
Bioscience Reports (2019) 39 BSR20182197
https://doi.org/10.1042/BSR20182197

Received: 14 January 2019
Revised: 04 April 2019
Accepted: 17 April 2019

Accepted Manuscript Online:
23 April 2019
Version of Record published:
10 May 2019

Commentary

EPAS 1, congenital heart disease, and high altitude:
disclosures by genetics, bioinformatics, and
experimental embryology

Consolato Sergi1,2,3,4

1National ‘111’ Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology,
Wuhan 430068, P.R. China; 2Department of Orthopedics, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, P.R. China; 3Department of Laboratory
Medicine and Pathology, University of Alberta, Edmonton, AB, Canada; 4Stollery Children’s Hospital, University Alberta Hospital, Edmonton, AB, Canada

Correspondence: Consolato Sergi (sergi@ualberta.ca)

The high-altitude environment is a challenge for human settlement. Low oxygen concentra-
tions, extreme cold, and a harsh arid climate are doubtlessly challenges for the colonization
of the Tibetan plateau. I am delighted to comment on the article of Pan et al. (2018) on
mutations in endothelial PAS domain-containing protein 1 (EPAS1) in congenital heart dis-
ease in Tibetans. In humans, the EPAS1 gene is responsible for coding EPAS1 protein, an
alias of which is HIF2α, an acronym for hypoxia-inducible factor 2 alpha. EPAS1 is a type of
hypoxia-inducible factors, which are collected as a group of transcription factors involved in
body response to oxygen level. EPAS1 gene is active under hypoxic conditions and plays an
essential role in the development of the heart and in the management of the catecholamine
balance, mutations of which have been identified in neuroendocrine tumors. In this article,
Pan et al. investigated Tibetan patients with and without non-syndromic congenital heart
disease. They identified two novel EPAS1 gene mutations, of which N203H mutation sig-
nificantly affected the transcription activity of the vascular endothelial growth factor (VEGF)
promoter, particularly in situations of hypoxia. VEGF is a downstream target of HIF-2 (other
than HIF-1), and the expression levels of either HIF-1α or HIF-2α correlate positively to
VEGF expression. Pan et al.’s data may be of incitement to further evaluate protein–protein
interaction and using experimental animal models. Moreover, it may also be a stimulus for
setting up genetic epidemiologic studies for other populations living at high altitudes.

Congenital heart disease (CHD) affects millions of individuals worldwide, including over one million
children in the United States with about one-fourth of children born with CHD requiring intensive sur-
gical intervention within the first year of life. Despite improved cardiac surgical procedures and rates of
survival into adulthood, incidences that surpass 90% of children remain at risk for neurological injury and
neurobehavioral challenges that pose a threat to the quality of life across the lifespan [1]. The high-altitude
environment is a challenge for human settlement. Low oxygen concentrations, extreme cold, and a harsh
arid climate are doubtlessly daily challenges for the colonization of the Tibetan plateau [2]. Hypoxia is
a central key of several widespread human diseases, such as ischemic heart disease, pulmonary arterial
hypertension (PAH), and stroke. CHD is an ongoing topic for populations living in high altitudes. The
incidence of CHD in newborns at high altitude is about 20 times higher than neonates born at a low
height, comprising left to right shunt defects and rarely complex CHD. Infants, aged 12–18 months, liv-
ing in high altitude have an incidence of CHD about 10 times higher than infants living at low altitude
and most importantly, about 8% of these patients develop PAH or death [3]. The Tibetan autonomous
prefecture of Yushu (average elevation over 4000 m) and the independent Mongolian county of Henan
(average height over 3600 m) in Huangnan show the highest prevalence of CHD [4]. Chun et al. in-
vestigated 84302 students from Nagqu, Tibet and found a prevalence rate of CHD of 0.5%, i.e., 1 case
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every 200 [5]. The most common defects were patent ductus arteriosus (PDA; about 2/3), atrial septal defects (ASDs;
about 1/5), and ventricular septal defects (VSD; about 1/10) with the prevalence of CHD in girls being higher than in
boys. The condition of high altitudes may also have some effect on two routine cardiac surgery operations, including
Fontan and bidirectional Glenn’s anastomosis, although a sum of factors should probably be taken into account (e.g.,
age) [6–9]. The Fontan procedure comprises any surgical operation that results in the blood flow of systemic venous
blood to the lungs without passing through a ventricle, while the bidirectional Glenn is a common surgical fashion
of the second stage of the total cavopulmonary connection (TCPC) surgery where the end of the superior vena cava
(SVC) is connected to the side of the pulmonary artery (PA).

