersky research 

institute of Physico-chemical Biology, Lomonosov 

Moscow State University, Moscow. For this 

examination, tissue of the m. gracilis and medial 

ventrum of m. quadriceps femoris wall were excised 

and fixed with 3% glutaraldehyde solution (Sigma 

Aldrich, USA) in 0.1 M phosphate buffer (pH 7.4) for 2 

h at 4° C. Further it was fixed with 1% osmium 

tetroxide for 1.5 h and then dehydrated in alcohol series 

with increasing alcohol concentrations of 50, 60, 70, 80 

and 96% (70% alcohol contained 1.4% uranylacetate; 

Serva, Germany) to enhance contrast. After that, 

samples were embedded in Epon812 epoxy resin. A 

series of ultrathin sections was prepared with an ultra 

microtome (Leica, Austria) and stained with lead. The 

obtained preparations were imaged and photographed 

under a JEM1400 electron microscope (JEOL, Japan) 

operating at the accelerating voltage of 100 kV and 

beam current of 65 μA equipped with a QUEMESA 

camera(Olympus, USA) and processed with the 

software provided with the electron microscope (EMSIS 

GmbH, Germany).  

 
Morphometry and statistical analysis 

 
For morphometric examination, ten electron 

microscopic photographs (magnification ×1500) for 

each group of animals were selected. In these photos, 

mitochondria of muscle fibers were marked using the 

Adobe Photoshop (Adobe®, San Jose, USA) graphical 

editor, and the number of mitochondrial cross-sections 

was counted using the Count tool. Several parameters 

were calculated using the Photoshop analysis 

package: (1) the number of mitochondrial cross-

sections per square micrometer of muscle fibers; (2) 

the average area of mitochondrial cross-sections; (3) 

the ratio of total area of mitochondrial cross-sections 

in one cut to total area of the muscle fiber, which 

determines the volume fraction of mitochondria in the 

fiber volume. 
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Supplementary Figure 1. Muscle mitochondria form highly connected networks. (A) 3D surface rendering of 25.53*24.06*4.23 μm 
FIB-SEM volume segmented to show spatial relationships between mitochondria (green) and other structures (nucleus (N), cyan; capillary (V), 
magenta; erythrocyte, red; myofibrils, grey). (B) Removing myofibrils highlights different morphologies within intrafibrillar mitochondrial 
(IFM) network. (C–E) Zooming in reveals projections from paravascular mitochondria (PVM) into I-band mitochondria (IBM) (C), and 
numerous interactions between IBM and cross-fiber connection mitochondria (CFCM) (D) and fiber parallel mitochondria (FPM) (D, E). Scale 
bars, 3 μm. Representative of eight separate volumes analysed from four animals. (From Glancy et al. [42]). 

 

 

  



 

www.aging-us.com 24540 AGING 

 
 

Supplementary Figure 2. Ultrastructure of the skeletal muscle mitochondria of the C57BL/6 mouse on a cross-section. (A) At 

the age of 2.5 months; (B) at the age of 2.5 years. 
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Supplementary Figure 3. Ultrastructure of the skeletal muscle mitochondria of the C57BL/6 mouse on a longitudinal section. 
(A) At the age of 2.5 months; (B) at the age of 2.5 years. 


