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Abstract: Introduction: Studies using functional connectivity and network analyses based on magnetoen-
cephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. How-
ever, these analyses currently depend on the availability of costly and sometimes burdensome individual
MR scans for co-registration. We evaluated the consistency of these measures when using a template
MRI, instead of native MRI, for the analysis of functional connectivity and network topology. Methods:

Seventeen healthy participants underwent resting-state eyes-closed MEG and anatomical MRI. These
data were projected into source space using an atlas-based peak voxel and a centroid beamforming
approach either using (1) participants’ native MRIs or (2) the Montreal Neurological Institute’s tem-
plate. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power
was determined in six classical frequency bands per region and globally averaged. Functional connec-
tivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then
used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass
correlation coefficients were calculated and Bland–Altman plots were made to quantify the consistency
and potential bias of the use of template versus native MRI. Results: Co-registration with the template
yielded largely consistent relative power, connectivity, and network estimates compared to native
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MRI. Discussion: These findings indicate that there is no (systematic) bias or inconsistency between
template and native MRI co-registration of MEG. They open up possibilities for retrospective and pro-
spective analyses to MEG datasets in the general population that have no native MRIs available. Hum
Brain Mapp 39:104–119, 2018. VC 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Key words: magnetoencephalography; co-registration; beamforming; MNI template; MRI; functional
connectivity; network analyses; consistency
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INTRODUCTION

Magnetoencephalography (MEG) is a technique often
used to investigate functional connectivity and network
topology of the brain [Stam, 2014]. MEG records the mag-
netic fields that are induced by neuronal currents, provid-
ing information about normal and pathological processes
in the brain with high temporal and good spatial resolu-
tion [Buzsaki, 2006; Schnitzler and Gross, 2005]. It also
allows for the accurate estimation of statistical interdepen-
dencies between time series of neural activity recorded
from different brain regions, termed functional connectiv-
ity [Aertsen et al., 1989; Friston, 1994].

Many earlier MEG functional connectivity studies,
including our own, have employed a “signal-space”
approach, meaning that signals measured from outside the
scalp are directly correlated and interpreted [Douw et al.,
2014; Fern�andez et al., 2006; Nieboer et al., 2016; Olde
Dubbelink et al., 2008]. However, this type of analysis
does not allow for interpretation of estimated activity or
connectivity patterns in an anatomical context; a solution
to the inverse problem is required for this. Beamforming
[Hillebrand et al., 2005] is one of the popular source recon-
struction approaches [Baillet et al., 2001] that yield plausi-
ble and verifiable results when combined with an
anatomical image of the individual’s skull and brain by,
for example, T1-weighted magnetic resonance imaging
(MRI) [Barnes et al., 2006; Hillebrand and Barnes, 2005].
The relevance of this technique for atlas-based connectivity
and functional network studies has amply been shown
[Hillebrand et al., 2012, 2016].

However, individual anatomical MRIs may not be avail-
able in certain (retrospective) datasets and the time and
effort of obtaining an anatomical MRI may put an extra
burden on patients. Using an MRI template instead of a
native MR scan for source localization could minimize
these cons and render the use of source-localized MEG
data feasible in such cases. At the same time, individual
anatomy, although the current standard for analysis in
most source-space studies, may not necessarily yield supe-
rior results: the spatial resolution of MEG may generally
allow for atlas-based connectivity and network analytical
studies, be it using template or native anatomical imaging
for co-registration.

Several studies have already employed a template-based
method for source localization in the absence of native

MRIs. For instance, L�opez et al. [2014] have used a tem-
plate generated from MRIs of healthy controls for source
reconstruction to perform connectivity analysis. Holliday
et al. [2003] selected the MRI with closest matching exter-
nal head shape from a database, and used it as a substitute
for the subject’s own MRI. Another research group derived
geometrical information from the volume conductor mod-
els that were constructed during MEG analysis, that is,
information based on data from an external digitizer, in
combination with a template MRI to source-localize mag-
netic activity [Steinstraeter et al., 2009]. A digitizing pen
(Polhemus) is often used to project the X, Y, and Z coordi-
nates of the coil locations onto the cortical surface follow-
ing the co-registration with the corresponding MRI.
Similarly, it has been shown that external landmarks or
the external head shape, again based on digitized scalp
surfaces, can be used in combination with a template
head-shape to align functional images with a structural
template [Beg et al., 2009]. However, an analysis of possi-
ble inconsistencies, particularly with respect to connectiv-
ity and network analyses, resulting from the use of a
template MRI as compared to a native MRI has not been
performed. It may be that highly consistent results
between these approaches can be obtained at the level of
individual time series and relative power, but that
increases in inconsistency arise when investigating connec-
tivity and network patterns. This study is therefore an
addition to the previous studies that already used some
sort of template warping as it specifically addresses
whether (possibly nonlinear) inconsistencies feed into dif-
ferent higher order outcome measures obtained with the
template versus native MRI approach.

Here, we evaluated the consistency and potential bias of
estimates of spectral power, functional connectivity, and
network topology in a group of healthy subjects, using
either the MNI template or their native anatomical MR
scans for MEG source reconstruction.