In humans, the Cbp/p300-interacting transactivator 2 is a protein that is encoded by the CITED2 gene located
on chromosome 6. CITED2 gene is a cardiac transcription factor that plays a crucial role in the development of the
embryonic cardiovascular system. Knock-out experiments of CITED2 in mice may result in several cardiac defects.
In a study involving 187 unrelated Tibetans with CHD, Liu et al. found a novel mutation of CITED2 that enhanced
the expression of vascular endothelial growth factor (VEGF) under the role of co-receptor hypoxia-inducible factor 1
alpha (HIF-1α) [10]. In this journal, in a recent issue, Pan et al. studied the endothelial PAS domain-containing gene
1 (EPAS1) in CHD in Tibetans [11]. A group of 286 Tibetan patients with non-syndromic CHD and 250 separate Ti-
betan healthy controls were engaged from Qinghai, China using Sanger DNA sequencing and confirming the novelty
of identified variants by the examination of 1000G and ExAC databases of the human genome. Moreover, Pan et al.
investigated the effect of EPAS1 mutations on the transcription of its target gene, VEGF, by dual-luciferase reporter
assay. The authors of the Qinghai High Altitude Medical Research Institute together with colleagues from the Center
for Genetics, National Research Institute for Family Planning, and Graduate School of Peking Union Medical Col-
lege, Beijing, China identified two novel EPAS1 gene mutations (N203H and G724W) in two patients. Although the
G724W is silent, the N203H mutation significantly affects the transcription activity of the VEGF promoter, specif-
ically in the setting of hypoxia. There is an enhanced protein–protein interaction between EPAS1 and the proteins
arising from endoglin 1 (EGLN1) or Von-Hippel–Lindau (VHL) genes. The endoglin gene (EGLN1), often known
as PHD2, encodes an enzyme called prolyl hydroxylase domain 2 (PHD2). The VHL gene encodes a protein (pVHL)
that functions as part of a complex called the VCB–CuL2 complex, which is formed by pVHL and the gene products
of elongin C, elongin B, Cul-2, and Rbx1, which functions as a ubiquitin-protein ligase [12]. The alpha-subunits of
the HIFs have been identified as targets for the VCB–CuL2 ubiquitin ligase. The authors suggest that EPAS1 gene
mutations may play an etiologic role in the development of Tibetan non-syndromic CHD.

