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Fluoxetine exposure during 
adolescence increases preference 
for cocaine in adulthood
Sergio D. Iñiguez1,2, Lace M. Riggs2, Steven J. Nieto2, Katherine N. Wright3, 
Norma N. Zamora2, Bryan Cruz1, Arturo R. Zavala4, Alfred J. Robison5 & Michelle S.  
Mazei-Robison5

Currently, there is a high prevalence of antidepressant prescription rates within juvenile populations, 
yet little is known about the potential long-lasting consequences of such treatments, particularly on 
subsequent responses to drugs of abuse. To address this issue at the preclinical level, we examined 
whether adolescent exposure to fluoxetine (FLX), a selective serotonin reuptake inhibitor, results 
in changes to the sensitivity of the rewarding properties of cocaine in adulthood. Separate groups 
of male c57bl/6 mice were exposed to FLX (0 or 20 mg/kg) for 15 consecutive days either during 
adolescence (postnatal days [PD] 35–49) or adulthood (PD 65–79). Twenty-one days after FLX 
treatment, behavioral responsivity to cocaine (0, 2.5, 5, 10, or 20 mg/kg) conditioned place preference 
was assessed. Our data shows that mice pretreated with FLX during adolescence, but not during 
adulthood, display an enhanced dose-dependent preference to the environment paired with cocaine 
(5 or 10 mg/kg) when compared to age-matched saline pretreated controls. Taken together, our 
findings suggest that adolescent exposure to FLX increases sensitivity to the rewarding properties of 
cocaine, later in life.

Pediatric depression has only recently become well recognized. Today, mood disorders are diagnosed 
in up to 9% of children and adolescents, and if left untreated, may result in negative consequences that 
extend into adulthood1. For instance, it is estimated that children and adolescents who suffer from major 
depressive disorder (MDD) are more likely to develop conduct-, anxiety-, and substance use related 
illnesses2. Consequently, this has resulted in a dramatic increase in the prescription of antidepressants to 
populations under 20 years of age3. Despite heightened rates of antidepressant use, little is known about 
the long-term neurobiological adaptations that may result from antidepressant treatment during periods 
prior to adulthood4.

Preclinical studies indicate that early-life exposure to fluoxetine (FLX), a selective serotonin reup-
take inhibitor (SSRI), results in long-lasting neurobehavioral alterations in adulthood4,5. Specifically, FLX 
exposure during juvenile stages of development induces a long-lasting and complex behavioral response, 
wherein rodents exhibit decreases in sensitivity to inescapable stressors6–8, along with increases in sen-
sitivity to anxiety-inducing situations5,9. This is not surprising given that neuronal adaptations occur 
during the adolescent period of development10, which have been correlated, at least in part, with respon-
siveness to emotional- and reward-related stimuli under normal conditions11. Interestingly, exposure to 
FLX during adolescence has also been reported to induce an enduring heightened sensitivity to natural 
rewards (i.e., sucrose5) – suggesting that such pharmacological treatment may also influence the devel-
opment of brain pathways associated with responsiveness to drug-associated reward. This is plausible 
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given that early-life exposure to a variety of psychotropic drugs, including antidepressants and/or stim-
ulants, have been found to enhance sensitivity to drugs of abuse in adulthood12–14. Thus, the goal of this 
investigation is to examine whether FLX exposure, during adolescence specifically, results in long-lasting 
increases in sensitivity to the rewarding effects of cocaine. To this end, we selected the conditioned place 
preference (CPP) paradigm, as it has been widely utilized to assess the rewarding and/or aversive prop-
erties of abused drugs15.

Results
Long-term effects of FLX exposure during adolescence on cocaine CPP.  Figure  1a shows 
the enduring effects of adolescent FLX exposure on cocaine (0, 2.5, 5, 10, or 20 mg/kg) CPP in adult-
hood (N =  90). Time spent in the cocaine-paired compartment varied as a function of adolescent FLX-
pretreatment (main effect: F(1,80) =  9.15, p <  0.003), and cocaine exposure in adulthood (post-treatment 
main effect: F(4,80) =  22.30, p <  0.0001). Importantly, neither VEH- (n =  10) nor FLX-pretreatment (n =  9) 
resulted in preference for any of the compartments when animals were conditioned to saline (p >  0.05). 
Similarly, no preference for either compartment was observed in mice conditioned to the lowest dose of 
cocaine (2.5 mg/kg), regardless of VEH (n =  8) or FLX (n =  8) exposure during adolescence (p >  0.05). 
Conversely, VEH-pretreated mice conditioned with 5 (n =  11), 10 (n =  8), and 20 (n =  8) mg/kg cocaine 
displayed reliable conditioning, when compared to VEH-pretreated/saline-conditioned mice (p <  0.05, 
respectively). Planned comparisons indicated that FLX pretreatment resulted in reliable conditioning to 
the compartment paired with 5 (n =  11), 10 (n =  9), and 20 (n =  8) mg/kg cocaine, when compared to 
FLX-pretreated/saline-conditioned mice. Interestingly, FLX-pretreated mice conditioned to 5 and 10 mg/
kg cocaine spent significantly more time in the drug-paired compartment when compared to VEH-
pretreated mice receiving the same doses of cocaine in adulthood (p <  0.05, respectively) – suggesting 
that adolescent FLX-pretreatment increased the incentive value of cocaine in adulthood. Notably, no 