METHODS

Participants

A previously described dataset consisting of data
collected in 17 healthy participants aged 30–59 years
(39.8 6 9.8) was used. These participants did not suffer
from neurological or psychiatric diseases and did not use

r MEG Network Analysis Using a Template MRI r

r 105 r



any drugs or medication. The study was approved by the
Medical Ethical Committee of the VU University Medical
Center (Amsterdam, The Netherlands), and all participants
gave written informed consent before participation. Data
from these healthy volunteers have been used as a control
group in previous case–control studies from our group
[Tewarie et al., 2014a; Tewarie et al., 2015].

Magnetoencephalography

Magnetic fields were recorded for five minutes while
subjects were in supine position inside a magnetically
shielded room (Vacuumschmelze GmbH, Hanau, Germany),
during eyes-closed resting state. We used a 151-channel
whole-head MEG system (CTF Systems Inc., Port Coquitlam,
BC, Canada). A third-order software gradient [Vrba et al.,
1999] was used with a recording passband of 0–150 Hz and
a sampling frequency of 625 Hz. At the beginning and end
of each recording, the head position relative to the coordi-
nate system of the helmet was recorded by passing small
alternating currents through three head position coils
attached to the left and right preauricular points and the
nasion. Head movements of up to 0.5 cm were allowed dur-
ing recording. For each subject, 45 epochs of 4,096 samples
(6.554 s) were recorded. From these, all artifact-free epochs,
that is, those not containing system related artifacts, physio-
logical artifacts, metal artifacts and environmental noise,
were selected by one of the authors [PT]. On average 35
(range 21–43) epochs per subject were used for further anal-
ysis. These epochs were band-pass filtered into the six clas-
sical frequency bands using a discrete Fast Fourier
Transform: delta (0.5–4 Hz), theta (4–8 Hz), lower alpha
(8–10 Hz), upper alpha (10–13 Hz), beta (13–30 Hz), and
gamma (30–48 Hz).

Co-Registration With Native and Template MRI

The data analysis pipeline is schematically depicted in
Figure 1. The current standard of analysis for this type of
data is co-registration with an individual’s anatomical
MRI. To this end, an MRI of the head was obtained at 3 T
(GE SignaHDxt), with a 3D-T1 weighted fast spoiled
gradient-echo (FSPGR, TR 7.8 ms, TE 3.0 ms, TI 450 ms,
flip angle 128, 0.9 3 0.9 3 1 mm voxel size). Vitamin E
capsules were placed at aforementioned anatomical land-
marks, that is, the preauricular points and the nasion, to
guide co-registration with the MEG data. Using these two
corresponding sets of fiducial markers, the MEG and MRI
coordinate systems were matched (i.e., the two sets of 3
points were aligned using a rigid body transformation
(rotation and translation) [Fitzpatrick et al., 1998], using
MRIViewer (version 5.0.2, CTF Systems Inc.)). The co-
registered MRI was subsequently segmented, and the out-
line of the scalp was used to compute a multisphere head
model [Huang et al., 1999] for the calculation of the lead-
fields. Co-registration with a template MRI instead of

native imaging was investigated using the T1-weighted
MNI template with 1 mm resolution [Smith et al., 2004],
which is available from the FSL software package (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/).

Atlas-Based Beamforming

The source reconstruction approach has been described
in detail [Hillebrand et al., 2012]. In short, a co-registered
MRI (either template or native in MEG space) was spa-
tially normalized to the template MRI. To label the voxels
in a subject’s normalized co-registered MRI, the AAL atlas
was used [Tzourio-Mazoyer et al., 2002]. After inverse
transformation to the patient’s co-registered MRI, the 78
cortical regions of interest (ROIs) were used for further
analysis [Gong et al., 2009]. Furthermore, the neuronal
activity for the labeled voxels in the 78 ROIs, using a grid-
size of 2 mm, was reconstructed using a beamformer
approach known as Synthetic Aperture Magnetometry
(SAM) [Robinson, 1999]. The neuronal activity at each
voxel, a so called virtual electrode (VE), was reconstructed
as the weighted sum of the recorded magnetic field B at a
given time point as [van Veen et al., 1997]:

VE5 LTC21
b L

� �21
LTC21

b B5WTB; (1)

Here, T stands for transpose and W stands for the beam-
former weights, which are determined by the lead fields
(L) and the data covariance matrix (Cb) (which is based on
data from on average 229 s (range: 138–282s)).

Peak Voxel and Centroid Approaches

To represent each ROI with a single time series, two
different approaches were used. Firstly, the voxel with
maximum pseudo-Z value in each frequency band for
each ROI was selected, as has been reported previously
[Hillebrand et al., 2012; Robinson, 1999]. This resulted in
78 time series for each frequency band for further analysis.
However, the choice of peak voxel might be influenced by
outliers more strongly than other approaches. Therefore,
additionally, we used the centroid as representative for
each ROI, an approach that has also been used by our
group before [Hillebrand et al., 2016]. The centroid is
defined here as the voxel within the ROI that is nearest, in
terms of Euclidean distance, to all other voxels in the ROI.

Consistency of Virtual Electrode Locations

To scope the relationship between inconsistencies in the
virtual electrode locations obtained with the two
approaches and the consistency of band-limited relative
power, we determined the Euclidean distance between the
location of the representative voxel for each ROI (either
determined by peak voxel or centroid) as obtained with
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Figure 1.

