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Abstract

One way to manage disturbance to waterbirds in natural areas where humans require access is to promote the occurrence
of stimuli for which birds tolerate closer approaches, and so cause fewer responses. We conducted 730 experimental
approaches to 39 species of waterbird, using five stimulus types (single walker, three walkers, bicycle, car and bus) selected
to mimic different human management options available for a controlled access, Ramsar-listed wetland. Across species,
where differences existed (56% of 25 cases), motor vehicles always evoked shorter flight-initiation distances (FID) than
humans on foot. The influence of stimulus type on FID varied across four species for which enough data were available for
complete cross-stimulus analysis. All four varied FID in relation to stimuli, differing in 4 to 7 of 10 possible comparisons.
Where differences occurred, the effect size was generally modest, suggesting that managing stimulus type (e.g. by requiring
people to use vehicles) may have species-specific, modest benefits, at least for the waterbirds we studied. However,
different stimulus types have different capacities to reduce the frequency of disturbance (i.e. by carrying more people) and
vary in their capacity to travel around important habitat.
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Introduction

‘Disturbance’ is the disruption of the normal activity or

physiology of wildlife, such as birds, in the proximity of an agent

such as a person or vehicle. In some circumstances disturbance is

regarded as a conservation problem [1–3]. The classic mechanistic

model of bird disturbance involves an external ‘stimulus’ (e.g. a

person), and a ‘response’ on the part of the bird (e.g. escape), with

various internal (e.g. body weight, species) and external (e.g. speed

of approach) influences mediating the response [4,5].

While great variation in the form and intensity of escape

responses occurs, including substantial variation within species,

several general principles regarding animal escape have been

elucidated [4]. One of the basic principles which has been

described regarding bird disturbance by humans is that the nature

and behaviour of the stimulus influences the probability and extent

of response [6–8]. For example, walkers may evoke responses of

shorebirds at different distances than those evoked by dog walkers

or joggers [9]. Different stimuli are often associated with multiple

cues (visual, auditory or olfactory) and birds may respond to these

cues separately as well as holistically; for example, birds may

respond to a recording of a barking dog [10]. The behaviour of

stimuli may also influence responses, for example, the unpredict-

able and rapid movements of unleashed dogs may explain the

greater responses of birds to unleashed rather than leashed dogs

[6,11].

Anthropogenic stimuli come in many shapes and forms, but few

studies actually examine the responses of birds to different stimuli

‘likely’ to occur in areas of natural significance ([12–16], but see

[17]). An understanding of which stimuli are associated with more

frequent or intense responses could aid planning and promote

coexistence between humans and wildlife. An example of this is

areas of high natural significance (i.e. those harbouring substantial

biodiversity) and the question as to how humans should be able to

use such areas. Humans could be permitted on foot or by bicycle

(potentially representing low acoustic cues). Alternatively, people

could access such areas in vehicles, such as cars or buses

(permitting fewer vehicles because they have higher carrying

capacities but representing larger, noisier stimuli). In essence, these

choices represent a potential management continuum of self-

directed (walking, cycling, some vehicles) to organised ecotourism

(some vehicles but especially buses).

Given that human presence can be detrimental to wildlife such

as birds, the management of human access into sensitive natural

areas is critical [4]. A common way to manage human disturbance

in sensitive areas involves the establishment of buffer/exclusion

zones (attempts to completely exclude people are not always

effective e.g. [18]). Ideally, the size of buffer zones is determined

using Flight Initiation Distance (FID), the distance at which birds
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responds to various stimuli [19]. Although the responses of birds

differ markedly between stimuli, it has been suggested that

available FIDs are dominated by those evoked by single walkers

[4]. However, this has not been tested.

This study aims to: 1) determine if there is a bias in the literature

to reporting more FIDs evoked in response to a single walker; and

2) examine FIDs evoked by five different (but commonly

occurring) stimuli: single walker, a group of (three) walkers,

bicycle, car, and bus. We control for a range of other factors by

conducting the study at a site which currently experiences

relatively low levels of human presence compared with publically

accessible sites nearby [9]. Managers are seeking advice on the

least-disturbing human presence for birds at this site (W. K. Steele

pers. comm.).

