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S u m l ' n a r y  

The molecular characteristics of the humoral immune response to a serotype A Cr~tococcus neoformans 
infection were compared with the response elicited by a cryptococcal ghicuronoxylomannan-tetanus 
toxoid (GXM-TT) conjugate. Anticryptococcal monoclonal antibodies (mAbs) isolated from both 
responses have previously been shown to recognize the same antigenic determinant of cryptococcal 
GXM. Southern blot and sequence analyses indicate that the hybridomas isolated from each response 
arose from only a few precursor B cells. All the mAbs generated from the infected and GXM-TT 
conjugate-immunized mice utilize the same VH7183 family member: J.2/J.4, v~5.1, and J~l; 
mAbs generated by different B cells had complementarity-determining region Ys (CDR3s) composed 
of seven amino acids with a common sequence motif. Thus, the molecular analysis of these 
anticryptococcal mAb-producing hybridomas indicated that the response to both cryptococcal 
infection and conjugate immunization was oligoclonal and highly restricted with regard to 
immunoglobulin gene utilization. The GXM-TT conjugate primarily stimulated isotype switching 
and clonal proliferation, and did not result in hybridomas expressing additional immunoglobulin 
repertoires. The mAbs from both responses had a number of replacement mutations at the 5' 
end of CDR2 that appear to be the result of antigen-driven selection. Somatic mutation also 
resulted in altered epitope specificity for one mAb, 13F1. Passive administration of representative 
mAbs from different clones generated in response to the GXM-TT conjugate prolonged survival 
of lethally infected mice. 

C ryptococcus neoformans is a ubiquitous organism that is a 
potential opportunistic pathogen of immunocom- 

promised individuals (1). In recent years cryptococcal infec- 
tions have become an increasing problem for AIDS patients 
(2). The major determinant of C. neoformans virulence (3) 
is a capsule composed of a polysaccharide that accumulates 
in body fluids and tissues during cryptococcal infection (4, 
5). C, neoformans has been divided into five serotypes (A, B, 
C, D, and AD) (6, 7), each of which exhibits structural differ- 
ences within the glucuronoxylomannan (GXM) 1 component 
of the capsular polysaccharide (8-14). Infected individuals rarely 
have detectable anticryptococcal antibodies (1). Unresponsive- 
ness to cryptococcal infection and immunization with purified 
C. neoformans capsular polysaccharide (CNPS) has been at- 
tributed to immune paralysis, which is probably mediated 

1 Abbreviations used in this paper: aka, apparent affinity constant; CNPS, 
Cryptococcus neoformans capsular polysaccharide; GXM, glucuronoxylo- 
mannan; R/S, replacement/silent; TD, T cell dependent; TI, T cell 
independent; TT, tetanus toxoid. 

by T suppressor cells (15, 16). Moreover, purified CNPS is 
a T cell-independent (TI) type 2 antigen (16, 17) and does 
not induce Th cell-mediated amplification of the humoral 
immune response. In addition, we have shown that the '~5% 
of mice that produce antibodies during infection with din- 
ical isolate mount a very restricted antibody response with 
respect to isotype, Ig variable gene utilization, and donal 
proliferation (18). 

There is considerable evidence that anti-CNPS antibodies 
contribute to host defense. Such antibodies enhance fungistasis 
by NK cells (19, 20), promote phagocytosis by macrophages 
(21, 22) and peripheral blood monocytes (23), and facilitate 
fungal killing by PBMC (24). Patients with cryptococcosis 
have a more favorable prognosis if serum anticryptococcal 
antibodies are present (25). Moreover, AIDS patients lack 
CNPS-specific IgG, suggesting that a deficiency in antibody 
immunity may contribute to their marked susceptibility (26). 
Although purified CNPS is a poor immunogen, conjugates 
composed of CNPS components and protein carriers have 
been developed as potential vaccines to stimulate antibody 
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production (12, 27-29). In addition, passive administration 
of certain mAbs (30, 31) or polyclonal sera (32, 33) prolong 
survival of lethally infected mice. mAbs have also been shown 
to improve the efficacy of amphotericin B (34, 35). However, 
not all antibodies are equally protective (31, 36, 37). Iden- 
tification of beneficial antibodies and their characteristics is 
important for determining whether such antibodies are gener- 
ated in response to conjugate vaccines. 

We recently reported the isolation of six IgMK and one 
IgGIK mAbs from a serotype A C. neoformans-infected BALB/c 
mouse, and eight IgMg, one IgG3K, nine IgGIK, and four 
IgAK mAbs from a BALB/c mouse immunized with a T 
cell-dependent (TD) serotype A GXM-tetanus toxoid (GXM- 
TT) conjugate (38). These mAbs all recognize a common 
antigenic determinant present on the GXM of the four sero- 
types of CNPS (38). By determining the primary nucleotide 
structure of these anti-CNPS mAbs, we have been able to 
compare the basic antibody structures and gene usage of specific 
mAbs generated in response to CNPS present during cryp- 
tococcal infection and GXM-TT immunization. Examination 
of the Ig gene rearrangement patterns and CDR3 sequences 
has enabled us to also determine the donal origins of the 
B cells that participated in response to CNPS during infec- 
tion and immunization with the GXM-TT conjugate. Our 
results provide insight into the B cell response to cryptococcal 
antigens and are of fundamental importance with regard to 
vaccine design and passive mAb therapy of cryptococcosis. 