Figure 1.  Enduring effects of fluoxetine (FLX; 20 mg/kg) exposure on cocaine-induced place 
conditioning. (a) Three-weeks after adolescent antidepressant exposure (postnatal day [PD]-75), FLX-
pretreated mice displayed enhanced sensitivity to 5 and 10 mg/kg cocaine, when compared to vehicle (VEH)-
pretreated mice (n =  8–11 per group; *p <  0.05). (b) Conversely, adult FLX-pretreatment did not influence 
preference for the cocaine-paired side, three-weeks after antidepressant exposure (PD 105; n =  7–10 per 
group; p >  0.05). Regardless of age, VEH-and FLX-pretreated mice displayed reliable conditioning to cocaine 
(αp <  0.05). *Within cocaine group comparison (p <  0.05). αSignificantly different when compared to age-
matched controls conditioned to saline (p <  0.05).
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differences in general locomotor activity (distance traveled in cm), as a function of adolescent FLX pre-
treatment (postnatal day [PD] 35–49), were observed during the preconditioning phase (PD 70, p >  0.05, 
data not shown).

Long-term effects of FLX exposure in adulthood on cocaine CPP.  To examine whether the 
enduring increase in sensitivity to the rewarding properties of cocaine is dependent on age of FLX expo-
sure (adolescence vs. adulthood), we treated adult mice with FLX for 15 consecutive days (PD 65–79), 
and examined their behavioral responses to cocaine CPP three-weeks later (PD 105; N =  93). As shown 
in Fig. 1b, adult pretreatment with FLX did not result in a long-lasting increase in sensitivity to cocaine, 
as was observed with adult mice pretreated with FLX during adolescence (Fig. 1a). Results indicate that 
the time spent in the cocaine-paired compartment varies as a function of cocaine dose (post-treatment 
main effect: F(4,83) =  6.46, p <  0.0001), but not as a function of FLX-pretreatment (main effect: p >  0.05), 
or their interaction (FLX-pretreatment ×  cocaine post-treatment: p >  0.05). Mice conditioned to saline 
(n =  10 per group) or 2.5 mg/kg cocaine (n =  7 −  10 per group) did not display a preference for either 
compartment (p >  0.05, respectively). On the other hand, mice conditioned to 5 (n =  7 −  10 per group), 
10 (n =  10 per group), and 20 (n =  9 −  10 per group) mg/kg cocaine spent significantly more time in 
the cocaine-paired side, regardless of antidepressant pre-exposure (VEH vs. FLX), when compared to 
saline-conditioned mice (p <  0.05, respectively). Lastly, no differences in distance traveled (cm), as a 
function of antidepressant exposure in adulthood (PD 65–79), were observed between the groups during 
the preconditioning phase (PD 100, p >  0.05, data not shown).

Discussion
This study was designed to examine whether FLX, a SSRI that is increasingly prescribed to adolescents, 
results in altered sensitivity to the rewarding properties of cocaine later in life. This approach was taken 
because previous reports show that juvenile FLX exposure results in long-lasting increases in sensitivity 
to natural rewards, namely a sucrose solution5,7. Here, we report that exposure to FLX during adoles-
cence, but not adulthood, enhances responsiveness to the rewarding properties of cocaine later in life, as 
measured in the CPP paradigm.

Mice pretreated with FLX during adolescence (PD 35–49) showed increased sensitivity to environ-
ments paired with moderately low doses of cocaine (5 and 10 mg/kg), when compared to mice that 
receive the same doses of cocaine, yet pretreated with saline during adolescence (Fig.  1a). Conversely, 
animals pretreated with FLX in adulthood (PD 65–79) did not show an enduring enhanced sensitivity 
to cocaine 21 days after treatment, when compared to their respective saline-treated age-matched con-
trols (Fig. 1b). Importantly, no differences in general locomotor activity were observed as a function of 
antidepressant pretreatment, regardless of whether FLX was administered during adolescence or adult-
hood, thus suggesting that the responses to cocaine were not attributed to FLX-induced alterations in 
exploratory behavior5,7. When considered together, these data suggest that immature neuronal systems 
associated with reward and motivation are susceptible to alterations induced by FLX treatment6,16,17. This 
FLX-induced increase in sensitivity to drug reward resembles that of preadolescent rats exposed to FLX 
(PD 20–34), and tested on cocaine place conditioning two months after treatment7. Here, we extend 
these findings to mid-adolescence (PD 35–49), the developmental stage where the first episode of clinical 
depression is most often reported18.