However, genetic defects should not be considered as merely deterministic factors for a pathological condition
[13,14]. The twin-reversed arterial perfusion (TRAP) sequence, or acardia, is the most severe lethal condition in
monozygotic twinning. It is part of the twin–twin transfusion syndrome (TTTS), a subtype of monochorionic twin
pregnancy, showing an extremely high pre- and perinatal morbidity and mortality [15,16]. In TTTS there is a net
transfusion of whole blood from the umbilical artery of the donor twin to the umbilical vein of the recipient twin
in a villous zone of overlapping perfusion. The transfusion of blood from the donor to the recipient via placental
arterio-arterial anastomoses in monochorionic gestations is the supposed mechanism, resulting in the formation of
a TRAP sequence [17]. TRAP sequence is mainly linked to hypoxia [18]. The lack of oxygen during early embryoge-
nesis can induce severe disruptions of head–brain and heart formation. An oxygen deficiency due to TRAP may be
responsible not only for the encephaloclastic (destructive) changes but also for the developmental arrest of the brain
in the receiving twin. Developmental abnormalities may result either from genetic events (e.g., point mutations, aneu-
ploidy) or from exogenous factors disrupting the healthy development of the embryo [19]. About exogenous factors,
abnormalities are primarily dependent on the time of interference of the teratogenic injuries (‘noxa’) with typical
development, which means that their effects are highly phase-specific [20–24]. Hypoxia has been demonstrated to
be a very useful teratogen, causing disruption, particularly of neurulation, if it interferes with early stages of em-
bryonic development [21,23–26]. Experimental studies performed in amphibian and chick embryos showed that
hypobaric-mediated hypoxia determines disruptions of the head, brain, and heart predominantly. The most severe
brain and head changes resulted if the hypoxia was induced at the beginning of gastrulation, i.e., before the onset of
neurulation, when oxygen consumption is known to be exceptionally high [25]. In these experiments, the underly-
ing developmental mechanisms responsible for the malformations occurring with hypoxia were multiple including
(1) disturbance of the migration of blastema (altered ‘topogenesis’ of the German Embryological School according to
Lehmann [27,28] and ‘integrated cell and tissue movements’ according to Gilbert [19]), (2) decreased inductive capac-
ity of the altered blastema, and (3) disturbance of further differentiation of the organ anlage [25]. These investigations
that continued the Spemann–Mangold experiments on organizers [29] also used experimental animals and revealed
that hypoxia must occur before the onset of the formation of the organ anlage to induce severe developmental devia-
tion. These findings found by hypoxia in amphibians and chicks are also fundamentally valid for mammals [30] and
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can be extrapolated to humans as well [25]. The effect of chronic hypoxia on some cardiac parameters was compared
in rodents (rats) acclimatized either from the 4th day or the 12th week of postnatal life. PAH and right ventricular
enlargement were found in both age groups [31]. The young hypoxic animals showed an increase in the weight of the
right ventricle with a linear tendency with the pressure values of the right ventricle, while adult high-altitude exposed
rats did not demonstrate such a relationship. Moreover, high altitude induces a significant increase in collagenous
proteins with collagen I and III in young animals and collagen III only in the adult ones [31]. In comparing with the
cardiovascular defects encountered at high altitudes, e.g., PAH, PDA, ASD, and VSD, it is impressive that these abnor-
malities can also be seen in experimental animals which have been used in a hypoxia-related environment. PAH is a
vasculopathy of the pulmonary circulation characterized by arterial obliteration secondary to unchecked pathologic
angiogenic processes. PAH is characterized by high circulating CD34 positive, CD133 positive proangiogenic pro-
genitors, and endothelial cells that have a pathologic expression of HIF-1α [32]. Human urotensin II (U-II) is a cyclic
vasoactive peptide composed of 11 amino acids with a structure similar to somatostatin [33,34]. The human form of
U-II (hU-II) has been identified as an endogenous ligand for the G-protein-coupled receptor GPR14, also re-labeled
as U-II receptor. Both hU-II and its receptor are intriguingly expressed in different cardiac and extracardiac tissues,
including the brain, kidney, smooth muscle, and endothelium. It is known that hU-II is among the most potent vaso-
constrictor peptides identified, with a potency greater than that of endothelin-1. The hU-II is a potent activator of
reactive oxygen species (ROS) generation by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase in PA smooth muscle cells (PASMCs), leading to redox-sensitive activation of mitogen-activated protein kinases
(MAPK) and Akt and subsequently to enhanced PAI-1 expression and increased proliferation. The hU-II may play
an important role in pulmonary hypertension by promoting remodeling processes via activation of NADPH oxidases
[33,34].