Materials and Methods 
C. neoformans Strains and Polysaccharides. Serotype A (strain 

24064) and D (strain 24067) C. neoformans were obtained from the 
American Type Culture Collection (ATCC; Rockville, MD). These 
strains were maintained on Sabourand's dextrose agar (Difco Labora- 
tories, Detroit, MI) at 4~ and grown with moderate shaking at 
37~ in Sabourand's dextrose broth (Difco Laboratories). CNPS 
was isolated as described (3). 

Hybridomas and mAbs. Hybridomas that produced anticryp- 
tococcal polysaccharide-specific mAbs were isolated and character- 
ized as described previously (38) from a serotype A (ATCC 24064)- 
infected BALB/c mouse and a serotype A (NIH 371) GXM-TT con- 
jugate (27) -immunized BALB/c mouse. These hybridomas were 
generated at the Albert Einstein College of Medicine Cancer Center 
Hybridoma Facility (Bronx, NY). 

Apparent Affinity Constant (aka) Determination. The aka of each 
mAb for serotype A CNPS (CNPS-A) was determined by the 
method of Nieto et al. (39). The assay involved measuring the in- 
hibition of mAb binding to CNPS-A-coated microtiter plates in 
the presence of soluble CNPS-A. 1.5/xg mAb was incubated 1.5 h 
at 37~ in the presence of decreasing concentrations of soluble 
CNPS-A in microtiter plates (25801; Coming Glass Works, 
Coming, NY) coated with 100 ng CNPS-A and blocked with 1% 
BSA and 0.5% horse serum. The assay was developed using alka- 
line phosphatase-labeled goat anti-mouse heavy chain-specific re- 
agents (Fisher Biotech, Orangeburg, NY), followed by addition 
of alkaline phosphatase substrate (Sigma Chemical Co., St. Louis, 
MO). aka were calculated assuming a molecular weight of 1.4 x 
1@ for CNPS-A (40). 

Southern Blot Hybridization. Productive and nonproductive rear- 
rangements of the heavy and light chain genes were analyzed as 
described previously (18). For analysis of Ig heavy chain rearrange- 

ment patterns, hybridoma, NSO myeloma fusion partner, and 
BALB/c liver DNA were digested with the restriction enzyme 
EcoRI, and blots were probed with the 2-kb BamHI-EcoKI J,3- 
J,4 probe, Jlt (41). For analysis of Ig light chain rearrangement 
patterns, hybridoma, NSO myeloma fusion partner, and BALB/c 
liver DNA were digested with the restriction enzyme HindlII, 
and blots were probed with the 2.7-kb HindlII-HindlII J~1-5 
probe (42). 

mRNA Sequencing. Total cellular RNA was isolated by CsC1 
gradient sedimentation of hybridoma lysates prepared in a guani- 
dinium solution (4.23 M guanidine isothiocyanate; (Fluka Bio- 
Chemika, Buchs, Switzerland), 0.017 M N-huroylsarcosine, 0.025 M 
sodium citrate, pH 7.0, 0.015 M ~-mercaptoethanol, 0.0011% 
anti-foam A). Poly(A) + mlLNA was isolated using an oligo(dT) 
(Collaborative Research Incorporated, Bedford, MA) affanity column. 
The nucleotide sequence of hybridoma antibody mRNA was de- 
termined using a modification of the method of Geliebter et al. 
(43), and representative sequence data are available from EMBL/ 
GenBank/DDBJ under accession numbers Lo5431 and 1.o5432. The 
following oligonucleotides, synthesized in the DNA synthesis 
facility of the Cancer Center at our institution, were used as primers: 
TGGATGGTGGGAAGATG (V~), GACCCCAGAAAATCGGTT 
(5' V~), TCTCGCAGGAGACGAG~A (/~), G A C G A ~ -  
GAAGACATT (/~), G~CAGTGGATAGAC (3~1), AAGTAG- 
GCC' [TIGACAA~A (3'3), GAGTGTCAG~TAGATGGT 
(c~), and TGTTCTTGGCATTGTCTCTG (V.7183). Sequence 
searches and comparisons were performed using the Genetics Com- 
puter Group (GCG) Sequence Analysis Software (SAS) Package (44) 
and the sequence compilation of Kabat et al. (45). Theoretical 
replacement/silent (R/S) ratios were calculated using the Replace- 
ment/Substitution program written by D. Lustgarten and J. Min- 
dell (Albert Einstein College of Medicine). 

Protection Studies. Protection studies were performed as described 
in detail elsewhere (31). Briefly, ascites containing 600/~g mAbs 
10FI0, 17E12, or 18B7, or 200/xl ascites from the non-Ig-producing 
fusion partner myeloma, NSO, were administered intraperitoneally 
to 10 female A/J mice in each group. Approximately 30 rain later, 
10 s serotype D (ATCC 24067) C. neoformans was administered in- 
traperitoneally. Serotype D cryptococci were used because we wanted 
to determine whether our mAbs, generated against serotype A and 
reactive with serotypes A-D (38), would protect against both patho- 
genic serotypes. Results of each experiment were analyzed by a 
log-rank analysis program written by Dr. C. J. Chang (Albert Ein- 
stein College of Medicine) using the SAS statistical software package. 