Methods

Literature search
We performed a search in Google Scholar 12th October 2012

using the keywords ‘‘bird’’ and ‘‘flight initiation distance’’ (see

Figure S1). The keywords ‘‘bird’’ and ‘‘flush distance’’ were used

in an additional search performed in the same database (14th

January 2013). These searches returned a total of 695 papers. Of

these, only the 100 studies that measured FID in birds were

considered further. The stimuli which had been used in each study

were determined and details of each paper were noted. For each

study, we extracted the stimuli used and the species studied. For

studies comparing multiple stimuli within species, we recorded the

comparisons made and whether significant differences were

reported.

Fieldwork
Field work was conducted at the Western Treatment Plant

(WTP), Werribee, near Melbourne, Victoria, Australia (38u19S,

144u349E). The Ramsar-listed WTP holds internationally signif-

icant numbers of many waterbird species and is a renowned

birdwatching site [20,21]. Access to the plant is restricted; visitors

are required to obtain a permit and register each visit. The

common birdwatching areas of the WTP are comprised of various

ponds and lagoons and the coastline, all of which are easily

accessible via car or foot from the roads and paths that run

throughout the plant, usually between every pond. In addition to

the birdwatchers and workers in cars or on foot, bus tours of the

WTP are often conducted. The waterbirds at the WTP are thus

exposed to some human activity, less than that evident in

unrestricted areas such as urban parks [9].

Measuring flight-initiation distances
We collected FIDs for 39 waterbird species between September

2011 and February 2012. All fieldwork was conducted between

0730 and 2100 hours, and as is customary and practical, only

when it was not raining. We presented five types of stimuli to

waterbirds within the WTP: single walker (1.4 ms21), three

walkers (1.0 ms21), bicycle (2.0 ms21), car (2.8 ms21) and bus

(2.8 ms21). A stimulus type was randomly selected for each

fieldwork day. For each stimulus type, FID was assessed by moving

towards the focal bird at a constant pace. While approach speeds

can influence FIDs [22] we used approach speeds which were

typical of the stimuli being tested; our aim was to mimic realistic

behaviour of each stimulus type. During the approach the

observer/s were silent and made no sudden body movements.

The distance at which we started an approach was recorded as the

Starting Distance, and was maximised i.e. we used the longest

Starting Distance possible [5,23]. The distance at which the bird

walked, swam, dived, or flew away in response to the approach

was recorded as the FID. Approaches were only included if the

bird’s response was determined to occur as a result of the

approach. When a flock was approached, the FID was taken from

the point at which the first individual showed a response to the

approach. An approach was abandoned if it was unclear whether

the bird was responding to the observer or to another potential

stimulus, such as a bird of prey. Depending on the target bird’s

original location, we approached either directly or tangentially.

For tangential approaches, we minimised bypass distance and

bypass distance was thus reasonably modest (29.461.0 m [mean

6 SE]; 493 tangential approaches. All distances were measured

using a laser rangefinder.

Table 1. Papers (n = 100) which provide data on Flight-Initiation Distance (FID) in birds evoked by various stimuli.

Stimulus
Number (percentage) of
studies Source Number of species*

Single walker 82 (82%) [7–9,23,25,28,30–105] 392

Motorised boat 8 (8%) [27,29,106–111] 33

Multiple walkers 8 (8%) [8,27,29,31,32,112–114] 21

Jogger/runner 2 (2%) [9,25] 9

Dogs on and off leash 4 (4%) [9,25,39,52] 14

Non-motorised boat (canoe/raft) 4 (4%) [27,115–117] 4

Car, 464 3 (3%) [29,30,118] 75

Truck 1 (1%) [29] 3

Airboat 1 (1%) [119] 13

Ship 1 (1%) [120] 4

Jet ski 1 (1%) [110] 23

Helicopter 1 (1%) [121] 1

Radio-controlled vehicle 1 (1%) [67] 1

We present the number of studies reporting FIS data for each stimulus as well as the number of unique species for which data is presented.
*excludes one reference [104] for which no species list was available.
doi:10.1371/journal.pone.0082008.t001
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All approaches were made by EMM and AJT. For all walking

and bicycle approaches the observers wore standard clothes (dark

pants and a dark long-sleeved top). In all bicycle approaches

observers also wore a bicycle helmet. All approaches were

conducted on non-breeding adult waterbirds and only single-

species flocks were approached. We attempted to avoid resampling

individuals by closely monitoring where birds flushed to after an

approach, before moving on to the next site. We present all raw

FID and Starting Distance data, following the recommendation of

Weston et al. [4].

