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Abstract: In this paper, a self-alignment method for strapdown inertial navigation systems based
on the q-method is studied. In addition, an improved method based on integrating gravitational
apparent motion to form apparent velocity is designed, which can reduce the random noises of
the observation vectors. For further analysis, a novel self-alignment method using a Kalman filter
based on adaptive filter technology is proposed, which transforms the self-alignment procedure
into an attitude estimation using the observation vectors. In the proposed method, a linear
psuedo-measurement equation is adopted by employing the transfer method between the quaternion
and the observation vectors. Analysis and simulation indicate that the accuracy of the self-alignment
is improved. Meanwhile, to improve the convergence rate of the proposed method, a new method
based on parameter recognition and a reconstruction algorithm for apparent gravitation is devised,
which can reduce the influence of the random noises of the observation vectors. Simulations and
turntable tests are carried out, and the results indicate that the proposed method can acquire sound
alignment results with lower standard variances, and can obtain higher alignment accuracy and
a faster convergence rate.

Keywords: strapdown inertial navigation system; self-alignment; Kalman filter; parameter
recognition and reconstruction

1. Introduction

Initial alignment is a crucial procedure of strapdown inertial navigation systems (SINS), and high
precision of the initial alignment for SINS is needed to keep the stability of SINS [1–3]. The traditional
initial alignment can be divided into two major categories: one is the transfer alignment, which
needs external information from other navigation devices; the other one is self-alignment, which
can accomplish the initial alignment by using the gravitational attraction and the self-rotation of
the Earth [4]. Within the frame of the former category, it may be achieved quite simply by the
direct copying of data from the external navigation system, and more precisely with methods
of an inertial measurement matching process, but this requires other complex systems and may
ignore the self-contained advantages of SINS. Thus, the self-alignment method, which is the second
category, is the hot topic of SINS, and many researchers are devoted to improving the performance of
the self-alignment.

Typically, the traditional self-alignment method can be accomplished by two stages, i.e., the coarse
alignment stage and the fine alignment stage. Within the fine alignment stage, the initial attitude
of SINS can be acquired more accurately and, furthermore, other information, such as sensor biases
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and initial velocity, can be estimated simultaneously [5–7]. However, the fine alignment stage can
be proceeded by the linear Kalman filter only when the error state model is confined to a small
misalignment angle, which can be provided by the coarse stage. With the coarse alignment, the rough
attitude of the vehicle can be acquired. In the coarse alignment stage, it is assumed that the position of
the vehicle is well known. Then, the Earth’s rotation and gravity can be computed accurately, and the
estimation of the initial attitude can be acquired by comparing the computed rotation rates and gravity
to the sensed and rated acceleration. Due to the significance of the coarse alignment, the performance
of fine alignment can be improved by excellent coarse alignment. Thus, if there is a method which can
be better implemented than the traditional coarse alignment in terms of convergence rate, alignment
accuracy, and stability of the alignment results, it will be a novel self-alignment which can be applied
in some emergency situations, since the fine alignment always needs 20 to 30 min, sometimes more.
This is what this paper focuses on.

Many methods have been devised to improve the performance of the self-alignment method,
and the common method was dual-vector attitude determination based on the gravitational apparent
motion in the inertial frame [8–14]. As is well known, the swaying motion of the Earth is composed
of two distinct elements: first, the true inertial swaying caused by the motion of the body frame
relative to the inertial frame; and second, the apparent angular rate caused by the self-rotation of
the Earth. Based on the properties of the swaying motion, Lian and Yan [8,9] proposed a method
based on the dual-vector attitude determination, and because the acceleration measured by the inertial
measurement unit (IMU) axes contains random noises, which contaminate the observation vectors,
the alignment time was prolonged and the alignment accuracy was decreased. To address these issues,
a reconstruction algorithm for the observation vectors was proposed in [10–12]. By adopting the
reconstructed observation vectors, the random noises were effectively suppressed. Therefore, the
performance of the self-alignment was improved. In [13], a similar self-alignment based on a fixed
integral sliding method was investigated. Lu et al. [14] extended the method in [13] to the optimal
parameter self-alignment. However, the above dual-vector attitude determination method is not
a recursive algorithm, and it is a single-point attitude determination algorithm; that is, it utilizes
the observation vectors obtained at two time points and uses them, and only them, to determine the
attitude at one time point. With this method, the information contained in the past measurements is lost.
In order to take full advantage of all of the observation vectors, a quaternion self-alignment method
based on the q-method was developed in [15], which utilized the filter quaternion estimation (QUEST)
method to process the observation vectors recursively [16]. Meanwhile, the optimal initial attitude
could be calculated by the attitude-quaternion which was extracted by the Newton iteration algorithm
from the constructed K-matrix [17]. Compared with the dual-vector attitude determination method,
the convergence rate and stability of the self-alignment based on the q-method was improved [18–20].
However, the quaternion self-alignment also contained the random noises in the observation vectors,
and these defects, which are not beneficial to the self-alignment, have contaminated the observation
vectors. In order to denoise the observation vectors and ensure high computational efficiency,
a new quaternion self-alignment method using apparent velocity has been designed in this paper;
it was inspired by [21]. Since the integration process averages the measurements over a period of
time, the effect of the random noises is reduced and, hence, a stable attitude estimate is obtained.
In this paper, this improved scheme is considered as a comparison method for the more advanced
self-alignment method.