Results 
mAbs. As previously reported (38), two independent sets 

of anticryptococcal antibody-producing hybridomas were iso- 
lated. Seven were derived from a serotype A C. neoformans- 
infected BALB/c mouse, and 22 were derived from a sero- 
type A GXM-TT conjugate-immunized BALB/c mouse. 
These mAbs were of the IgM, IgG3, IgG1, and IgA heavy 
chain and K light chain isotypes (Table 1), and based on com- 
petition experiments and reactivity with CNPS, all recog- 
nize the same antigenic determinant present on serotype A, 
B, C, and D CNPS (38). We have now characterized the mo- 
lecular structure of each of these mAbs and determined their 
clonal origins and relative binding to CNPS. 

Ig Gene Utilization. To determine the molecular struc- 
ture and variable gene usage, the heavy and light chain Ig 
mRNA sequence of each mAb was determined for the heavy 
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Table 1. Hybridoma Clonal Families and mAb VH and VL Usage 

Gene usage 
B cell mAb 

Group c l o n e  Hybridoma isotype aka V. J. VL JL 

A 

B 

x 109/3/1 

1 8H3 /zk * V.7183 J.4 v~5.1 Jkl 

2 1E10 #k 7.0 V.7183 J.2 V~5.1 Jkl 
3B10 'yak 3.0 V.7183 J.2 Vk5.1 Jkl 
3D1 /zk 21 V.7183 J.2 Vk5.1 Jkl 
4D4 #k 1.5 V.7183 J.2 vk5.1 Jkl 
5E9 /zk 13 V.7183 J.2 Vk5.1 Jkl 
7E5 #k 19 V.7183 J.2 vk5.1 Jkl 

3 2D10 /~k 209 V.7183 J.2 Vk5.1 Jkl 
2H1 3rlk 2.5 V.7183 J.2 Vk5.1 Jkl 
3H5 ")'3k 13 V.7183 J.2 VkS. 1 Jkl 
13G12 otk 1.6 V.7183 J.2 VkS.1 Jkl 
18G9 ak 1.3 V.7183 J.2 Vk5.1 Jkl 

4a 4G9 3qk 5.2 V.7183 J.2 VkS. 1 Jk 1 
7G7 /zk 41 V.7183 J.2 Vk5,1 Jkl 
9Fll 71k 1.8 V.7183 J.2 Vk5.1 Jkl 
12A1 /xk 38 V.7183 J.2 VkS. 1 Jkl 
12F4 3'ak 0.8 V.7183 J.2 Vk5.1 Jkl 
13F1 /~k 39 V.7183 J.2 Vk5.1 Jkl 
14E1 yak 1.3 V.7183 J.2 VkS.1 Jkl 
15E8 /~k 6.1 V.7183 J.2 Vk5.1 Jkl 
16E4 #k 0.8 V.7183 J.2 VkS.1 Jkl 
18B7 3'1k 5.4 V.7183 J.2 Vk5.1 Jkl 
25G12 otk 1.6 V.7183 J.2 Vk5.1 Jkl 

4b 5E4 /~k 1.3 V.7183 J.2 Vk5,1 Jk 1 
7D8 otk 0.5 V.7183 J.2 VkS. 1 Jkl 
10F10 3qk 1.5 V.7183 J.2 Vk5.1 Jkl 
25E12 3'1k 1.7 V.7183 J.2 VkS.1 Jkl 

4c 9Ell /~k 12 V.7183 J.2 Vk5.1 Jk 1 

4d 17E12 'yak 11 V.7183 J.2 Vk5,1 Jkl 

Groups A and B refer to hybridomas derived from a serotype A-infected mouse and a serotype A GXM-TT conjugate--immunized mouse, respectively. 
* Too low to be measured. 

chain sequences (Table 1 and Fig. 1). The mAbs isolated from 
both the infected and GXM-TT conjugate-immunized mice 
define a highly restricted response with respect to Ig variable 
gene usage. 27 of the 29 mAbs isolated from both mice were 
very homologous to each other and almost certainly use the 
same germline V.7183 gene element, have a seven-codon 
CDR3, and utilize J.2, V~5.1, and J~l (Table 1). A con- 
sensus V.7183 sequence was derived based on the germline 
V.7183:283 sequence (46) by incorporating into the V.7183: 
283 sequence those base changes shared by all the mAbs from 

1107 Mukherjee et al. 

both the infected and GXM-TT conjugate-immunized mice. 
The consensus V.7183 sequence is 94.9 and 95.6% homol- 
ogous (44) to the germline V.7183:283 (46) and V87183: 
10-19 (47) gene sequences, respectively, suggesting the anti- 
CNPS mAbs are encoded by an as yet unreported V~7183 
family member. When compared with the 29 mAb sequences, 
18 mAbs had an A at the first base of codon 54 (Fig. 1), 
resulting in an asparagine residue. The two described germ- 
line V87183 (283 and 10-19) sequences (46, 47) each have a 
G at this position (Fig. 1) encoding an aspartic acid. Since 



C
~

m
 

V
lI

~
I 

I1
: 

21
3 

V
~

71
03

 
=

10
-1

 
t 

m
N

e 
J3

 

8]
O

 

11
11

 

)I
IA

0 
zm

 

ID
4 

?1
1 

I 
,- 

I 
~,

+,
 

I 
,- 

I 
~ 

J 
,"

 
1 

++
o 

le
 

~+
 

41
 

so
 

Io
 

+
o 

-+
- 

.
.