Statistical analysis
For tangential approaches, FID was calculated as the Euclidian

distance between the observer and the subject at the time escape

behaviour was initiated by taking into account the bypass distance,

the minimum distance between the focal bird and the path of the

observer [24]. FID did not differ between tangential and direct

approaches (F1,403 = 0.878; P = 0.349) so data for both approach

types were pooled for further analysis.

We were not able to measure FID against all stimuli for all

species because of the sample sizes achieved, an artefact of locating

birds in appropriate locations and manoeuvring stimuli to enable

useful data collection. We therefore restricted our statistical

analyses to four species (Australian shelduck Tadorna tadornoides,

black swan Cygnus atratus, chestnut teal Anas castanea, and little pied

cormorant Microcarbo melanoleucos). For these species we obtained at

least five FID estimates per stimulus. We used a General Linear

Model (GLM) to investigate the effect of species, stimulus type,

and their interaction, and Starting Distance on FID using data

from those four species. To test for potential differences in the

relationship between Starting Distance and FID between stimuli

and between species, we included two-way interactions, i.e.

between Starting Distance and stimulus type and Starting Distance

and species. We further used GLMs to compare responses between

stimulus for all species where at least two stimuli had sample sizes

of five or more (n = 12 species). Estimated Marginal Means (EMM)

were calculated from these GLMs and two-tailed post hoc tests

were performed using the EMM standard errors to compare FID

between stimuli within species. All distances were Log10

transformed prior to analyses. Summary statistics are presented

as mean 6 standard deviation.

Permissions
Data were collected under Deakin University Animal Ethics

Committee Permit A48/2008, Victoria University Animal Ethics

Committee Permit AEETH 15/10, National Parks Permit

10004656, DSE Scientific Permits Nos 10004656 and 10005536,

and Western Treatment Plant Study Permit SP 08/02. Tech-

niques used were non-invasive, and all were under permit and

ethics approval.

Results

The 100 studies located described FIDs evoked by 1.1760.51

stimulus types per paper (1–4). Most studies reporting FIDs in

birds only reported estimates derived from approaches by single

walkers (73%; Table 1). The diverse mixture of species and stimuli

tested, and the unbalanced nature of the sample, meant statistical

Table 2. Papers which report comparisons of Flight-Initiation Distances (FID) between various stimuli.

Comparison Sources Number of species compared
FID Outcome (number of species
comparisons)1

SW vs MW [8,31,32] 4 MW.SW (1)

MW = SW (3)

SW vs Jogger [9,25] 9 Jogger.SW (4)

Jogger = SW (5)

SW vs Dog [9,25,39] 12 Dog.SW (5)

SW.Dog (2)

Dog = SW (7)

Jogger vs Dog [9,25] 9 Jogger.Dog (2)

Dog.Jogger (2)

Jogger = Dog (5)

Car vs Truck [29] 2 Car.Truck (1)

Truck.Car (1)

Car vs SW [30] 6 Car.SW (1)

SW.Car (2)

Car = SW (3)

MB vs NMB [27] 1 MB = NMB (1)

MB vs Jet ski [110] 16 Jet ski.MB (1)

MB.Jet ski (4)

Jet ski = MB (11)

MB vs Airboat [119] 9 Airboat.MB (9)

Comparisons were excluded when they were not explicitly tested or described, or when it was unclear if single or multiple walkers were used. Stimuli examined in these
studies are single walker (SW), multiple walkers (MW), single jogger (Jogger), single leashed or unleashed dog (Dog), car, truck, motorised boat (MB), non-motorised
boat (NMB), jet ski, and airboat.
1Number of comparisons is greater than number of species in cases where different studies have investigated the comparison in the same species.
doi:10.1371/journal.pone.0082008.t002
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comparisons between stimuli were unsuitable. Only 13% of

studies, involving 44 species, compared more than one stimulus

type. These studies report a total of 70 comparisons of FID

between any two given stimulus types (Table 2).

We conducted 730 approaches to 39 species of waterbird

(Table 3). The mean FIDs for each stimulus type, across those 39

species, were: walker, 67.6637.5 m; three walkers, 92.3667.7 m;

bicycle, 67.7637.1 m; car, 59.5637.7 m; and bus, 81.2696.5 m.