According to the minimal-variance theory [22], none of the aforementioned self-alignment
methods are optimal. Hinging on the previous results about the quaternion Kalman filter with
pseudo-measurements, a Kalman filter is developed, along with a computationally simpler adaptive
filtering theory [23,24]. Furthermore, the Kalman filtering approach yields, by design, sequential
quaternion estimations that are minimum-variance and allows for the estimation of parameters
other than attitude in a straightforward manner [22]. In this work, we develop a novel quaternion
self-alignment method. Firstly, the present work introduces a linearized quaternion observation model,
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and the measurement noise is state-dependent. Nevertheless, the state-dependence of the measurement
model induces modeling errors, which will cause filtering divergence. Then, a Kalman filter is
designed to deal with the special measurement noises, which is based on adaptive filtering technology.
A nice feature of the quaternion self-alignment is that the estimated quaternion is constant, and the
computed observation vector has slow-varying characteristics. Therefore, a parameter recognition and
observation vector reconstruction algorithm is designed to improve the convergence rate in this work.
According to the brute-force normalization of the estimated quaternion, the stability of the filter is
improved. Lastly, the performance of this novel self-alignment is firstly checked under the nominal
simulated conditions of noise and initial errors, and then the on-line turntable tests are designed to
verify the stability and accuracy of the proposed method.

In the following section we will give the principles of the quaternion self-alignment method based
on the q-method, and an improved method based on apparent velocity is designed. In addition, the
merits and demerits are also analyzed with simulations. Next, we will describe the novel quaternion
self-alignment based on the Kalman filter in detail, and a simulation is designed to evaluate the
algorithm. In Section 4, an improved algorithm based on the novel quaternion self-alignment is
developed, and the merits of the methods are analyzed with simulations. Turntable tests are carried
out to verify the effectiveness of this novel algorithm in Section 5. Finally, the major contributions of
this paper are summarized in Section 6.

2. General Quaternion Self-Alignment

The definitions of the coordinate frames used in this paper are described in Appendix A. It is
well-known that the acceleration measured by inertial measurement unit (IMU) axes (b-frame) is
composed of the true inertial acceleration of the vehicle caused by the motion of the b-frame relative
to the i-frame and the apparent acceleration caused by the gravitational attraction of the Earth.
The former element can be compensated by external sensors, such as the Doppler velocity log (DVL)
and the global positioning system (GPS), and the apparent acceleration in the b0-frame, which is
named the observation vector, can be calculated by the acceleration measurements and the gyroscope
measurements. That is how the true inertial acceleration is compensated. Taking advantage of the
known position, the true gravity in the n0-frame, which is named the reference vector, can be obtained
accurately. In this section, general quaternion self-alignment using the q-method is investigated,
and the filter QUEST technology is designed to realize the recursive algorithm. In order to improve
the stability of general quaternion self-alignment, an improved method based on apparent velocity
technology is designed.

2.1. Mechanism of General Quaternion Self-Alignment

With the rules of quaternion multiplication, the attitude quaternion qn
b (t) from the b-frame to the

n-frame can be expressed as:
qn

b (t) = qn
n0(t)⊗ qn0

b0 ⊗ qb0
b (t) (1)

where qn0
b0 ∈ R4×1 is the unknown initial attitude quaternion, and the symbol ⊗ used hereafter

represents the quaternion product. According to the quaternion kinematic equations, the time-varying
quaternion can be updated as: { .

qn0
n (t) = 1

2 qn0
n (t)⊗ωn

in
.
qb0

b (t) = 1
2 qb0

b (t)⊗ωb
ib

(2)

where qn0
n (0) = qb0

b (0) = [1 0 0 0]T, ωb
ib ∈ R3×1 is the rotational rates measured in the b-frame with

respect to the i-frame, and it can be acquired from the gyroscope directly; ωn
in ∈ R3×1 indicates the

rotational rates measured in the n-frame, and its theoretical expression is defined as:

ωn
in = ωn

ie + ωn
en (3)



Sensors 2017, 17, 264 4 of 19

where ωn
ie ∈ R3×1 is the Earth’s rotation rate with respect to the inertial frame, and ωn

en ∈ R3×1 denotes
the angular rate of the navigation frame with respect to the Earth’s frame. All of the aforementioned
parameters can be calculated by the outputs of the GPS. All of the quantities above are functions of
time, and, if not stated, their time dependences are omitted for brevity in the following description.

It is noted that the attitude quaternions qn0
n (t) and qb0

b (t) can be calculated by Equation (2). If the
initial attitude-quaternion qn0

b0 is calculated, self-alignment can be accomplished.
The apparent velocity update equation in the n-frame is known as:

.
vn

= fn − (2ωn
ie + ωn

en)× vn + gn (4)

where fn =
[

fE fN fU

]T
denotes the specific force vector, which is described by the n-frame.

Further, vn =
[

vE vN vU

]T
. gn =

[
0 0 g

]T
is the local gravity.

Because quaternion multiplication can be used in place of matrix multiplication to transform a
three-component vector from the b-frame to the n-frame, then:

fn = qn
b (t)⊗ fb ⊗ (qn

b (t))
∗ (5)

where ∗ denotes the conjugate operation of a quaternion, and fb can be measured by the accelerometer.
Substituting Equations (1) and (5) into Equation (4) yields:

qb0
b ⊗ fb ⊗

(
qb0

b

)∗
= qb0

n0 ⊗ qn0
n ⊗

( .
vn

+ (2ωn
ie + ωn

en)× vn − gn
)
⊗
(

qn0
n

)∗
⊗
(

qb0
n0

)∗
(6)

Defining the reference vector and observation vector as: r = qn0
n ⊗

( .
vn

+
(
2ωn

ie + ωn
en
)
× vn − gn

)
⊗
(
qn0

n
)∗

o = qb0
b ⊗ fb ⊗

(
qb0

b

)∗ (7)