Schematic of the analysis pipeline. Important steps in the data

analysis pipeline are depicted for both the analysis with the tem-

plate MRI (left) and the native MRI (right). Step 1 indicates the

raw (sensor level) magnetoencephalography (MEG) recordings,

which are identical for both methods. In Step 2, co-registration

of the MEG data takes place with either the template MRI (left)

or subjects’ native MRIs (right), here depicted with the AAL

atlas overlaid. Step 3 involves extraction of time series per AAL

region for each frequency band using beamforming, based on

which power, connectivity, and network characteristics are cal-

culated (regional/global analysis). In Step 4, we illustrate the final

data structure for one regional measure (power, phase lag index,

or minimum spanning tree degree): a matrix of 78 regions by

605 epochs (5 17 subjects 3 on average 35 (range 21–43)

epochs per subject). Consistency between each row in these

matrices was then tested, yielding an intraclass correlation coef-

ficient (ICC) per AAL region. Step 5 shows the final data struc-

ture per global measure: a vector of values for 17 subjects,

which was calculated for average power, average phase lag index,

and the global network measures. The ICC of these two vectors

was computed for each global measure. [Color figure can be

viewed at wileyonlinelibrary.com]

r MEG Network Analysis Using a Template MRI r

r 107 r

http://wileyonlinelibrary.com


the template approach and the location as obtained when
using the subject’s own MRI.

Relative Power

All following analyses were performed using BrainWave
[CJS, version 0.9.133, available from http://home.kpn.nl/
stam7883/brainwave.html]. We investigated band-specific
relative power in each of the six frequency bands by
applying a Fast Fourier transform to the time series per
region in the AAL atlas.

Connectivity and Network Analysis

As a measure of functional connectivity, the phase lag
index (PLI) was used [Stam et al., 2007], which calculates
the asymmetry of the distribution of (instantaneous) phase
differences between two time series. The asymmetry of the
distribution of phase differences of two signals can be
obtained from a time series of phase differences DU(tk),
k 5 1. . .N samples:

PLI5j < sign sin Du tkð Þð Þ½ � > j (2)

The presence of a consistent, nonzero, phase lag between
two time series reflects true interactions that are unaffected
by the effects of volume conduction or field spread, also
referred to as leakage in source space. Frequency-specific con-
nectivity between all region pairs was calculated for each
epoch. A weighted adjacency matrix was then constructed,
having the AAL regions as rows and columns and the
connectivity values as entries. Global and regional network
characteristics were determined using several previously
described measures for each epoch and frequency band: the
classical graph measures of weighted clustering coefficient
and weighted path length [Bullmore and Sporns, 2009; Stam
and Reijneveld, 2007] and modularity [Newman, 2006], and
characteristics of the minimum spanning tree (MST) [Kruskal,
1956; Stam et al., 2014; Tewarie et al., 2015].

The clustering coefficient is defined as the probability
that a node’s neighbors are also connected to each other
[Watts and Strogatz, 1998]. In a weighted network, cluster-
ing also takes into account the strength of each connection;
in our case, the PLI value between each region pair [Stam
et al., 2009].

The path length assesses the integration of the network,
by computing the number of steps making up the shortest
possible path between every node pair. In our weighted
case, this path length incorporates the strength of the PLI
in this shortest path length by using Dijkstra’s Algorithm
[Dijkstra, 1959]. The combination of high clustering and
short average path length makes up the “small-world”
topology [Watts and Strogatz, 1998], which is thought to
be optimal for information processing.

Modularity refers to the extent to which the network is
organized into subsystems or modules. Newman’s modu-
larity algorithm was used to calculate the optimal modular

division into strongly intraconnected but weakly intercon-
nected modules for each adjacency matrix, in which each
region received a single-module allegiance [Newman,
2006]. This analysis yielded a global measure of modular-
ity (also termed “Q”), and the number of modules result-
ing from the network decomposition. As the modularity
algorithm depends on simulated annealing to obtain the
optimal partition of the network, it yields slightly different
results in every run, possibly increasing the noise level
that may already be present when using different images
for co-registration. We therefore ran the modularity algo-
rithm 100 times and averaged the values of Q into a sin-
gle, stable measure of modularity within each subject.

The minimum spanning tree (MST) is a subnetwork of
the original weighted network that connects all nodes
without forming loops and has the minimum total weight
of all possible spanning trees, where edge weight is
defined as 1/PLI. The MST was constructed based on the
weighted networks with Kruskal’s algorithm [Kruskal,
1956], and is thought to deduce a bias-free backbone of the
original weighted network. We characterized the topology
of the MSTs using the following measures: degree, which
is the number of connections for each node in the tree; leaf
fraction, referring to the fraction of nodes in the tree with
a degree of one; and diameter, that is, the diameter is the
longest distance between any two nodes of the tree. These
network measures have recently been used in population
and clinical studies [Stam et al., 2014].