.
.

.
.

.
.

.
.

 
o

~
 

--
- 

-~
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.<
 

.
.

.
.

.
.

.
.

.
 

-o
- 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
~ 

.
.

.
.

.
.

.
 

m
 

.
.

.
.

 
-c

 
.,

 
_~

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
~ 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
o~

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
r 

--
- 

;,
--

 
--

- 
+-

.e
- 

0 a"
 

J
il

l 

ll
al

l 

=
1+

1 

i+
t 

sl
+

1 

~
n !1
11

 

I!
11

 

11
~3

1 

11
rl

 

11
11

 

Il
ll

l 

~l
~l

l|
;l

ll
 

V
l~

Il
l 

:I
0-

It
 

11
1o

 

+
to

o 

+1
o4

 

ti
t 

ID
I0

 

il
G

 

31
5 

13
01

;I
 

1K
I 

4r
l 

+
ll

 

tl
zz

 

ti
ll

 

t~
zl

 

II
A

I 

11
14

 

ll
rl

 

[4
ll

 

li
ll

 

lU
4 

IS
i:

I 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

A 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
 

c 
~
-
 

-~
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
-I

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
.l

C
 

~
' 

~
c 

~
t

 
.

.
.

.
.

.
.

.
.

.
 

-,
r-

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
~ 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
~ 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

12
 i

- 
IZ

 i
Z

 _
-Z

 IZ
 i

i 
iZ

 1
2 

IZ
 "

.T
, ..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

 
7-

 .
..

..
..

..
..

 
~,

 "
7.

 .
..

..
..

..
. 

~+
~ i

~.
 ..

..
..

..
..

. 
7-

 
..

..
..

 
, .

..
..

..
..

..
..

 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
~ 

.
.

.
.

.
.

 
i:

- 
,r

-m
 

.
.

.
.

.
.

.
.

.
 

~ 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
m

 .
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

,r
--

- 
+

- 
.m

 
~,

 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

~ 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

~
;,

r-
 

-
-

 
o-

 
.z

.-
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
t 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

Ii
~ 

I 
co

ll
 

oo
 

t+
J 

J,
l 

.
.

.
.

.
 

+ 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
C

m
S

la
. 

cm
 

m
~"

 
m

 
.~

m
 

m
 

no
 

cm
 

.
.

.
.

.
.

.
 

~ 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

�9
 .

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

~ 
.

.
.

.
.

.
.

.
.

.
 

c 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

.
.

.
.

.
.

.
 

+,
+-

 
6 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
--

c 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
�9

 
--

- 
_~

 
.

.
.

.
.

.
 

.
.

.
.

 
+ 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

t,
- 

--
- 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

.
.

.
.

.
.

 
-c

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

 
G

 .
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
M

 .
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

.
.

.
.

.
.

.
.

 
i-

- 
T 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
c 

.
.

.
.

.
.

.
 

~ 
.

.
.

.
 

zl
zo

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

3o
z 

.
.

.
.

.
.

.
.

 
c
 .

.
.

.
.

.
.

.
 

t1
~

 
- 

--
- 

c 
.

.
.

.
.

.
.

.
.

.
 

sl
t 

.
.

.
.

 
~ 

.
.

.
.

.
.

.
.

.
.

.
 

+
is

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

C
I

 
. 

* 
A

~
 

lm
 

31
5 

.
.

.
.

.
.

.
.

.
.

 
c 

.
.

.
.

.
 

11
1+

 
.

.
.

.
.

.
.

.
.

.
 

r 
.

.
.

.
.

 

c~
 

4G
~ 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
C
-
-
 

S
14

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

~t
+l

l 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

i1
~

1 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

c
-

 

tn
z 

.
.

.
.

.
.

 
w

r 
.

.
.

.
.

.
 

++
O

lr+
,o

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

+
+

~4
 

.
.

.
.

.
.

.
.

.
.

.
.

.
 

c-
- 

~
11

1 
.

.
.

.
.

.
.

.
.

.
.

 
A 

.
.

.
.

.
.

 

++
,1

11
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

+
+

sl
l 

..
..

 
~ 

-A
- 

cA
 .

.
.

.
.

.
 

r 

11
1+

 
.

.
.

.
.

.
.

.
.

.
.

.
.

 
c 

~
71

1:
 

.
.

.
.

.
.

 
O

IL
 

.
.

.
.

.
 

+
.1

17
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

2s
l+

+
l 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 
c 

=
so

l~
 

.
.

.
.

.
.

.
 

^ 
.

.
.