Equation (6) can be rewritten as the observation vectors–based measurement model for qb0
n0 as:

o = C
(

qb0
n0

)
r (8)

Figure 1 shows the quaternion self-alignment mechanism based on the observation vectors; the
frame in red represents the n-frame and the frame in black represents the b-frame. In the self-alignment
process, the observation vectors o and reference vectors r can be calculated over a period of sampling
time, and the quaternion qn0

b0 can be computed in real time. With the known time-varying quaternions
qn0

n (t) and qb0
b (t), which can be obtained by Equation (2), the attitude quaternion qn

b (t) of the b-frame
with respect to the n-frame can be calculated by Equation (1). In the following subsection, the traditional
method for calculating quaternion qn0

b0 is introduced.
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2.2. Attitude Determination Based on the q-Method

According to the q-method, the observation vectors and reference vectors must be normalized,
respectively, to keep the normalization characteristic of the constructed K-matrix [25]; it has:{

αk =
rk
‖rk‖

βk =
ok
‖ok‖

(9)

where αk ∈ R3×1 and βk ∈ R3×1 are the normalized reference vectors and the normalized observation
vectors, respectively. The subscript k is the discretization scale coefficient.

The normalized K-matrix is defined as follows:

Kk =

[
σk zT

k
zk Sk − σkI3

]
(10)

where: {
Υk =

k−1
k Υk−1 +

1
k βkαT

k σk = tr(Υk)

[zk×] = ΥT
k − Υk Sk = ΥT

k + Υk
(11)

where Υ0 ∈ R3×3 is an arbitrary vector, tr(·) denotes the trace operation, [·×] denotes the cross-product
matrix. It was shown that qn0

b0 of unity length and Kk satisfies the equation [26]:

Kkqn0
b0 k = λmaxqn0

b0 k (12)

where the subscript k of qn0
b0 k denotes the kth-step calculation. It is well-known that λmax is the

maximum eigenvalue of Kk and qn0
b0 k is the eigenvector which corresponds to λmax.

2.3. An Improved Algorithm for General Quaternion Self-Alignment

In Equation (11), it can be found that there is more effective observation information in the
K-matrix during the alignment process. Due to the sensitivity of the filter QUEST to random noise,
the stability of the results must be poor if the accelerometer measurements are used to construct the
observation vector straightforwardly. In order to improve the stability of the alignment results, an
improved algorithm based on apparent velocity is designed.

According to Equation (8):

∫ t

0
o(τ)dτ = C

(
qb0

n0

) ∫ t

0
r(τ)dτ (13)

The discrete form of the continuous integration is given by:
∫ t

0 o(τ)dτ = O(0) +
N
∑

k=1
ok∆t∫ t

0 r(τ)dτ = R(0) +
N
∑

k=1
rk∆t

(14)

where O(0) ∈ R3×1 and R(0) ∈ R3×1 are both set to zero at start-up, because the extracted attitude
quaternion between two frames is only related to the directions of the two vectors, and it has no
relation to their location when the attitude determination algorithm is used. Then, the new observation
vectors O(k) and reference vectors R(k) can be acquired by Equation (14), and the attitude quaternion
qn0

b0 (k) at start-up can be recalculated by the filter QUEST method.
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2.4. Simulation Test

In this subsection, a simulation test is designed to validate the performance of the general
quaternion self-alignment. The whole self-alignment process lasted for 600 s, and the geographic
latitude and longitude of the vehicle were L = 32◦ N and θ = 118◦ E. During the simulation test,
the vehicle (taking the ship as an example) was assumed to be static but with swinging motions.
The swaying rule is A sin(2π f t + ϕ) + θ, where A and f are the amplitude and frequency of the
swaying, while ϕ and θ denote the initial phase and swaying center, respectively. The swaying
parameters of this simulation are defined in Table 1:

Table 1. Swinging parameters.

Pitch Roll Yaw

Amplitude (◦) 10 12 6
Frequency (Hz) 0.2 0.125 0.15
Initial phase (◦) 0 0 0

Swaying center (◦) 0 0 0

With these ideal motions in Table 1, the truth measurement of the gyroscope and accelerometer
can be simulated by the back-stepping of the SINS solution. When the errors in Table 2 are added into
those ideal measurement data, the real inertial sensor outputs can be generated, and the sampling rate
of the inertial sensors was 100 Hz in this test. At the same time, those ideal motions can be used as a
reference to evaluate the accuracy of the alignment, and the difference between those ideal motions
and the alignment results are defined as alignment errors in this paper.

Table 2. Sensor errors.

Gyro Noise (°/h) Accelerometer Noise (µg)

Constant Random Constant Random

x-axis 0.05 0.05 500 500
y-axis 0.05 0.05 500 500
z-axis 0.05 0.05 500 500

For clarity, we define the general quaternion self-alignment method based on Equation (7) as
Scheme 1, and we define Equation (14) as Scheme 2. The alignment results are recorded continuously,
and the errors of the alignment results are calculated and saved as text as well. The alignment errors
are shown in Figure 2, and the statistics of the alignment errors are listed in Table 3. The errors of
pitch, roll, and yaw are denoted as Figure 2a–c, respectively, and in each subplot the red dashed line
indicates the results of Scheme 1 and the solid blue line indicates the results of Scheme 2. In Table 3,
the mean and standard deviation of the alignment errors have been listed every 100 s during the whole
alignment time.