Statistical Analysis

Statistical analyses were performed using SPSS Statistics
package version 20.0 (IBM, Armonk (NY), USA) and Mat-
lab version r2012b (MathWorks, Natick (MA), USA). The
consistency of spectral power, functional connectivity, and
network measures between the two approaches, that is,
using native MRI or the template, were investigated by
calculating intraclass correlation coefficients (ICC) with a
two-way mixed model, ICC(3,1) [McGraw and Wong,
1996; Shrout and Fleiss, 1979]. In this two-way mixed
model, the raters or approaches (template and native MRI)
are considered fixed effects, and each item (MEG measure
for an epoch) is treated as a random effect. The ICC is
commonly used to assess the consistency of quantitative
measurements made by different “observers” as it takes
the rater bias into account, as consistency not only requires
high correlation but also requires small rater bias. In our
case, the “observers” are the two different approaches.

The first step was to investigate whether the distance
between the locations of the virtual electrodes as obtained
with the template approach and the location as obtained
when using the subject’s own MRI was different between
the peak voxel and centroid methods with an ANOVA
and post-hoc Student’s t tests. Also, for the peak voxel
method, the distance for each ROI was plotted against the
ICC of the band-limited relative power for each ROI to
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visualize the relationship between the inconsistencies in
the virtual electrode locations and the ICCs. This was
quantified using Pearson correlation

We then explored the consistency of the time series as
extracted with the template and native MRI approach. To
obtain an indication of this consistency, we report for each
frequency band the ICC of the time series for those ROIs
with the lowest and highest consistency of the peak voxel
locations

Furthermore, the ICC values were calculated at two
levels (Fig. 1): the first one relates to the assessment of
consistency of the template versus native MRI approach
per region for each epoch (n 5 605) for the regional mea-
sures of power, PLI, and MST degree. Power and PLI are
the basis for the following network analyses, and therefore
we were interested in their consistency at the fine-grained
spatial (i.e., per region) and temporal (i.e., per individual
epoch) levels.

Third, we were also interested in the consistency of tem-
plate versus native MRI results with respect to subject-
level characteristics, as most studies make use of subject-
averaged values. We therefore averaged several global
measures, such as average power, average PLI, clustering
coefficient, path length, modularity, number of modules,
MST leaf fraction, and MST diameter, over all epochs per
subject (n 5 17).

The ICC values were interpreted as follows: >0.80 very
good, 0.61–0.80 good, 0.41–0.60 moderate, 0.21–0.40 fair,
and <0.21 poor [Brennan and Silman, 1992]. To further
scope consistency of template versus native MRI co-
registration of MEG, Bland–Altman plots were constructed.
These plots are based on a visualization of the mean and
standard deviation of the difference of the measurement by
two approaches. It evaluates the agreement and possible
bias between them [Altman and Bland, 1983]. The 95%
limits of agreement, which are defined as the mean differ-
ence plus and minus 1.96 times the standard deviation of
the difference, are added in the plot to judge how well the
two approaches agree upon a certain value. This approach
is the most commonly used approach to give more insight
in the existence of any systematic difference between two
different methods [Zaki et al., 2012].

RESULTS

Consistency of Virtual Electrode Locations

The average distance between the virtual electrode loca-
tions as obtained with the template versus native MRI
differed between the peak voxel and centroid method
(ANOVA (F(6,539) 5 4.2, P< 0.001), in which the centroid
method showed a smaller average distance and less varia-
tion (Fig. 2), indicating that it is likely to give better results
with regard to consistency of the other outcome measures
(see also Table II versus Supporting Information, Appendix
1). To simplify this results section, but avoid any overesti-
mation of the consistency between the template versus
native MRI approach, we will proceed reporting only the
supposedly less optimal peak voxel results throughout this

Figure 2.

Distance between native and template-based representative vox-

els. Box plots are shown for the distance between the 78 repre-

sentative voxels as obtained with the template and native MRI

approach. Frequency bands indicate those voxels obtained with

the peak voxel method for the different bands (light grey) while

the distance was equal for all frequency bands using the centroid

method (dark grey).

TABLE I. Consistency of time series extracted using the template versus native MRI approach

ROIs with lowest consistency in peak voxel location ROIs with highest consistency in peak voxel location

Frequency band ROI Median ICC Rating ROI Median ICC Rating

Delta Occipital Inf. R 0.91 VG Frontal Mid. Orb. L 0.90 VG
Theta Heschl L 0.41 M Occipital Inf. L 0.96 VG
Alpha1 Frontal Inf. Oper. R 0.90 VG Cuneus L 0.93 VG
Alpha2 Lingual L 0.94 VG Calcarine L 0.95 VG
Beta Occipital Inf. R 0.96 VG Frontal Mid. Orb. L 0.91 VG
Gamma Frontal Mid. L 0.24 F Calcarine R 0.91 VG

ROI, region of interest; R, right; L, left; ICC, intraclass correlation coefficient.
VG 5 very good ICC >0.80; G 5 good ICC 0.61–0.80; M 5 moderate ICC 0.41–0.60; F 5 fair ICC 0.21–0.40; P 5 poor ICC <0.21.
ICCs are reported for ROIs with the lowest and highest consistency of the peak voxel locations in each frequency band.
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article (see Supporting Information, Appendix 1 for results
obtained with the centroid method).