.
.

.
.

 

A
T

 
~ 

zl
zo

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

]1
11

o 

~
z 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

4n
+

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

S
l+

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

71
~

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

~
D

lo
 

--
- 

c 
.

.
.

.
.

.
.

.
.

.
.

.
.

 
< 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

zx
z 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

t~
;z

2 

l
e
~
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

S|
4 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

~
e 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

~
a7

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

9
#
Z
I
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

9
~
1
 

c 
.

.
.

.
.

.
 

r 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

+
~

z 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

+
.a

t 
,I

 

13
vz

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

+
.4

11
 

ls
ll

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 

1
6
1
4
 

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

l+
,i

zz
 

c 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

a~
ll

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
 

Z
S

+
la

 
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

 



Table 2. VH and VL Ig Gene Rearrangement Patterns 

Group Hybridoma* H § H-  L + L- 

A 

B 

8H3 2.4 
1E10, 3B10, 4D4, 5E9 3.2 
3D1 3.2 
7E5 3.2 

2D10, 2H1, 3E5, 18G9, 13G12 3.2 
4G9, 7G7, 9Fll ,  12A1, 12F4, 13F1 

14E1, 15E8, 16E4, 18B7, 25G12 3.2 
5E4, 7D8, 10F10, 25E12 3.2 
9Ell 1.8 
17E12 3.2 

kb 
- 3.6 
4.2 3.6 

- 3.6 
6.0, 4.2, 2.4 3.6 

2.8 3.6 

3.6 

3.6 4.1 
3.6 
3.6 3.3 

H + and H- refer to the productive and nonproductive rearrangement fragment sizes as determined with EcoR.l-digested DNA probed with Jll. 
L + and L- refer to the productive and nonproductive rearrangement fragmented sizes as determined with HindlII-digested DNA probed with Jkl-5. 
(-) No hybridizing fragment was detected. 
" Hybridomas in groups A and B were isolated from the serotype A-infected and GXM-TT-immunized mice, respectively. 

this base difference was not exhibited by all the mAbs and 
was not present in the known germline sequences, we did 
not include it in our consensus sequence. However, this G 
--" A change may indeed be germline encoded or, alterna- 
tively, may be a somatic mutation that increases the binding 
of CNPS. 

The VnCDR3 of the anti-CNPS mAbs can be organized 
into four different consensus nucleotide sequences (Fig. 1). 
Al though C D R 3  regions of  individual mAbs deviate from 
the consensus C D R 3  sequences, presumably due to somatic 
mutation, and are thus not identical, each encodes seven amino 
acids that include 5' arginine and aspartic acid residues fol- 
lowed by a highly conserved pattern of  charge, polarity, and 
phobicity. For example, the CDR3 sequence of the 1E10 group 
of  mAbs from the infected mouse encodes 5' arginine, aspartic 
acid, glycine, tyrosine, phenylalanine, serine, and histidine 
3'. The C D R 3  of the 4G9 group of mAbs from the conjugate- 
immunized mouse encodes 5' arginine, aspartic acid, glycine, 
threonine, serine, glycine, and threonine 3' (Fig. 1). Unusual 
reading frames, inversions, deletions, and combinations of  
reported germline D sequences (45) were examined, but it 
was not possible to identify a known D segment in our mAbs. 

Therefore we do not know whether  a germline D element 
participated in the formation of the V . C D R 3  or whether  
this region of our antibodies is at least partially due to N 
sequences introduced enzymatically during VDJ rearrange- 
ment  (48, 49). The light chains of  all the mAbs use the same 
VK5.1 and JK1 gene elements and have the same VL-JL junc- 
tions (data not shown), suggesting that these specific light 
chain sequences are important in formation of a binding site 
capable of  interacting with CNPS. 

2 of the 29 mAbs, 8H3 from the infected mouse and 17E12 
from the GXM-TT conjugate- immunized mouse, utilize 
similar Ig gene elements as the other mAbs but have struc- 
tural differences within these elements, mAb 8H3 utilizes 
the same D and VL sequences as the other 27 mAbs, but its 
V.7183 sequence has a two-codon deletion at positions 55 
and 56 relative to the V.7183 consensus sequence (Fig. 1). 
It is conceivable that the 8H3 VH sequence represents an- 
other member  of  the VH7183 family or, alternatively, the 
missing codons are merely due to a deletional somatic muta- 
tion. In addition, 8H3 uses J .4 (Table 1) with a 5' two- 
codon deletion, resulting in a J ,  region that encodes the 
same number of  amino acid residues and displays the same 