The curves in Figure 2a,b indicate that the two schemes have similar horizontal alignment
errors and the same convergence rate, and reached a steady value in the former 100 s. From the
statistical results in Table 3, the pitch error was under 0.03◦ and the roll error was within −0.03◦ in the
two schemes. Additionally, the standard deviation was around 0.002◦, which indicates that the stability
of the horizontal alignment results of the two methods was equivalent. However, the yaw error in
Figure 2c shows that the noise property of Scheme 1 was obvious, while the sound characteristic of
Scheme 2 was stable. The standard deviation of yaw errors of Scheme 2 shows that the value was
around 0.005◦ after 300 s. In the contrast, the standard deviation of the yaw of Scheme 1 in Table 3 did
not reach the stable value during the whole alignment. That is, the convergence property of Scheme 2
was better than that of Scheme 1.
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Table 3. Statistics for alignment errors (◦).

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600

Scheme 1

Pitch
Mean 0.0287 0.0286 0.0279 0.0275 0.0272 0.0279

Std 0.0023 0.0020 0.0020 0.0020 0.0019 0.0019

Roll
Mean −0.0284 −0.0274 −0.0272 −0.0266 −0.0259 −0.0250

Std 0.0025 0.0022 0.0021 0.0021 0.0021 0.0022

Yaw
Mean 0.1254 0.3161 0.2955 0.2404 0.2044 0.1918

Std 6.7385 0.0411 0.0252 0.0137 0.0106 0.0049

Scheme 2

Pitch
Mean 0.0301 0.0296 0.0283 0.0272 0.0264 0.0271

Std 0.0024 0.0020 0.0020 0.0020 0.0019 0.0019

Roll
Mean −0.0281 −0.0271 −0.0265 −0.0256 −0.0246 −0.0233

Std 0.0028 0.0022 0.0021 0.0021 0.0021 0.0022

Yaw
Mean −1.6399 0.1368 0.2546 0.2611 0.2469 0.2307

Std 4.1810 0.0752 0.0114 0.0050 0.0059 0.0051

Notice that in Table 3, although the stability of Scheme 2 was improved, the constant bias
of the accelerometer was accumulating during the integral operation. It can be seen that this
error contaminates the final results of the self-alignment, and it affects the directional deviation
of Scheme 2. The defects of the above two schemes reduce the performance of general quaternion
self-alignment. According to the aforementioned analysis, the two schemes were all suboptimal.
To improve the performance of general quaternion self-alignment, a novel method based on Kalman
filtering technology is proposed in the next section.

3. Self-Alignment Based on a Kalman Filter

In this section, a Kalman filter based on minimum variance theory is designed for quaternion
self-alignment, and the quaternion pseudo-measurement model is also investigated. By the adaptive
filtering technology, the state-dependent noises in observation vector are attenuated. Since qn0

b0 is
a constant quantity, the process equation of the filter is noise-free, and the algorithm is developed
as follows.
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3.1. The Quaternion Pseudo-Measurement Model

It is assumed that the pair of 3 × 1 unit column-vector βk and αk are obtained at the time instant
k, and they are related by the quaternion of rotation qb0

n0 as follows:

βk = qb0
n0 ⊗ αk ⊗

(
qb0

n0

)∗
(15)

Post-multiplying Equation (15) by qb0
n0 leads to the following equation:

0 = βk ⊗ qb0
n0 − qb0

n0 ⊗ αk (16)

where [·⊗] and [·� ] are used to denote the linear mappings from R3×1 to R4×4:

0 = ([βk⊗]− [αk� ])qb0
n0 (17)

where: 
[βk⊗] =

[
0 −βT

k
βk [βk×]

]

[αk� ] =

[
0 −αT

k
αk −[αk×]

] (18)

This equation, which is linear with respect to the quaternion qb0
n0, is the model equation of

an error-free quaternion measurement [22].
In the real system, the observation vectors are the outputs of the inertial sensors which contain

unknown noises. In this work, the measurement models of the accelerometer and gyroscope are
defined by:

f̃
b
= fb +∇b + εb (19a)

ω̃b = ωb + εb + ηb (19b)

where f̃
b ∈ R3×1 is the actual output of the accelerometer; ∇b ∈ R3×1 and εb ∈ R3×1, respectively,

denote the constant bias and random noise; ω̃b ∈ R3×1 is the actual value of the angular velocity of
the b-frame with respect to the i-frame; εb ∈ R3×1 and ηb ∈ R3×1 denote the constant bias and random
noises in the IMU axes.

Substituting Equations (19a) and (19b) into Equation (7), we rewrite the normalized equation as:

β̃k = C
(

qb0
n0

)
αk + δβk (20)

where δβk ∈ R3×1 is the normalized noise.
Due to:

βk = β̃k − δβk (21)

From Equations (16) and (21), a modified Equation (17) is given by:

0 =
([

β̃k⊗
]
− [αk� ]

)
qb0

n0 − [δβk⊗]qb0
n0 (22)

Equation (22) describes a quaternion pseudo-measurement model at time instant k. Unlike the
general attitude determination model [22], it is a linear function of the attitude quaternion, and the
noise term in Equation (22) is an additive quaternion-dependent vector.