Consistency of the Time Series

For the ROIs with the lowest and highest consistency of
the peak voxel locations, median ICCs and their classifica-
tion can be seen in Table I. These results show very good
consistency of time series when spatial consistency was
also high, while the consistency of time series was still
very good in most frequency bands when spatial consis-
tency was low. Only the theta and gamma band showed
suboptimal ICCs of the time series for these ROIs with
low spatial consistency.

The Impact of the Consistency of Virtual

Electrode Locations on the ICC of Relative

Power

We then explored Euclidean distance between peak
voxels as chosen with the template versus native MRI
approach as a correlate of the ICC of band-limited relative
power. Figure 3 shows that larger distances tended to
relate to lower ICC, particularly in the delta, theta, and
gamma bands. However, individual ICC values were still
mostly classified as “good” or “very good,” even when
distances were quite large (e.g., >2 cm). We therefore

conclude that although spatial consistency of the selected
representative voxels does have an effect on ICC values,
consistency between the native versus MRI approach is
largely maintained.

Consistency of Regional and Global Power

Regional power per epoch (n 5 605) was consistent
across all 78 ROIs in the AAL atlas, as analyzed for each
frequency band separately, showing overall good to very
good ICCs (see Table II for peak voxel results, and Sup-
porting Information, Appendix 1 for centroid results). We
illustrate the consistency of relative regional power (and
PLI and MST degree, see following section) across all
regions and frequency bands in Figure 4 for the peak
voxel method. Moreover, global relative power showed
very good subject-averaged ICCs per frequency band
(Table II). Figure 5 shows the Bland–Altman plots of rela-
tive power per frequency band at the subject level, and
implicates no systematic differences between the two
approaches.

Consistency of Regional Connectivity and

Network Metrics

The consistency of regional PLI across all epochs and
across all 78 ROIs are illustrated in Figure 4, and show
good to very good results for each frequency band

TABLE II. Global consistency between results obtained when using the template and native MRI approach (with the

peak voxel method)

Delta Theta Lower alpha

ICC 95% CI Rating ICC 95% CI Rating ICC 95% CI Rating

Power 0.988 0.940–0.996 VG 0.994 0.983–0.998 VG 0.966 0.803–0.990 VG
PLI 0.932 0.817–0.975 VG 0.870 0.637–0.953 VG 0.918 0.644–0.975 VG
Cw 0.911 0.739–0.968 VG 0.733 0.297–0.901 G 0.906 0.529–0.972 VG
Lw 0.944 0.780–0.982 VG 0.849 0.420–0.951 VG 0.926 0.798–0.973 VG
Modularity 0.670 0.119–0.879 G 20.325a 20.209–0.448 NR 0.555 20.160–0.835 M
Number of modules 0.594 20.068–0.85 M 0.551 20.113–0.83 M 0.744 20.027–0.921 G
MST leaf fraction 0.754 0.134–0.920 G 0.689 20.006–0.895 G 0.623 20.066–0.868 G
MST diameter 0.828 0.536–0.937 VG 0.840 0.572–0.942 VG 0.327 20.764–0.752 F

Upper alpha Beta Gamma

ICC 95% CI Rating ICC 95% CI Rating ICC 95% CI Rating

Power 0.969 0.497–0.993 VG 0.993 0.918–0.998 VG 0.903 0.285–0.974 VG
PLI 0.937 0.431–0.984 VG 0.895 0.711–0.962 VG 0.155 20.043–0.524 P
Cw 0.917 0.196–0.980 VG 0.864 0.634–0.950 VG 0.179 20.081–0.561 P
Lw 0.957 0.803–0.987 VG 0.905 0.743–0.965 VG 0.123 20.022–0.459 P
Modularity 0.766 0.371–0.915 G 0.256 20.698–0.708 F 0.560 20.087–0.838 M
Number of modules 0.695 20.062–0.901 G 0.670 0.145–0.877 G 0.320 20.558–0.734 F
MST leaf fraction 0.717 20.048–0.911 G 0.774 0.392–0.917 G 0.698 0.150–0.892 G
MST diameter 0.571 20.179–0.848 M 0.577 20.058–0.841 M 0.635 0.057–0.865 G

N 5 17; df 16, ICC, intraclass correlation coefficient ; 95 CI, 95% confidence interval; VG 5 very good ICC >0.80; G 5 good ICC 0.61–0.80;
M 5 moderate ICC 0.41–0.60; F 5 fair ICC 0.21–0.40; P 5 poor ICC <0.21.
aNot reliable.
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(Supporting Information, Appendix 2). Furthermore, mod-
erate to good results were obtained for the PLI in the delta
to beta band, while lower consistency was found in the
gamma band (Fig. 4 and Supporting Information, Appen-
dix 3). The regional MST degree consistency across
approaches was lower overall, with poor to moderate con-
sistencies per frequency band and region (Fig. 4 and Sup-
porting Information, Appendix 3).

Consistency of Global Connectivity and Network

Metrics

We then investigated whether the global connectivity and

network measures determined per subject (n 5 17) were con-

sistent when using a template versus native MRI (Table II). For

global PLI, ICCs were very good for most frequency bands

(�0.870), except for the gamma band. The Bland–Altman plots

Figure 3.