Within the four species where we had at least five estimates of

FID for each stimuli, Starting Distance was positively correlated

with FID (F1,339 = 233.10; P,0.001). However, Starting Distance

differed between species (F3,363 = 61.81; P,0.001) and stimulus

type (F4,367 = 6.99; P,0.001) and the relationship between

Starting Distance and FID varied between stimulus types

(F4,339 = 2.60; P = 0.036; Figure 1) and between species

(F7,339 = 5.11; P = 0.002). There was also a significant interaction

Figure 1. The relationship between Flight-Initiation and Starting Distance for each stimulus type. Data are from four species that had at
least five FIDs for each stimulus type (black swan, Australian shelduck, chestnut teal and little pied cormorant). Symbols: single walker (X), three
walkers (#), bicycle (n), car (%) and bus (e).
doi:10.1371/journal.pone.0082008.g001

Figure 2. Estimated marginal means for the Flight-Initiation Distance of four species (black swan, Australian shelduck, chestnut teal
and little pied cormorant) in response to five stimulus types. Figures are derived from a General Linear Model which revealed a significant
interaction between species and stimulus type. Values are estimated marginal means 6 95% C.I.
doi:10.1371/journal.pone.0082008.g002
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Table 4. Summary of pairwise comparisons of FID (logged) for analyses of each species across stimulus types (i.e. where $5
replicates were obtained for any stimulus type).

Species Stimulus 3 Walkers Bicycle Bus Car

Australian shelduck (4/10) [0.816] Bicycle CYC,MW *

Bus NS NS

Car CAR,MW** NS NS

Walker NS SW.CYC * NS CAR,SW *

Black swan (6/10) [0.996] Bicycle CYC,MW ***

Bus BUS,MW *** NS

Car CAR,MW *** NS NS

Walker NS SW,CYC *** SW,BUS * SW.CAR **

Chestnut teal (7/10) [0.992] Bicycle NS

Bus BUS,MW ** BUS.CYC *

Car CAR,MW ** CAR,CYC * NS

Walker NS SW.CYC * SW.BUS *** SW.CAR ***

Little pied cormorant (4/10) [0.980] Bicycle NS

Bus NS NS

Car CAR,MW *** CAR,CYC ** CAR,BUS **

Walker NS NS NS SW.CAR ***

Australian white ibis (0/3) [0.148] Bicycle

Bus

Car NS

Walker NS NS

Pink-eared duck (1/1) [0.767] Bicycle

Bus

Car

Walker SW.BUS *

Eastern great egret (0/1) [0.076] Bicycle

Bus

Car

Walker NS

Purple swamphen (2/6) [0.618] Bicycle

Bus NS

Car NS NS

Walker NS SW,BUS * SW.CAR *

Pacific black duck (0/1) [0.511] Bicycle

Bus

Car

Walker NS

Eurasian coot (0/1) [0.050] Bicycle

Bus

Car NS

Walker

Little black cormorant (2/6) [0.806] Bicycle NS

Bus

Car CAR,MW ** NS

Walker SW,MW * NS NS

Hardhead (0/1) [0.258] Bicycle

Bus

Car

Walker NS

Human Transport and Waterbird Flight Responses
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between stimulus type and species (F12,339 = 3.17, P,0.001;

Figure 2). These results suggested that comparisons between

stimuli would be best made on a species by species basis.

To explore the species-specific patterns, we conducted AN-

COVA for each species where five or more estimates of FID for at

least two stimuli were available (Table 4). Of the 60 pairwise

comparisons, 43% [26] revealed significant differences. While

most analyses had observed power greater than 0.500, power was

quite low in some species (Table 4) and results in these species

must be treated with caution. Seven of the twelve species

discriminated between stimuli (i.e. had at least one significant

pairwise difference; 1–10 comparisons across taxa), but often the

effect size was modest (see, for example, Figure 2). FIDs differed

between all possible comparisons between stimuli in at least one

species (Table 4). Single and multiple walkers evoked longer FIDs

than cars (10 of 15 pairwise comparisons; 5 comparisons reported

no difference) and buses (4 of 6 significant comparisons; 6

comparisons reported no difference; Table 4). Thus, of the 16

significant comparisons between humans on foot and motor

vehicles, humans evoked longer FIDs in 14 comparisons (88%).

Pedestrians, singly or in groups, also evoked longer FIDs than

bicycle riders in most cases (4 of 5 significant comparisons; 6

comparisons reported no difference). The number of comparisons

between cars, buses and bicycles were too few to permit any

generalisations, although two (of 2) comparisons involved shorter

FIDs to cars compared with bicycles.