Sensors 2017, 17, 264 9 of 19

3.2. Kalman Filter

It is well known that the linear Kalman filter is an optimal globally-convergent state estimator for
the linear state-space model with white noises. However, it becomes suboptimal if the statistics of the
measurement noises are unknown, and this is the case of the aforementioned pseudo-measurement
model, where the noise vector is quaternion-dependent. The adequate approach for on-line
enhancement of the Kalman filter performance is adaptive filtering. The approach presented herein
is inspired by [23,24], which is an adaptive-like Kalman filter, and it can cover the state-space model
with the correlated noises by an adaptive filter. Using the quaternion pseudo-measurement model,
the filtering model for quaternion self-alignment based on the Kalman filter is given by:{

qb0
n0k = qb0

n0k−1
0 = Hkqb0

n0k + υk
(23)

where qb0
n0k ∈ R4×1 denotes the estimated initial quaternion at time instant k; Hk =

[
β̃k⊗

]
− [αk� ]

denote the sensitive matrix of the measurement model; υk = −[δβk⊗]qb0
n0k is the quaternion-dependent

noise.
The Kalman filter is summarized as follows:

ek+1 = −Hkq̂b0
n0k (24)

Λk+1 = Λk +
1

k + 1

[
ek+1eT

k+1 −Λk

]
(25)

Gk+1 = PkHT
k

[
HkPkHT

k + Λk+1

]
−1 (26)

q̂b0
n0k+1 = q̂b0

n0k + Gk+1ek+1 (27)

Pk+1 = Pk −Gk+1

[
HkPkHT

k + Λk+1

]
GT

k+1 (28)

where Λk+1 ∈ R4×4 is an estimate of a covariance of the filtering measurement noise based on k + 1
data pairs, and the term ek+1 is the object function for the measurement residual process. Due to the
pseudo-measurement model, the ideal measurement is vector 0; thus, ek+1 is the opposite vector of a
priori state estimation. According to the Kalman filtering process, we can find that the filtering process
destroyed the normalization of the estimated quaternion, which lowered the convergence rate of the
Kalman filter. To overcome the problem, we adopt the brute-force normalization method to keep the
validity of the estimated quaternion in this paper [27].

3.3. Simulation Test

In this section, a simulation test for the novel quaternion self-alignment method is designed, and
it is defined as Scheme 3. For comparative purposes, the simulation test is conducted with the same
conditions described in Section 2.4.

Without a loss of generality, the initial attitude quaternion for the Kalman filter was
q̂n0

b0 0 = [0.6690 0.1853 0.5090 0.5090]T, and the corresponding error attitude at start-up was
φ = [50◦ 50◦ 50◦]T, the adaptive measurement noise was Λ0 = diag[0.1 0.1 0.1 0.1], and the initial
estimation error covariance matrix was P0 = diag[10000 10000 10000 10000].

The simulation time was 600 s, and the results compared with the Schemes 1 and 2 are shown
in Figure 3a–c, indicating the errors of pitch, roll, and yaw, respectively. To show the results clearly,
we use the red dashed line to represent the results of Scheme 1, the blue line to represent the results
of Scheme 2, and the cyan dashed, dotted line to represent the results of Scheme 3. In the interest of
brevity, the statistics for the alignment errors of Schemes 2 and 3 are listed in Table 4, and the statistical
results of Scheme 1 are consistent with Table 3.
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In Figure 3a,b, we can find that the horizontal alignment results of Scheme 3 show a similar
accuracy after 300 s compared with the other two methods, and there are no accumulated errors in
Scheme 3. According to the partial enlarged views of Figure 3c, the accuracy of Scheme 3 has an
advantage over the other two methods in the final results of self-alignment, which is also proved by
the statistics for the alignment errors in Table 4. As can be seen in Table 4, when the alignment time
lasted for 600 s, the alignment error of the yaw of Scheme 3 was 0.0658◦, while the alignment errors of
yaw of Schemes 1 and 2 were 0.1911◦ and 0.2002◦. It can be found that the alignment errors of yaw
of Scheme 3 were lower than those of Schemes 1 and 2, and the adaptive filter was optimal for the
state-dependent measured model.Sensors 2017, 17, 264 10 of 19 
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Table 4. Statistics for alignment errors (◦).

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600

Scheme 2

Pitch
Mean 0.0309 0.0299 0.0300 0.0295 0.0281 0.0268

Std 0.0028 0.0019 0.0018 0.0018 0.0019 0.0017

Roll
Mean −0.0284 −0.0265 −0.0242 −0.0239 −0.0248 −0.0230

Std 0.0026 0.0024 0.0024 0.0022 0.0022 0.0021

Yaw
Mean −2.8787 −0.1752 0.0612 0.1564 0.1917 0.2002

Std 7.8888 0.1344 0.0403 0.0166 0.0069 0.0035

Scheme 3

Pitch
Mean 0.0255 0. 0239 0.0280 0.0293 0.0279 0.0285

Std 0.6458 0.0031 0.0022 0.0020 0.0021 0.0021

Roll
Mean −0.0255 −0.0275 −0.0265 −0.0271 −0.0279 −0.0263

Std 0.1561 0.0019 0.0021 0.0022 0.0022 0.0022

Yaw
Mean 13.7246 1.6706 0.3349 0.0955 0.1714 0.0658

Std 8.3981 0.9930 0.1704 0.0335 0.0201 0.0496

With comparing the results of the Scheme 3 to the other two methods, although the accuracy of
the novel quaternion self-alignment method was improved, the convergence rate was poor because
of the random noise which was incorporated into the observation vector, and the stability of the
proposed method was also poor. In addition, the statistics for the yaw error in Table 4 indicated that
the standard deviation of Scheme 3 was greater than that of Scheme 2. These defects weaken the
practical performance of the new method. To address these shortcomings, the parameter recognition
and vector reconstruction algorithm are investigated for novel quaternion self-alignment, and the
method is illustrated in detail in the next section.
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4. Improvement to the Observation Vectors

In this section, we drive the reconstructed observation vectors to improve the convergence rate of
the estimation of the novel quaternion self-alignment method based on a Kalman filter. Making use of
the slow-varying characteristic of the observation vectors, the random noise of the observation vector
is restrained, and the reconstructed vectors contain the gravitational apparent motion information.
This superior characteristic is contributory for extracting the effective information from the observation
vectors, and it makes the algorithm practical.