Figure 1. V. nucleotide sequences of the anti-CNPS mAbs. The mAbs in the 8H3 and 1E10 groups were isolated from the serotype A-infected 
mouse. The mAbs in the 2D10 and 4G9 groups were isolated from the serotype A GXM-TT conjugate-immunized mouse. Sequences from clonaUy 
related hybridomas are grouped, followed by a space. VH sequences are compared to the consensus VH7183 sequence. The N/D region sequences are 
compared with consensus sequences determined from the mAbs within each clonally related group. The J, sequences are compared with J.2 or .1.4. 
Spaces indicate that the sequence is uncertain or has not been determined; dashes indicate identity; (DEL) deletion of a codon; asterisks indicate uncer- 
tainty in a base due to compression; capital letters indicate nucleotide changes resulting in amino acid replacements; silent nucleotide changes are indicated 
by lower-case letters. Framework (FR) and CDR (45) are indicated above the consensus VH, D, and germline J,2 and Jx4 sequences. The ACA codon 
at the 3' end of the hybridoma 3E5 J.2 sequence is reported by Kabat et al. (45) to be the first 5' codon of the IgG3 heavy chain constant region. 
However, we (18) and others (Joan L. Press, personal communication) have discovered an intervening GCT codon 3' of J, and 5' of the ACA codon 
that is not encoded by any J, sequence or by the reported IgG3 constant heavy chain gene. V~7183:283 (46) and VH7183:10-19 (47) are germline BALB/c 
sequences; V,62 is from BALB/c hybridoma mAb 62 (84); and the J.2 and J.4 germline sequences were obtained from Kabat et al. (45). 
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junctional amino acid as that encoded by the J,2 region used 
by all the other mAbs (Fig. 1). mAb 17E12 utilizes the same 
Ig gene dements (the same Va7183 consensus, JH2, V~5.1, 
and V,1) and the sequence of its CDI~3 is very similar to 
the other mAbs, except for a one-codon deletion at residue 
102 (Fig. 1). 

Clonal Origin of Hybridomas. The finding that all the an- 
ticryptococcal hybridomas isolated (except 8H3, which uses 
JH4 instead of JH2) utilize the same combination of heavy and 
light chain Ig gene elements (Table 1) suggests the responses 
that occurred in both the infected and conjugate-immunized 
mice were oligoclonal. The donal origin of each response 
was studied by examining the heavy and light chain Ig gene 
rearrangement patterns of each hybridoma by Southern blot 
hybridization (Table 2). The J.3-J.4 probe (Jll) hybridizes to 
EcoR.I germline BALB/c liver DNA restriction fragments of 
6.4 and 5.4 kb, and a NSO myeloma restriction fragment of 
6.6 kb. The light chain J~l-5 probe hybridizes to HindlII 
germline BALB/c liver and NSO myeloma DNA restriction 
fragments of 2.4 and 6.4 kb, respectively. Table 2 summa- 
rizes the sizes of the productive and nonproductive Jll heavy 
and J~1-5 light chain hybridizing restriction fragments, but 
does not include germline (i.e., unrearranged) and mydoma 
fragments. The productive rearrangement of the VH7183 
consensus and JH2 sequences used by all the hybridomas (ex- 
cept 8H3) was assigned to the 3.2-kb band, which is the only 
hybridoma-specific restriction fragment common to the heavy 
chain Jll hybridization patterns of all hybridomas, except 
9Ell and 8H3 (Table 2). The 9Ell hybridization pattern lacked 
the 3.2-kb band, presumably due to a change in a restriction 
site resulting from somatic mutation. Therefore, the productive 
9Ell VH7183-J.2 rearrangement was assigned to the sole 
hybridoma-specific 1.8-kb band. The productive rearrange- 
ment of the V.7183 consensus and J.4 sequences used by hy- 
bridoma 8H3 was assigned to the single 2.4-kb hybridoma- 
specific Jll-hybridizing band. The productive rearrangement 
of the V~5.1 and J~l light chain sequences used by all the 
anticryptococcal hybridomas was assigned to the 3.6-kb band 
present in each J,1-5-hybridizing light chain rearrangement 
pattern. The remaining heavy and light chain hybridoma- 
specific rearrangement pattern bands were assumed to be due 
to nonproductive Ig gene rearrangements (Table 2). 

Patterns of heavy chain rearrangement in conjunction with 
CDR.3 sequences were used to determine the clonal related- 
ness of the hybridomas isolated from each response. Somatic 
mutations present in several members of a clone are more 
likely to represent a single inherited mutational event rather 
than multiple independent identical events, and were thus 
used along with patterns of light chain rearrangement to 
confirm donal assignment and arrange hybridomas from each 
clone into specific genealogical sublineages (Table 1) (50-53). 
The hybridomas isolated from the infected mouse exhibit four 
distinct patterns of heavy chain rearrangement (Table 2), sug- 
gesting four progenitor B cells generated the seven B cells 
isolated as hybridomas from this response. Since its Ig heavy 
chain uses JH4 instead of JH2 (Table 1), hybridoma 8H3 is 
clearly the product of a separate B cell ancestor, designated 
clone 1. Since hybridomas 1E10, 3B10, 4D4, and 5E9 share 

the same pattern of heavy and light chain productive and non- 
productive rearrangements (Table 2), have very similar CDR3 
sequences and junctions (Fig. 1), and VL-JL junctions, they 
must have been derived from a second common ancestral B 
cell (clone 2 in Table 1) (52). Although hybridomas 3D1 and 
7E5 each exhibit different heavy chain rearrangements and 
could have been derived from two separate B cell precursors, 
nudeotide sequence homology, including CDK3 and its junc- 
tions (Figure 1), strongly suggests 3D1 and 7E5 were also 
derived from clone 2 (52). It is important to note that while 
nonproductive rearrangements are very useful in establishing 
clonal relationships, they can easily be lost as hybridomas re- 
duce their chromosome load (54). We cannot explain the mul- 
tiple fragments in the 7E5 heavy chain rearrangement pat- 
tern (Table 2), though it is conceivable 7E5 arose from a triple 
fusion. Thus, the hybridomas isolated from the infected mouse 
were probably derived from two, but not more than four, 
separate B cell precursors, and clone 2 dominated the response. 