The neurobiological mechanisms underlying the FLX-induced increase in sensitivity to cocaine are 
unknown. Because CPP is contingent upon an animal associating the rewarding/aversive properties of a 
drug with environmental cues, areas of the brain that are essential for memory associations of contextual 
stimuli, such as the ventral tegmental area and hippocampal formation19–22, are likely to play a role in 
the behaviors observed. In particular, the hippocampus has been shown to be a key mediator for the 
acquisition and expression of cocaine CPP20,23. In addition to being crucial for drug-related contextual 
memories24–26, the hippocampus has also been a site of FLX-induced alterations of signaling molecules 
associated with antidepressant efficacy27. Within this brain region, FLX has been shown to increase levels 
of brain derived neurotrophic factor28, as well as several of its downstream signaling targets. Particularly, 
the extracellular signal-regulated kinase (ERK) is essential to various forms of learning and memory24,29, 
in addition to mediating behavioral responses to cocaine19,30, and mood-related behaviors31–33. Therefore, 
it is conceivable that FLX-induced behavioral responses to reward may be mediated by long lasting adap-
tations of ERK signaling within the hippocampus. Alternatively, adolescent FLX exposure has recently 
been found to induce a long-lasting upregulation of the serotonin transporter (SERT)16, which in turn, 
may underlie the observed facilitated cocaine CPP, given that cocaine has a high affinity for SERT34–36. 
Accordingly, future studies will be needed to thoroughly assess these hypotheses.

Overall, the present study demonstrates that chronic adolescent exposure to FLX increases sensitivity 
to cocaine in adulthood. It is imperative to note, that the FLX-induced effects observed in this study were 
from animals that were not purposefully stressed and that FLX exposure in models of juvenile depression 
may yield different results37,38. For example, it would be interesting to examine how co-exposure to FLX 
and social defeat stress, during the adolescent stage of development, influences the rewarding properties 
of cocaine in adulthood. Another limitation is that we did not include female subjects in our experimen-
tal design, restricting the interpretability of the present data to the clinical setting, where twice as many 
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females, when compared to males, are diagnosed with mood-related disorders, and thus are more likely 
to be prescribed with antidepressant medications.

Methods
Subjects.  A total of 183 male mice, of the c57bl/6 strain, were used in this investigation. Mice were 
obtained from the Department of Psychology Mouse-Breeding Colony at California State University 
San Bernardino (CSUSB). Mice were housed (3–4 per cage) in standard polypropylene cages containing 
wood shavings and placed on a 12-h light/dark cycle (lights on at 7:00 A.M.) with unrestricted access to 
food and water. All experiments were conducted in compliance with the National Institutes of Health 
Guide for the Care and Use of Laboratory Animals, and with approval of the Institutional Animal Care 
and Use Committee at CSUSB.

Drugs and experimental design.  Male c57bl/6 mice were randomly assigned to receive FLX (0 or 
20 mg/kg) for 15 consecutive days, either during adolescence (PD 35–49) or adulthood (PD 65–79; see 
Fig.  2 for experimental timeline). FLX hydrochloride (Sigma-Aldrich, St. Louis, MO) was diluted in 
sterile double distilled water (vehicle; VEH), and administered in a volume of 2 ml/kg by intraperitoneal 
(IP) injection. The FLX dose and regimen was selected because it yields significant effects on behavior 
and gene expression5,39–41. Twenty-one days after FLX treatment (i.e., PD 70 for adolescent-pretreated 
and PD 100 for adult-pretreated mice), sensitivity to the rewarding properties of cocaine (0, 2.5, 5, 10, 
or 20 mg/kg) was assessed using the CPP paradigm (see below). Cocaine hydrochloride (Sigma-Aldrich) 
was diluted with sterile saline and administered in a volume of 2 ml/kg by IP injection.

Conditioned place preference (CPP) procedure.  Place preference conditioning was carried out as 
previously described42, using a three-compartment apparatus12, where compartments differed in floor 
texture and wall coloring. On the preconditioning day, mice were allowed to freely explore the entire 
apparatus for 25 min to obtain baseline preference to any of the three compartments (side compartments: 
23 ×  16 ×  36 cm; middle compartment: 9 ×  16 ×  36 cm, L ×  W ×  H). Conditioning trials (25 min, two per 
day) were given on four consecutive days. During the conditioning trials, mice received an IP saline 
injection (2 ml/kg) and were confined to the preferred compartment of the apparatus (biased proce-
dure15). After 3 h, mice received cocaine (0, 2.5, 5, 10, or 20 mg/kg, IP) and were confined to the opposite 
(non-preferred) side compartment. On test day (preference), mice were again allowed to freely explore 
the entire apparatus for 25 min (i.e., PD 75 for mice that received FLX-pretreatment during adolescence, 
and PD 105 for mice that received FLX-pretreatment as adults).

Data analysis.  Separate two-way ANOVAs, with FLX (pretreatment) and cocaine (post-treatment) 
as sources of variance, were conducted for adolescent and adult FLX-pretreated groups. This approach 
was taken in order to avoid age-specific influences on locomotor activity between the groups. Tukey post 
hoc tests were used to examine all pairwise comparisons. Planned comparisons were also conducted to 
examine the hypothesis that FLX pretreatment will enhance cocaine-induced reward. Statistical signifi-
cance was defined as p <  0.05. Data are presented as mean +  s.e.m.
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