There is a higher risk for structural CHD in twin pregnancies, and the prevalence of CHD is 2% in otherwise un-
complicated monochorionic diamniotic (MCDA) gestations and 5% in cases of the twin–twin-transfusion syndrome
(TTTS), particularly among recipient twins. Some hypotheses have been formulated, and theories have been based on
abnormal placentation that occurs in monochorionic twins, particularly in cases that develop TTTS contributing to
abnormal fetal heart formation [35,36]. The twinning process itself could lead to cardiac defects, but also the division
of the fertilized ovum could be teratogenic. Moreover, early hypoxia, damage of the inner cell mass and the zona pel-
lucida, delayed fertilization time, and slow tubal transport are possible causes of monozygotic twinning, which may
also affect the development of the embryos. After segmentation, at least one major body axis in each embryo needs to
rearrange, and this event is prone to errors, which might explain the higher prevalence of midline and laterality de-
fects in monozygotic twins (e.g., cloacal exstrophy, anal atresia, anencephaly, spine defects, and CHD). Springer et al.
[37] evaluated the prevalence of CHD in a large unselected cohort of monochorionic twin pregnancies combining di-
agnoses of prenatal and postnatal echocardiography and autopsy results. The authors confirmed a high prevalence of
structural CHD (5.5%) showing that structural CHD, as well as ventricular hypertrophy and cardiomegaly, occurred
significantly more often in monochorionic twin pregnancies complicated by TTTS compared with fetuses without
TTTS [37]. Single gene defects associated with isolated or non-syndromic CHD have been delineated. Mutations in
NKX2.5 lead to isolated ASDs with atrioventricular conduction delay, while mutations in GATA4 (a family of tran-
scription factors characterized by their ability to bind to the DNA sequence GATA), a zinc finger transcription factor
known to interact with the NK2 homeobox 5 (NKX2.5), which have been linked to isolated ASDs without conduction
system abnormalities. Moreover, a mutation in GATA4 specifically disrupted an interaction with T-box transcription
factor (TBX5) suggesting that mutations in any of these interacting transcription factors can lead to CHD [38]. In
Figure 1 is shown an interaction panel of several proteins linked to CHD using version 11 of STRING, an online
bioinformatic tool using several databases [39]. It may be postulated that HIF-1α is linked to bone morphogenetic
protein 4 (BMP4) in this early hypoxic insult causing not acardiac fetuses, but fetuses with structural defects such as
those identified in high-altitude pregnancies. HIF-1α-dependent up-regulation of BMP4 mediates hypoxia-induced
increase in TRPC expression in PASMCs, and BMP4 interaction is key in determining CHD. In the panel of Figure 1,
there is also FOXH1, which is Forkhead box protein H1 with the ability to bind SMAD2 (Mothers against decapenta-
plegic homolog 2). It activates an activin response element via binding the DNA motif TGT(G/T)(T/G)ATT. FOXH1
is essential for the development of the growth of the embryo and its anterior heart field [40,41].

Finally, it must be precisely known that children with CHD may have an intellectual impairment [42]. Neurodevel-
opmental outcomes are weakened in survivors of critical CHD in several developmental cerebral domains including
motor, cognitive, and sensory outcomes. The cause of these neurodevelopmental deficits is multi-factorial and in-
cludes individual risk factors, cardiac anatomy, and cardiovascular physiology, brain development (e.g., myelination)
as seen on magnetic resonance imaging (MRI). Despite early surgery, these shortfalls can extend into the adoles-
cent and early adulthood years [42–45]. MRI studies have shown decreased total brain volume and white matter
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Figure 1. Splice isoforms or post-translational modifications are collapsed, while each node represents all the proteins

produced by a single, protein-coding gene locus

The edges represent protein–protein interactions with different color according to the interaction type. A red line indicates the

presence of fusion evidence, green line a neighborhood evidence, blue line a cooccurrence evidence, purple line an experimental

evidence, yellow line a textmining evidence, light blue line a database evidence, and black line a coexpression evidence.

(WM) injury, which could be because of hypoxia [46]. The cellular/molecular mechanisms linked to brain imma-
turity and preoperative WM injury in newborns affected with CHD remain mostly unexplored. There is a rodent
model of diffuse WM-injury exposing mice at neonatal age to chronic hypoxia, which showed alterations in oligo-
dendrocyte development resulting in hypomyelination, including oligodendrocyte death, delayed differentiation of
the oligodendrocytes, and, even, abnormal patterns of myelination [47,48]. Although the present study does not show
encephaloclastic changes of early hypoxic damage, it is a well-established model to mimic hypoxic brain injury in pre-
mature infants [47–50]. In the future, it may be essential to evaluate whether the residents of high altitude also have
such brain lesions or other micro- and macrostructural brain abnormalities [51]. There is a possibility that hypoxia
could be a common factor responsible for intellectual impairment in children with CHD and high-altitude residents,
and whether they might have similar cerebral lesions on high-quality MRI would be useful to know. The interaction
between placenta and heart is just starting to be explored adequately and will deliver unconfutable data for the future
development of the embryonic heart in the next decade [52].