Three separate heavy chain rearrangement patterns were 
exhibited by the hybridomas isolated from the GXM-TT con- 
jugate-immunized mouse (Table 2). However, besides the 
17E12 six-amino acid D, only two distinct seven-amino acid 
CDR3 sequences are present in mAbs from the conjugate- 
immunized mouse (Fig. 1), suggesting these hybridomas are 
derived from only two different B cell precursors. Based upon 
common productive and nonproductive heavy chain rearrange- 
ment patterns and CDR3 sequence homology, hybridomas 
2D10, 2H1, 3E5, 18G9, and 13G12 were derived from a 
common precursor B cell (clone 3 in Table 1). Similarly, hy- 
bridomas 4G9, 7G7, 9Fll, 12A1, 12F4, 13F1, 14El, 15E8, 
16E4, 18B7, and 25G12 were derived from a second common 
precursor B cell (clone 4a). 5E4, 7D8, 10F10, and 25E12 also 
have the same CDR3 sequence as members of clone 4a, but 
have an additional, presumably nonproductive, light chain 
rearrangement (Table 2). As noted above, lack of this non- 
productive rearrangement by some members of clone 4 may 
be due to chromosome loss. We have provisionally assigned 
hybridomas 5E4, 7D8, 10F10, and 25E12 to a separate branch 
of clone 4, designated 4b (Table 1), but they may represent 
a separate clone due to their unique light chain rearrange- 
ment pattern and somatic mutational differences (Fig. 1). Al- 
though hybridoma 9Ell displays a different heavy chain rear- 
rangement pattern, presumably due to somatic mutation, its 
CDR3 sequence is the same as that of hybridoma 12F4 and 
25E12 (Fig. 1), and its light chain rearrangement is the same 
as those of clone 4a (Table 2), suggesting but not proving 
9Ell was also derived from clone 4. Although hybridoma 
17E12 has the same heavy chain rearrangement pattern as clone 
4a and 4b members, it does not share the same light chain 
pattern (Table 2). Moreover 17E12 has a six-, not seven-, 
amino add D segment (Fig. 1). However, alignment of the 
six amino acids within the 17E12 CDR3 relative to others 
in clones 4a and 4b (Fig. 1) indicates that with the exception 
of the one-codon deletion, the sequence is identical to that 
of other mAbs in these clones, including mAbs 5E4 and 7G7. 
Thus, it is not possible to ascertain whether 1TEl2 is a member 
of clone 4 that underwent a deletion and a separate light chain 
rearrangement, or was the product of a separate B cell 
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Table 3. R/S Ratios and Incidence of Somatic Mutation in the V, of Selected Clones 

R./S ratios Incidence of somatic mutation* 

CDR2 codons CDR2 codons 

B cell clone FRs CDR1 50-66 50-58 CDR3 FR.s CDR1 50-66 50-58 CDR3 

Theoretical* 2.76 5.56 3.34 3.24 _s 

2 16/6 2/0 16/0 13/0 4/1 0.014 0.016 0.052 0.08 0.025 

3 5/2 2/0 10/2 8/1 2/0 0.0055 0.019 0.047 0.067 0.012 
4a,b 29/17 4/2 18/2 17/1 11/2 0.012 0.019 0.026 0.044 0.026 

* Incidence of somatic mutation is the ratio of the total number of unique somatic mutations to the total number of bases within a particular region 
of all the members of a clone. 
* The theoretical R/S ratios, determined using the Replacement/Substitution Program, represent the relative number of replacement-to-silent mu- 
tations that would be expected if somatic mutation of each were entirely random. 
S The theoretical R/S CDR3 ratios of the mAbs in clones 2, 3, and 4a,b are 4.0, 4.0, and 4.75, respectively. 

precursor, designated clone 4d. Thus, although we may have 
recovered hybridomas from as many as five different B cell 
precursors, the conjugate response was dominated by two 
or possibly three I3 cell clones. 