Consistency (ICC) of relative power averaged over subjects in

relation to the distance between native versus template-based

peak voxel location. The ICC of relative power per ROI across

template versus native MRI (averaged over subjects) is plotted

(y-axis) against the distance between the representative voxel (x-

axis) as obtained with the template versus native MRI (averaged

over subjects), together with correlation (r) and P values (P).The

dashed lines represent the rating of the ICCs: >0.80, very good;

0.61–0.80, good; 0.41–0.60, moderate; 0.21–0.40, fair; and

<0.21, poor. Panels indicate frequency bands: A, delta band; B,

theta band; C, lower alpha band; D, upper alpha band; E, beta

band; F, gamma band.
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for the PLI indicated good limits of agreement between the

template MRI and the native MRI (Fig. 6), as only one data

point fell outside the 95% limits of agreement interval, as could

be expected based on the 95% limit. Interestingly, gamma

band global connectivity ICCs based upon the centroid

approach, relative to the peak voxel approach predominantly

described in this results section, were quite good (Table II and

Supporting Information, Appendix 1).

Figure 4.

Consistency (ICC) of regional measures across epochs (n 5 605)

computed using template or native MRIs. Column 1 shows the

intraclass correlation coefficient (ICC) for relative power per

AAL region for all frequency bands as a color-coded map. Note

that overall good to very good ICCs were observed. Column 2

shows ICCs for the phase lag index (PLI) per region. Note that

overall moderate to good ICCs were obtained. Column 3 indi-

cates ICC per region for the MST degree. Note that overall fair

ICCs were observed. Cold colors indicate poor and fair consis-

tency, and hot colors indicate good and very good consistency.
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Weighted clustering and path length were marked as
having good (0.733) or very good (�0.849) ICCs in the
delta to beta bands, while the ICC values in the gamma
band were marked as poor (Table II).

Consistency of the number of modules was rated as mod-
erate to good in the delta to beta bands (�0.551) and was
fair in the gamma band (0.320) (Table II). The consistency of
modularity Q was good in the delta band and upper alpha
band, moderate in the lower alpha band and gamma band,
fair in the beta band, and unreliable in the theta band. How-
ever, the Bland–Altman plot for the modularity still showed
good limits of agreement (Fig. 7 and Table II).

When determining consistency between template and
native MRI for global MST measures, it can be noticed

that the ICC of leaf fraction was rated as good across all
frequency bands (Table II). Furthermore, the ICC of MST
diameter fluctuated between very good (delta, theta band),
fair (lower alpha band), moderate (upper alpha, beta
band), and good (gamma band) (Table II). Bland–Altman
plots for all global measures indicated acceptable to good
limits of agreement, while no systematic differences were
observed (figures not shown).

DISCUSSION

The use of a native MRI for co-registration is the current
standard in MEG analysis, yet obtaining individual MRI

Figure 5.

Bland–Altman plots of global relative power. Bland–Altman plots

of the respective difference in global relative power across sub-

jects (n 5 17) between the template MRI and the native MRI for

each individual against their respective means. Thin lines

represent the limits of agreement corresponding to 61.96 SD.

The thick line represents the respective mean. Panels indicate

frequency bands: A, delta band; B, theta band; C, lower alpha

band; D, upper alpha band; E, beta band; F, gamma band.
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may not always be feasible. By using a template MRI, the
co-registration and head model changes, which may affect
beamformer-reconstructed time series, and subsequent
connectivity and network analyses. Therefore, the aim of
this study was to examine the consistency of functional
connectivity and network topology estimated from MEG
data, using either a template or native MRI. Specifically,
we examined what the possible inconsistencies of the tem-
plate approach versus a native MRI would be for basic
measures such as band-limited relative power, but particu-
larly for higher order measures such as functional connec-
tivity and network topology. Our results showed overall
good consistency of the use of a template MRI versus a

native MRI for MEG co-registration and an atlas-based
beamforming approach, particularly for relative power,
functional connectivity and both regional and global net-
work topology. Furthermore, consistency was maintained
across two different atlas-based beamforming approaches,
with the peak voxel approach showing slightly less consis-
tency as compared to the centroid approach.

With the centroid method, the location of the voxel that
is chosen as representative for the ROI is solely based on
geometry, thus the location of this voxel will only deviate
if an anatomical mismatch is present between the template
and native MRI. In contrast, with the peak voxel approach,
the location of the representative voxel, that is, the peak

Figure 6.

Bland–Altman plots of phase lag index. Bland–Altman plots of

the respective difference in phase lag index across subjects

(n 5 17) between the template MRI and the native MRI for each

individual against their respective means. Thin lines represent

the limits of agreement corresponding to 61.96 SD. The thick

line represents the respective mean. Panels indicate frequency

bands: A, delta band; B, theta band; C, lower alpha band; D,

upper alpha band; E, beta band; F, gamma band.
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voxel, is defined by the beamformer output. This location
is not only directly affected by the aforementioned ana-
tomical mismatch between template and native MRI, but
also indirectly by the effect of this mismatch on the beam-
former itself. We have shown that the spatial consistency
of the virtual electrode locations, and therefore the
expected consistency of subsequent outcome measures
between the template and native MRI approach is indeed
somewhat more stable for the centroid method than for
the peak voxel method (Fig. 2). Furthermore, for all fre-
quency bands, these distances correlated negatively with
the ICC for relative power (although only significantly for
the delta, theta, and gamma band), indicating that, as

expected, larger spatial deviations generally relate to
poorer consistency across approaches. However, even in
the extreme case of a spatial deviation of 35 mm (Fig. 3,
delta band), the ICC of the relative power for this particu-
lar region was still categorized as “moderate.” We there-
fore conclude that the use of a template versus native MRI
leads to differences in the voxel selection, but that these
differences have a relatively small impact on the consis-
tency of the results of subsequent analyses.