In conclusion, Pan’s findings and my interactome analysis have important implications for signaling in CHD. New
options may be accurately explored using current bioinformatic tools. Small groups may also be investigated to find
mutations which could have an impact on finding pathways which have broader implications. The identification of
mutations in multiple interacting cardiac developmental genes will be part of a routine screening of the nearest future
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that may be applied to our cardiac patients with CHD. This procedure may notably improve our understanding of
the pathogenesis, promote surgical options, and ultimately improve the quality of healthcare of the 21st century.
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29 Spemann, H. and Mangold, H. (1924) Über Induktion von embryonalanlagen durch Implantation artfremder Organisatoren. Archiv für Mikroskopische
Anatomie und Entwicklungsmechanik 100, 599–638, https://doi.org/10.1007/BF02108133

30 Murakami, U. and Kameyama, Y. (1963) Vertebral malformation in the mouse foetus caused by maternal hypoxia during early stages of pregnancy. J.
Embryol. Exp. Morphol. 11, 107–118

31 Ostadal, B., Kolar, F., Pelouch, V., Bass, A., Samanek, M. and Prochazka, J. (1989) The effect of chronic hypoxia on the developing cardiopulmonary
system. Biomed. Biochim. Acta 48, S58–62

32 Farha, S., Asosingh, K., Xu, W., Sharp, J., George, D., Comhair, S. et al. (2011) Hypoxia-inducible factors in human pulmonary arterial hypertension: a
link to the intrinsic myeloid abnormalities. Blood 117, 3485–3493, https://doi.org/10.1182/blood-2010-09-306357

33 Djordjevic, T., BelAiba, R.S., Bonello, S., Pfeilschifter, J., Hess, J. and Gorlach, A. (2005) Human urotensin II is a novel activator of NADPH oxidase in
human pulmonary artery smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 25, 519–525, https://doi.org/10.1161/01.ATV.0000154279.98244.eb

34 Diebold, I., Petry, A., Sabrane, K., Djordjevic, T., Hess, J. and Gorlach, A. (2012) The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II.
J. Cell. Sci. 125, 956–964, https://doi.org/10.1242/jcs.094060

35 Bahtiyar, M.O. and Copel, J.A. (2015) Screening for congenital heart disease during anatomical survey ultrasonography. Obstet. Gynecol. Clin. North
Am. 42, 209–223, https://doi.org/10.1016/j.ogc.2015.01.001

36 Bahtiyar, M.O., Dulay, A.T., Weeks, B.P., Friedman, A.H. and Copel, J.A. (2007) Prevalence of congenital heart defects in monochorionic/diamniotic twin
gestations: a systematic literature review. J. Ultrasound. Med. 26, 1491–1498, https://doi.org/10.7863/jum.2007.26.11.1491

37 Springer, S., Mlczoch, E., Krampl-Bettelheim, E., Mailath-Pokorny, M., Ulm, B., Worda, C. et al. (2014) Congenital heart disease in monochorionic twins
with and without twin-to-twin transfusion syndrome. Prenat. Diagn. 34, 994–999, https://doi.org/10.1002/pd.4411

38 Richards, A.A. and Garg, V. (2010) Genetics of congenital heart disease. Curr. Cardiol. Rev. 6, 91–97, https://doi.org/10.2174/157340310791162703
39 Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J. et al. (2019) STRING v11: protein-protein association networks with

increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613,
https://doi.org/10.1093/nar/gky1131

40 von Both, I., Silvestri, C., Erdemir, T., Lickert, H., Walls, J.R., Henkelman, R.M. et al. (2004) Foxh1 is essential for development of the anterior heart field.
Dev. Cell 7, 331–345, https://doi.org/10.1016/j.devcel.2004.07.023

41 Sergi, C., Shen, F. and Liu, S.-M. (2019) Insulin/IGF-1R, SIRT1, and FOXOs pathways—an intriguing interaction platform for bone and osteosarcoma.
Front. Endocrinol. 10

42 Peyvandi, S., Latal, B., Miller, S.P. and McQuillen, P.S. (2019) The neonatal brain in critical congenital heart disease: insights and future directions.
Neuroimage 185, 776–782, https://doi.org/10.1016/j.neuroimage.2018.05.045

43 Peyvandi, S., Chau, V., Guo, T., Xu, D., Glass, H.C., Synnes, A. et al. (2018) Neonatal brain injury and timing of neurodevelopmental assessment in
patients with congenital heart disease. J. Am. Coll. Cardiol. 71, 1986–1996, https://doi.org/10.1016/j.jacc.2018.02.068

44 Peyvandi, S. and Donofrio, M.T. (2018) Circulatory changes and cerebral blood flow and oxygenation during transition in newborns with congenital heart
disease. Semin. Pediatr. Neurol. 28, 38–47, https://doi.org/10.1016/j.spen.2018.05.005