4.1. The Model of Parameter Recognition

According to Equations (6) and (7), the theoretical expression of the gravitational apparent motion
on the swaying base is given by:

o = qb0
e0 ⊗ qe0

e ⊗ qe
n ⊗ gn ⊗ (qe

n)
∗ ⊗

(
qe0

e

)∗
⊗
(

qb0
e0

)∗
(29)

where the quaternion of rotation qb0
e0 indicates the orientation of the b0-frame relative to the e0-frame,

qe0
e is the attitude quaternion from the e-frame to the e0-frame, qe

n represents the attitude quaternion

due to the rotation of the e-frame relative to the n-frame, gn =
[

0 0 g
]T

.

In Equation (29), it can be found that only qe0
e is the time-varying quaternion, and thus

Equation (29) can be rewritten as:

o =

 a11 a12 a13

a21 a22 a23

a21 a32 a33


 cos(ωiet) − sin(ωiet) 0

sin(ωiet) cos(ωiet) 0
0 0 1


 b11 b12 b13

b21 b22 b23

b31 b32 b33


 0

0
g

 (30)

where aij and bij(i = 1, 2, 3; j = 1, 2, 3) indicate the constant values, and they are the elements of the
direction cosin matrices which consists of qb0

e0 and qe
n. It can be found that the theoretical observation

vector is relative to the rotation of the Earth, and it is a slow-varying vector.
With the matrix operation, the simplified form of Equation (29) can be given by:

o =

 γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 cos(ωiet)

sin(ωiet)
1

 (31)

where õ indicates the actual value of the observation, and δo denotes the measurement noise.
According to the above Equation (31), the noise-free ideal observation vector can be obtained.

However, as the result of the constant parameter γij is unknown, it is difficult to calculate the
observation vector with Equation (31) directly. Thanks to the parameter recognition technology,
the unknown constant parameter γij can be estimated by the recursive least squares algorithm. In this
work, the parameter recognition model of the observation vectors is given by:{

γk+1 = γk
õk+1 = γk+1Mk+1 + δok+1

(32)

where Mk+1 = [cos(ωietk+1) sin(ωietk+1) 1]T. Due to the slow rotation rate of the Earth and the shorter
duration process of the self-alignment, the observation vectors are the slow-varying parameters.
Therefore, we can remove the random noise by the recursive least squares technology, which is
computationally efficient. The detailed statement of this method is analyzed in the next subsection.
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4.2. The Observation Vector Reconstructed Algorithm

According to the aforementioned parameter recognition model, the on-line estimation algorithm
based on the recursive least squares algorithm (RLS) is adopted to avoid large data storage and heavy
computation. Due to the independent properties of the three elements of the observation vector, we can
take the recognition for the z-axis as an example, and the parameter recognition model Equation (32)
can be rewritten as: {

γz,k+1 = γz,k
õz,k+1 = MT

k+1γz,k+1 + δoz,k+1
(33)

where γz,k+1 =
[

γ31 γ32 γ33

]
, õz,k+1 indicates the z-axis element of the measured observation

vectors.
With the previous development, the RLS algorithm for parameter recognition is summarized

as follows: 
Kz,k+1 = Pz,kMz,k+1

(
MT

k+1Pz,kMk+1 + Rz,k+1
)−1

γ̂z,k+1 = γ̂z,k + Kz,k+1
(
õz,k+1 −MT

k+1γ̂z,k
)

Pz,k+1 =
(
Ik+1 −Kz,k+1MT

k+1
)
Pz,k

(34)

Based on the aforementioned analysis, the optimal constant parameters γ̂z,k+1 can be estimated.
According to the similar approach, we can obtain the other estimated parameters γ̂x,k+1 and γ̂x,k+1.
Making use of the estimated parameters γ̂k+1, the new observation vectors can be reconstructed by:

ôk+1 = γ̂k+1Mk+1 (35)

For more clarity, the proposed self-alignment algorithm using the reconstructed observation
vectors is listed in Table 5.

Table 5. Self-alignment algorithm based on reconstructed observation vectors.

Initialization k = 1, qb0
b = qn0

n = [1, 0, 0, 0].

Step 1: k = k + 1;
Step 2: Update qn0

n (t) and qb0
b (t) by Equation (2);

Step 3: Compute õk and by r Equation (7);
Step 4: Compute ôk by Equations (33)–(35);
Step 5: Compute β̃k and αk by normalizing ôk and r;
Step 6: Compute q̂b0

n0k by Kalman Filter (see Equations (23)–(28));
Step 7: Obtain the attitude matrix at current time (see (1));
Step 8: Go to Step 1 until the end.

4.3. Simulation Test

In this subsection, the simulation test is described for self-alignment based on a Kalman filter,
where the improved measurements are used to construct the observation vectors, and the new
method is defined as Scheme 4. For the purpose of comparison, swinging parameters and sensor
errors are shown in Tables 1 and 2, respectively. The sampling rate of the outputs of the inertial
sensors was 100 Hz. In addition, the filtering initialization of the Kalman filter was set to the
same parameters shown in Section 3.3. The initial parameters for RLS were defined as: γ̂i,0 = 03,

Pi,0 = diag
[

10000 10000 10000
]
, Ri,0 = 500 ug, where i = x, y, z.