When further investigating the consistency of outcome
measures, we first showed that the time series themselves
are highly consistent between the template and native MRI
approach. Even time series from regions with the lowest

Figure 7.

Bland–Altman plots for modularity. Bland–Altman plots of the

respective difference in modularity across subjects (n 5 17)

between the template MRI and the native MRI for each individ-

ual against their respective means. Thin lines represent the limits

of agreement corresponding to 61.96 SD. The thick line repre-

sents the respective mean. Panels indicate frequency bands: A,

delta band; B, theta band; C, lower alpha band; D, upper alpha

band; E, beta band; F, gamma band.
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consistency in peak voxel location, such as Heschl’s gyrus,
were moderately consistent across methods. These results
therefore provide support for the idea that time series
obtained with the template approach can be used as input
for subsequent analyses.

The lowest consistency for global parameters averaged
across subjects was observed for the MST leaf fraction and
diameter, although these still yielded moderate to very
good consistency in this relatively small sample. Owing to
the higher order nature of these network measures, we
expected their consistency to decrease nonlinearly: a basic,
robust measure such as relative power will only be slightly
affected by reconstruction errors [Beg et al., 2009; L�opez
et al., 2014; Steinstraeter et al., 2009]. However, these
inconsistencies could be augmented in the next step of
determining phase correlations. When taking the analysis
one step further and calculating network topology, these
inconsistencies could accumulate, potentially in a nonlin-
ear manner (although, importantly [Fraschini et al., 2016]
recently showed that MSTs can be accurately reconstructed
even when PLI estimates are noisy). However, our results
show that these higher level graph measures show larger
but still acceptable inconsistencies across global measures.
When looking at these complex measures on a more
detailed scale, that is, at MST degree of individual regions,
the consistencies decreased further (poor to moderate),
and varied over regions. One reason for this variation
could be that the location of the representative voxel was
“incorrect” for some regions. This is most likely to be an
issue for larger ROIs, where the distance between the
selected location of the representative voxel and the cor-
rect location can become large, in combination with a high
SNR, that is, when the spatial resolution of the beam-
former is high so that activity is rapidly suppressed when
moving away from the correct location [Barnes et al.,
2004]. Importantly though, we have shown here that
despite such potential errors at the local level, the patterns
of functional connectivity and network topology are con-
sistent at the global level.

The relatively weak results in the gamma band at
regional and global levels might be attributed to a range
of issues, which include the possibly larger distance
between peak voxels as determined with the template ver-
sus native MRI approach (Figs. 2 and 3), muscle artifacts,
and/or overall lower signal-to-noise ratio. More consistent
results were obtained when using the centroid approach
as opposed to the peak voxel method. Hypothetically, sig-
nals in the gamma frequency—with their possible overlap
with artifacts and thus outliers in signal intensities—may
be more sensitive to registration errors when focusing on
the peak voxel, whereas choosing the centroid voxel may
limit the influence of such artifacts. In general, though, the
results for the peak voxel and centroid approaches were
comparable, which is in line with previous research [Hille-
brand et al., 2016; Zobay et al., 2015]. Furthermore, it is
known that high-frequency neural activity overlaps with

the spectral bandwidth of muscle activity [Muthukumar-
aswamy, 2013]. Finally, the lower signal-to-noise ratio of
gamma activity may limit the spatial resolution of the
beamformer regardless of co-registration method [Hille-
brand and Barnes, 2003, 2011].

Vitamin E capsules were used to define anatomical
matching between MEG and MRI coordinates. However,
placing vitamin E capsules at anatomical landmarks may
lead to larger co-registration errors than for instance co-
registration with surface matching [Adjamian et al., 2004].
As a result, one might argue that differences between tem-
plate and native MRI co-registrations may have been
imperfectly assessed, which may have led to higher consis-
tency between the two approaches in comparison to the
use of surface matching or head-casts as a co-registration
method [Liuzzi et al., 2016; Troebinger et al., 2014]. More-
over, in the current study we did not use digitized head
shapes to warp the template MRI to the subject’s anatomy.
Such an approach could potentially also improve the accu-
racy of the forward model and the reconstructed func-
tional connectivity and networks, although our results
suggest that such improvements would be modest, as
ICCs were already moderate to very good. In case digi-
tized head shapes are not available, co-registration with a
template MRI could be performed using fiducial markers.
Such a co-registration approach is less accurate than a sur-
face matching approach [Adjamian et al., 2004], yet future
studies should determine how much these extra errors
add to connectivity and network reconstruction errors
when using a template-based approach.