45 Peyvandi, S., Kim, H., Lau, J., Barkovich, A.J., Campbell, A., Miller, S. et al. (2018) The association between cardiac physiology, acquired brain injury,
and postnatal brain growth in critical congenital heart disease. J. Thorac. Cardiovasc. Surg. 155, e293, 291-300,
https://doi.org/10.1016/j.jtcvs.2017.08.019

46 Morton, P.D., Ishibashi, N. and Jonas, R.A. (2017) Neurodevelopmental abnormalities and congenital heart disease: insights into altered brain
maturation. Circ. Res. 120, 960–977, https://doi.org/10.1161/CIRCRESAHA.116.309048

6 © 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://doi.org/10.1016/j.ajog.2010.04.018
https://doi.org/10.1002/(SICI)1096-9926(200004)61:4%3c284::AID-TERA7%3e3.0.CO;2-T
https://doi.org/10.1007/BF00589645
https://doi.org/10.1007/BF00427147
https://doi.org/10.1002/ajmg.1320310304
https://doi.org/10.1007/BF00589646
https://doi.org/10.1007/BF02108133
https://doi.org/10.1182/blood-2010-09-306357
https://doi.org/10.1161/01.ATV.0000154279.98244.eb
https://doi.org/10.1242/jcs.094060
https://doi.org/10.1016/j.ogc.2015.01.001
https://doi.org/10.7863/jum.2007.26.11.1491
https://doi.org/10.1002/pd.4411
https://doi.org/10.2174/157340310791162703
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1016/j.devcel.2004.07.023
https://doi.org/10.1016/j.neuroimage.2018.05.045
https://doi.org/10.1016/j.jacc.2018.02.068
https://doi.org/10.1016/j.spen.2018.05.005
https://doi.org/10.1016/j.jtcvs.2017.08.019
https://doi.org/10.1161/CIRCRESAHA.116.309048


Bioscience Reports (2019) 39 BSR20182197
https://doi.org/10.1042/BSR20182197

47 Scafidi, J., Fagel, D.M., Ment, L.R. and Vaccarino, F.M. (2009) Modeling premature brain injury and recovery. Int. J. Dev. Neurosci. 27, 863–871,
https://doi.org/10.1016/j.ijdevneu.2009.05.009

48 Agematsu, K., Korotcova, L., Scafidi, J., Gallo, V., Jonas, R.A. and Ishibashi, N. (2014) Effects of preoperative hypoxia on white matter injury associated
with cardiopulmonary bypass in a rodent hypoxic and brain slice model. Pediatr. Res. 75, 618–625, https://doi.org/10.1038/pr.2014.9

49 Jablonska, B., Scafidi, J., Aguirre, A., Vaccarino, F., Nguyen, V., Borok, E. et al. (2012) Oligodendrocyte regeneration after neonatal hypoxia requires
FoxO1-mediated p27Kip1 expression. J. Neurosci. 32, 14775–14793, https://doi.org/10.1523/JNEUROSCI.2060-12.2012

50 Raymond, M., Li, P., Mangin, J.M., Huntsman, M. and Gallo, V. (2011) Chronic perinatal hypoxia reduces glutamate-aspartate transporter function in
astrocytes through the Janus kinase/signal transducer and activator of transcription pathway. J. Neurosci. 31, 17864–17871,
https://doi.org/10.1523/JNEUROSCI.3179-11.2011

51 Ghimire, L.V. (2017) Congenital heart disease and high altitude: is chronic hypoxia a common factor in intellectual impairment? High Alt. Med. Biol. 18,
299–300, https://doi.org/10.1089/ham.2017.0043

52 Camm, E.J., Botting, K.J. and Sferruzzi-Perri, A.N. (2018) Near to one’s heart: the intimate relationship between the placenta and fetal heart. Front.
Physiol. 9, 629, https://doi.org/10.3389/fphys.2018.00629

© 2019 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

7

https://doi.org/10.1016/j.ijdevneu.2009.05.009
https://doi.org/10.1038/pr.2014.9
https://doi.org/10.1523/JNEUROSCI.2060-12.2012
https://doi.org/10.1523/JNEUROSCI.3179-11.2011
https://doi.org/10.1089/ham.2017.0043
https://doi.org/10.3389/fphys.2018.00629