The self-alignment process lasted for 600 s. The comparison between the calculated and
reconstructed gravitational apparent motion is shown in Figure 4, and the alignment errors compared
with Schemes 1–3 are shown in Figure 5. In Figure 4, the cyan dashed dotted line denotes the noised
observation vector and the black curves denote reconstructed vectors, and Figure 4a–c denote the
x-axis, y-axis, and z-axis, respectively. Figure 5a–c denote the alignment errors of the pitch, roll, and
yaw. In order to show this clearly, the red dashed line represents the results of Scheme 1, the blue
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dotted line represents the results of Scheme 2, the cyan dashed, dotted line represents the results of
Scheme 3, and the black line represents the results of Scheme 4. Table 4 lists the statistical results of
Schemes 3 and 4; the statistical results of Schemes 1 and 2 are equivalent with those shown in Table 1,
which can be used as the comparable results.

Figure 4 reveals that the observation vectors are slowly varying, and the varying trends are
consistent with the rotation rate of the Earth. It shows that the random noises of the observation vectors
of Scheme 4 have been eliminated effectively, and the useful information is retained, which contributes
to the fast convergence rate.

The horizontal alignment errors, which are shown in Figure 5a,b revealed that the accuracy and
convergence rate of the four schemes are equivalent. The main priority of Scheme 4 is the performance
of the yaw alignment results. In Figure 5c, we can see that Scheme 4 has a faster convergence rate than
the other three schemes, and it possesses more stable characteristics after 200 s.
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Table 6 shows the statistical results of Schemes 3 and 4, and the statistical results of
Schemes 1 and 2 are equivalent to those shown in Table 3. In Table 6, the statistical results show
that Scheme 4 has the same stability as Scheme 2 and the same accuracy as Scheme 3 at the end of the
self-alignment. The standard deviation of the yaw error of the Scheme 4 was less than 0.004◦, and the
error of the yaw was around 0.12◦ when the self-alignment lasted for 200 s, while the standard deviation
of the yaw error of Scheme 3 was larger than 0.01◦. Thus, we can conclude that the convergence rate
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and stability of Scheme 4 are obviously improved. However, it can be found that the error mean of the
yaw of Scheme 3 was 0.0706◦ at the end of the self-alignment; thus, the error caused by Scheme 3 was
smaller than that caused by Scheme 4, which was not an expected result. This is because the error of
the yaw of Scheme 3 did not converge to a stable value, and the error fluctuated, so the error may be
smaller at an interval.

The simulation test showed the superior performance of Scheme 4, but the simulated data was
generated in an ideal situation, and the errors of the inertial sensors were assumed as white noise,
which is not consistent with the real system. In order to verify the practical application and the
performance of the adaptive filter for the complicated noises of the inertial sensors, the turntable test is
undertaken in the next section.

Table 6. Statistics for alignment errors (◦).

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600

Scheme 3

Pitch
Mean 0.0274 0.0272 0.0289 0.0293 0.0282 0.0284

Std 0.2474 0.0024 0.0020 0.0020 0.0020 0.0021

Roll
Mean −0.0255 −0.0275 −0.0265 −0.0271 −0.0279 −0.0263

Std 0.1561 0.0019 0.0021 0.0022 0.0022 0.0022

Yaw
Mean 5.6506 0.4862 0.1323 0.0835 0.1377 0.0706

Std 4.8208 0.3485 0.0534 0.0233 0.0141 0.0321

Scheme 4

Pitch
Mean 0.0313 0. 0270 0. 0291 0.0299 0.0295 0.0288

Std 0.2474 0.0022 0.0020 0.0018 0.0019 0.0017

Roll
Mean −0.0265 −0.0276 −0.0266 −0.0271 −0.0279 −0.0263

Std 0.1350 0.0021 0.0021 0.0022 0.0022 0.0022

Yaw
Mean −0.3631 0.3812 0.1238 0.1249 0.1252 0.1263

Std 4.0402 0.2066 0.0039 0.0037 0.0038 0.0035

5. Turntable Test

For the turntable test, the equipment was installed as shown in Figure 6; the rate controlling
accuracy of the turntable of this work was±0.0005◦/s, and the angle controlling accuracy was±0.0001◦.
Additionally, the angle information could be provided via the serial communication port as a response
to the external time-synchronization signal. In this test, the inner, intermediate, and outer frames
were used to simulate the vehicle’s roll, pitch, and yaw, respectively. The SINS used in this test is a
navigation-grade SINS, in which there are flexible gyros and quartz accelerometers, and the precision
of the inertial sensors is listed in Table 7. According to [28], the sensor’s coupling coincident scale
factors, installing error, system error, and the variables of the fiber-optic gyro related to the gravity
can be calculated exactly and compensated by a calibration test. Thus, if the test is executed after the
calibration test with the same startup of the SINS, the above-mentioned existence errors of SINS can
be ignored.
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Table 7. Sensor parameters.

Gyroscope

Constant bias < 0.01◦/h(1σ) Nonlinearity of scale factor ≤50 ppm(1σ)

Repetitiveness of
constant bias < 0.01◦/h(1σ)

Repetitiveness of
scale factor ≤50 ppm(1σ)

Random walk < 0.005◦/
√

h Measuring range −300∼+300◦/s

Accelerometer

Measuring range −20∼+20 g Bias < 5× 10−4 g

Threshold < 5× 10−6 g Temperature coefficient
of bias

< 6× 10−5/ ◦C
(−40∼+40 ◦C)

Repetitiveness of
scale factor <3.5× 10−5 g(1σ) Repetitiveness of bias <2.5× 10−4 g(1σ)

Temperature coefficient
of Scale factor

<6× 10−5/◦C
Bandwidth >800 Hz

(−40∼+40 ◦C)

The construction of the turntable test is shown in Figure 7. As can be seen in Figure 7, when the
time-synchronization signal was generated, the current attitude angle data of the turntable was sent to
the navigation computer via the serial port. Meanwhile, the current IMU outputs were collected, and
the alignment results were acquired by the embedded algorithm. All effective data was stored by the
navigation computer at 200 Hz, which is the frequency of the trigger signal for the turntable and the
update frequency of the IMU outputs. Meanwhile, the alignment solution was carried out and saved
at every sampling interval.
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The swaying parameters of the turntable were still set as in Table 1, and the angular rates and the
actual attitude angles are shown in Figure 8. The calculated and reconstructed gravitational apparent
motion of the turntable tests are shown in Figure 9, and the alignment errors are depicted in Figure 10.