Here, we considered the native MRI as the standard of
analysis in MEG co-registration. Our rationale was that if
the assumptions behind a particular source reconstruction
approach are valid [Hillebrand et al., 2005], then the accu-
racy of the inversion depends on the accuracy of the for-
ward solution, and therefore on the accuracy of the co-
registration and MRI-derived head model. Intuitively, the
native MRI provides the most accurate information for the
forward solution, and therefore the most accurate source
reconstructions. However, in the presence of other errors,
such as inaccurate source models, there could, perhaps
counterintuitively, be situations where it is beneficial to be
less accurate (either in terms of anatomy or signal-to-noise
ratio) [Hillebrand and Barnes, 2003, 2011]. Moreover, it is
possible that by using a template MRI individual variation
in outcome measures is “suppressed.” This would make
group-effects more apparent and would therefore benefit
group-level analysis [Grabner et al., 2014; Huang et al.,
2010]. Our results may support this notion, although only
the use of model data may answer this question defini-
tively. Our current goal was to investigate the consistency
of experimental data analyzed with either a template or a
native MRI.

The spatial resolution of MEG varies from millimeters to
centimeters across the brain [Hillebrand and Barnes, 2002].
To perform our connectivity and network analyses, we
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opted to use the AAL atlas, although other atlases with
higher resolutions are available [Evans et al., 2012]. This
atlas roughly matches the spatial resolution of MEG data
[Hillebrand and Barnes, 2002], and has as such been used
many times by our group [Douw et al., 2013; Hillebrand
et al., 2016; Olde Dubbelink et al., 2013; Tewarie et al.,
2014b] and others [Dunkley et al., 2015; Hunt et al., 2016].
Moreover, the atlas-based beamforming approach has been
the subject of previous work [Hillebrand et al., 2012]. It
has also been shown that the peak voxel method and the
centroid-based method give similar results [Hillebrand
et al., 2016; Zobay et al., 2015]. Taken together, these
results suggest that the resolution of the atlas that was
used, namely 78 cortical ROIs in the AAL atlas, matches
the resolution of the resting-state MEG data. This conclu-
sion is also supported by a recent study [Farahibozorg
et al., 2017], in which different data-driven parcellation
approaches resulted in �70 ROIs, which is comparable to
the number of ROIs used in our study.

We used the standard Montreal Neurological Institute’s
template, which is a widely used template and is based
upon MR images of healthy participants, as a substitute
for participants’ individually acquired MRI. Although the
precision of the use of a template MRI could theoretically
be improved by using population specific templates for
different ages [Richards et al., 2016], head sizes, and head
shapes, for the subsequent connectivity and network anal-
ysis [Fillmore et al., 2015; Rorden et al., 2012], the current
results generally support its use in the general population.
However, we note that the use of a template MRI might
become problematic when patients suffer from brain atro-
phy or intracranial lesions, as these may yield much larger
co-registration issues than explored in the current study.

In this work, we used beamforming as an inverse solver
for MEG data. It remains an open question whether our
conclusion that a native MRI can be replaced by a tem-
plate without introducing large errors in connectivity or
network estimates generalizes to alternative source recon-
struction approaches. In particular, inverse solvers that use
hard constraints on, for example, the location and orienta-
tion of the cortical surface, such as minimum norm based
approaches [Baillet et al., 2001], are likely to suffer from
the inaccuracies in these constraints that may occur due to
the use of a template MRI [Hillebrand and Barnes, 2003].
Similarly, we only tested the use of a template with MEG
data. A recent study that examined the consistency of
source localization and connectivity estimates in EEG,
shows variability in connectivity and this variability was
seen across inverse methods and toolboxes [Mahjoory
et al., 2017]. For EEG measured with a limited number of
electrodes, the spatial resolution is lower than that for
MEG to begin with; hence, the effects of inaccuracies due
to the use of a template MRI instead of a native MRI will
probably be small. However, for EEG with hundreds of
channels, the accuracy of the forward solution becomes
more important, such that the use of a template could

potentially have detrimental effects. Related to this issue,
we have used a simple head model in this work. Owing to
the use of a simple head model, relatively large localiza-
tion errors were to be expected to begin with [Stenroos
et al., 2014]. Again, using more sophisticated head models,
such as Finite/Boundary Element Models (FEM/BEM)
would require more accurate information from MRI, and
we therefore expect the use of a template to have more
detrimental effects with such head models. In general, the
effect of replacing a native MRI with a template is difficult
to predict for a particular situation, as it will depend on
the details of each source (e.g., location, amplitude, orien-
tation), and other circumstances (e.g., SNR, number of
other active sources and their relative strengths and loca-
tions, type of head model used, MEG system used, inverse
solver used, etc.). Although such details remain uncertain
in the current study, we envisage that this would form a
fruitful area of research for future simulation studies. Simi-
larly, simulations could also further quantify how tolerant
phase relationships are to reconstruction errors in source
location and amplitude. Our results suggest that even in
the presence of localization errors (Fig. 2) and errors in the
reconstructed time series (Table I), the estimated phase
relationships remain rather consistent (Fig. 4).

Here, we have shown, using an experimental data set,
what the impact is of using a template versus native MRI
for co-registration of MEG data on the global and regional
properties of reconstructed functional networks. We
observed that functional connectivity and functional net-
works can be reconstructed with reasonable consistency
across approaches. This may encourage others to also
apply sophisticated analyses to MEG datasets that have no
native MRIs available, which they otherwise may not have
considered.
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