Discussion

The majority of FID studies focus on a single stimulus, usually a

single walker. The few studies which have compared species

response across more than one stimuli have found that while some

species discriminate between stimuli, many do not. Where we

report no difference between stimuli with regard to FID we

acknowledge that low power sometimes existed, thus the cases

where we report a lack of difference between stimuli should be

treated with caution. The available dataset for determining

meaningful buffers for non-walker stimuli around sensitive sites

relies on data from single walkers. This study suggests that such

buffers will often also effectively protect against most disturbance

by the other stimuli we tested, at least at the study site and for the

species studied. However, we report at least one case where buses,

bicycles and multiple walkers evoked longer FIDs than single

walkers, and we caution against the use of ‘‘walker-only’’ FIDs in

all cases. Any elucidation of general principles regarding the

influence of stimulus on bird response is clearly to be encouraged.

This study suggests that some but not all species discriminate

among the stimuli we tested. Some birds have the capacity to

discriminate between stimuli in terms of their responses [4,9], and

are even capable of discriminating between behaviour of the same

stimulus [23,24]. Many studies of discrimination between stimuli

focus on a single species [10,25,26,27] but multi-species studies

([9]; this study) report species differences in the capacity to

discriminate between stimuli, with some species not adjusting

responses between different stimuli. While this may result from low

statistical power, or because the stimuli presented are similarly

threatening and so responses are equivalent, it may also mean

some species do not discriminate between stimuli and instead

generalise their response to a variety of perceived anthropogenic

threats. Discrimination between stimuli is expected to evolve

where a fitness advantage is derived from such discrimination, or

where species have the capacity to learn to adjust their responses

[28].

Although species varied in their response to different stimuli,

this study confirms that, where discrimination between stimuli

occurs, vehicles tend to evoke shorter FIDs than humans on foot.

This has previously been observed in some [29] but not all species

examined [30]. We are unaware of any previous studies using

buses as stimuli, and while for six species cars and buses evoked the

same FIDs, for one species buses evoked longer FIDs than cars.

Single and multiple walkers evoked the same FIDs in five of six

species; human group size is rarely studied though has been

proposed as a factor which might mediate FID [4]. We are aware

of only three studies that have examined the influence of human

group size on FID [8,31,32]. Lee et al. [31] and Kerbitou et al. [32]

found no effect of human group size on FID, while Geist et al. [8]

found one of two species distinguished between human group size.

As for all studies of this type, the generalizability of the specific

stimuli we used is unknown. For example, larger buses, noisier,

speedier or different coloured cars, may influence responses. The

fundamental attributes of stimuli which are used by birds to adjust

responses remain unknown and represent a tantalising prospect for

an experimental study [4].

A major aim of this study was to examine whether management

of stimuli could reduce disturbance to waterbirds. While vehicles

sometimes but not always reduce FIDs, they can carry a number of

humans (5–7 for cars; the bus we used could carry 25 passengers).

Thus, on a per human basis, vehicles dramatically reduced the

response of waterbirds to humans compared with the situation

where humans walked singly through the site. However, vehicles

can travel greater distances than walkers over the same time

frame, potentially exposing more birds to vehicles. Indeed, vehicles

may reach areas effectively unreachable by walkers (and vice

versa). Ultimately, in large wetlands such as the one we studied,

the frequency with which birds are affected by disturbance will be

influenced more by the capacity to carry numbers of people and

the distance covered by the different modes of transport, than by

the FIDs each transportation mode evokes.

Table 4. Cont.

Species Stimulus 3 Walkers Bicycle Bus Car

Overall (26/60) Bicycle 2/5

Bus 2/5 1/4

Car 5/6 2/5 1/7

Walker 1/6 3/6 4/7 5/9

Brackets after the species name refer to the number of significant comparisons (out of the comparisons conducted). Square brackets refer to the observed power of the
analysis. Single walker (SW), multiple walkers (MW), bicycle (CYC), car (CAR) and bus (BUS).
Blanks indicate no comparison was possible, ‘NS’ is not significant, ‘*’ means P,0.05, ‘**’ means P,0.01 and ‘***’ means P,0.001.
doi:10.1371/journal.pone.0082008.t004
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Overall, our results demonstrate that at least some species can

differentiate between stimuli, with motor vehicles apparently being

less disturbing than pedestrians. However, when managing

disturbance, it is very important to establish the extent of access

and likely occurrence of humans on foot versus vehicles, the

frequency of occurrence of each stimulus type, and how the

distribution of each stimulus overlaps with important habitat used

by birds.

Supporting Information

Figure S1 PRISMA flow diagram describing the litera-
ture search and selection of articles for analysis.
(DOC)
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