In Figure 9, the cyan dashed dotted line represents the observation vectors of Scheme 3 and
the black line represents the reconstructed observation vectors, and Figure 9a–c denote the apparent
gravitation of the x-axis, y-axis, and z-axis, respectively. It is obvious that the computed measured
observation vector was slowly changing along with the alignment process, and this is coincident with
the above analysis. Due to this characteristic of the observation vector, the reconstructed observation
vector was estimated by the RLS method. It can be found that the random noises in the observation
vector were eliminated effectively, which will be helpful to speed up the alignment process.
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Figure 9. Comparison between calculated and reconstructed gravitational apparent motion.

The results of the turntable tests are shown in Figure 10a–c, indicating the errors of the pitch,
roll, and yaw, respectively. Due to the swaying motion of the turntable, the alignment results were
oscillating with small amplitude. In Figure 10a,b, the error of the pitch and the roll of the four schemes
converge rapidly, which is coincident with the results of the simulation test in Section 4.3. The error of
the yaw in Figure 10c shows that Scheme 4 had a better performance than the other three schemes
in terms of the convergence rate and alignment accuracy, and the stability of the alignment results of
Scheme 4 was better than that of the others.

Table 8 shows the statistics for the alignment errors of Schemes 3 and 4. It is shown that the
errors of the pitch and roll of Schemes 3 and 4 were reduced to less than 0.015◦ in 100 s, and the
standard deviation of the level angles was below 0.01◦ in 100 s. The error of the yaw of Scheme 3
was reduced to less than 0.1◦ in 400 s, and the standard deviation was reduced to less than 0.02◦

in 400 s. In comparison, the yaw error of Scheme 4 was reduced to less than 0.1◦ in 200 s and the
standard deviation was reduced to less than 0.02◦ in 200 s. These features validate the correctness of
the aforementioned analysis and implemented algorithms, and they showed the sound performance
of Scheme 4 in practice.
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Table 8. Statistics for alignment errors (◦).

Time(s) 1–100 101–200 201–300 301–400 401–500 501–600

Scheme 3

Pitch
Mean 0.0049 0.0096 0.0129 0.0137 0.0139 0.0141

Std 0.1363 0.0097 0.0095 0.0093 0.0092 0.0089

Roll
Mean −0.0119 −0.0135 −0.0138 −0.0138 −0.0139 −0.0139

Std 0.0429 0.0080 0.0081 0.0078 0.0079 0.0075

Yaw
Mean 21.373 2.6712 0.3510 0.1004 0.0556 0.0496

Std 16.5760 1.7737 0.1599 0.0281 0.0133 0.0120

Scheme 4

Pitch
Mean 0.0139 0.0139 0.0138 0.0140 0.0141 0.0144

Std 0.1362 0.0096 0.0095 0.0093 0.0092 0.0089

Roll
Mean −0.0128 −0.0134 −0.0136 −0.0137 −0.0139 −0.0140

Std 0.0429 0.0081 0.0081 0.0078 0.0079 0.0075

Yaw
Mean 5.9610 0.0040 0.0466 0.0586 0.0585 0.0588

Std 11.4950 0.0748 0.0139 0.0124 0.0122 0.0124

6. Conclusions

This paper studied the general quaternion self-alignment method based on the q-method
principle, and an improved algorithm based on the velocity apparent motion was designed. However,
the analysis and simulation indicated that: (1) in the general quaternion self-alignment method,
the alignment accuracy and convergence rate are easily affected by the random noise of the inertial
sensors; and (2) although the random noises are eliminated effectively by the improved algorithm,
using the apparent velocity motion, the alignment result drifts because of the cumulative effect of the
constant drift of the inertial sensors.

Based on general quaternion self-alignment, an improved method adopting the optimal estimation
theory was investigated, in which a quaternion pseudo-measurement model with the state-dependent
noises was established. A Kalman filter with adaptive filter characteristics was studied, and parameter
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recognition and observation vector reconstruction technology were adopted in the proposed method.
Simulations and turntable tests indicated that the alignment accuracy and convergence rate of the yaw
were improved. The algorithms proposed in this paper could be useful in many applications which
require aligning SINS on the swaying base, such as when mooring ships. In future works, we will
further test the algorithms on moving vehicles and try to handle them with large-motion maneuvers.
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Appendix

The coordinate frames used in this paper are defined as follows:

1. n-frame: Orthogonal reference frame aligned with east–north–up(ENU) geodetic axes;
2. n0-frame: Orthogonal reference frame non-rotating relative to the i-frame, which is formed by

fixing the frame n at start-up in the inertial space;
3. b-frame: Orthogonal reference frame aligned with inertial measurement unit (IMU) axes;
4. b0-frame: Orthogonal reference frame non-rotating relative to the i-frame, which is formed by

fixing the frame b at start-up in the inertial space;
5. e-frame: Earth-centered Earth-fixed (ECEF) orthogonal reference frame;
6. e0-frame: Orthogonal reference frame non-rotating relative to the i-frame, which is formed by

fixing the frame e at start-up in the inertial space; and
7. i-frame: Earth-centered initially-fixed orthogonal reference frame.
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