Somatic Mutations. Somatic mutations relative to consensus 
V, and CDR3 and germline J., VL, and JL Ig sequences were 
observed for all the anticryptococcal mAbs from both the 
infected and GXM-TT conjugate-immunized mouse. Most 
of the light chains had between one and five somatic muta- 
tions randomly distributed throughout the frame works and 
CDRs (data not shown). There were more mutations in the 
heavy chain (Fig. 1 and Table 3), as has also been observed 
in other responses (55). Table 3 summarizes the number of 
unique replacement (R) and silent (S) mutations present in 
the heavy chain of the mAbs in clones 2-4. Mutations present 
in more than one member of a clone were considered to be 
due to an inherited event and were counted only once. The 
ratio of R/S mutations in each B cell clone can be compared 
to theoretical values of each variable region segment calcu- 
lated for that particular segment assuming somatic mutation 
is a random event. The R/S ratios of V, CDR2 (codons 
50-66) for clones 2, 3, 4a, and 4b are considerably higher 
than the theoretical R/S ratio for this region (Table 3). 
Moreover, the bulk of these contributory R mutations are 
clustered at the 5' end of CDR2 between codons 50 and 58 
(Fig. 1 and Table 3). The high R/S ratios and localization 
of these replacement mutations within a discrete region of 
CDR2 strongly suggests antigen selection was involved and 
that these somatic mutations are not the result of random 
events. The incidence of somatic mutation is also higher in 
CDR2, especially between codons 50 and 58, than in CDRs 
1 and 3 and the frameworks. The incidence of somatic muta- 
tion within each region of the mAbs in each clone also indi- 
cates that the relative occurrence of somatic mutation in each 
mAb is approximately the same in each clone (Table 3). 

mAb Apparent Affinity. The aka's were compared by de- 
termining the amounts of soluble CNPS-A required to in- 
hibit the binding of the antibody to immobilized CNPS-A 

1111 Mukherjee et al. 

(39), as described in Materials and Methods. The aka's of the 
IgG mAbs were within a 15-fold range. The IgA antibodies 
exhibited similar aka's, and although IgA molecules are poly- 
meric, their aka's were within the range of aka's exhibited 
by the IgG mAbs, suggesting the real affinities of the IgA 
mAbs may be lower than the IgG mAbs. Even within a single 
clone (Table 1, clone 4a), the IgM mAbs from the response 
to GXM-TT conjugate immunization had a wider range of 
relative binding than IgM mAbs isolated from the response 
to cryptococcal immunization, suggesting affinity matura- 
tion occurred in response to the GXM-TT conjugate (see 
below). 

Protection Experiments. We have previously shown that the 
IgG1 mAb 2H1 from clone 3 effectively prolonged survival 
of mice lethally infected with C. neoformans (31). This 
prompted us to determine whether mAbs from other B cell 
clones stimulated by GXM-TT conjugate immunization were 
also protective. The IgG1 mAbs 18B7, 10F10, and 17E12 are 
derived from clones 4a, 4b, and 4d, respectively, and have 
somewhat different aka's (Table 1). Fig. 2 shows survival data 
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Figure 2. Survival of A/J mice after intraperitoneal treatment with 600 
#g of the IgGlx mAbs 10F10, 17E12, or 18B7, or 250/zl NSO myeloma 
ascites preceding infection with 108 serotype D (ATCC 24067) C. neofor- 
roans. Average lengths of survival are: 10F10, 146 _+ 33 d; 17E12, 80 _+ 
13 d; and 18B7, 100 _+ 31 d. 



of A/J mice given 600/~g mAb 10F10, 17E12, or 18B7 in- 
traperitoneally before intraperitoneal challenge with 108 
serotype D (ATCC 24067) C. neoformans. All three mAbs 
provided passive protection as evidenced by their ability to 
prolong survival. Mice given mAbs 10F10, 17E12, or 18B7 
lived an average of 146 + 33, 80 _ 13, or 100 _+ 31 d, respec- 
tively, while control mice lived only 11 _+ 0.3 d. However, 
the results are best reflected in Fig. 2 because these calculated 
survival values are biased due to the presence of some very 
long-term survivors in the experimental groups. The ability 
to prolong survival did not correlate with mAb aka since 
17E12 and 10F10, which differ by 10-fold in aka, each give 
similar levels of protection, and 18B7 with an intermediate 
aka was the least protective (Table 1 and Fig. 2). However, 
in conjunction with our previous studies (31), this result does 
indicate that each B cell progenitor stimulated by the GXM-TT 
conjugate gave rise to protective antibodies. 

Discuss ion 

We have examined the molecular origins of the BALB/c 
routine humoral response to serotype A cryptococcal poly- 
saccharide in infected and GXM-TT conjugate-immunized 
mice. On the basis of the hybridomas isolated, only a few 
progenitor B cells within each spleen proliferated to produce 
the B cell progeny responsible for each anticryptococcal re- 
sponse. The actual numbers of hybridomas isolated from each 
response can be used to obtain a rough estimate of the number 
of B cells activated in vivo, for it has been estimated that 
one hybridoma is isolated for every 103 to 104 activated B 
cells (56). Clonal analysis of the hybridomas from the in- 
fected mouse suggests that there was one dominant clone 
represented by five to six hybridomas, whereas the two major 
clones, 3, and 4a, isolated from the GXM-TT-immunized 
mouse, were represented by 5 and 11 members, respectively. 
Based on the number of hybridomas isolated, ,,o7,000-70,000 
B cells were activated in the spleen of the infected mouse, 
whereas ,,022,000-220,000 B cells were activated in the spleen 
of the GXM-TT conjugate-immunized mouse. Comparison 
of these estimates strongly suggests many more activated B 
cells were present in the spleen after conjugate immunization, 
consistent with the fact that GXM-TT conjugate--immunized 
mice had higher anticryptococcal serum titers than infected 
mice (38). This indicates the TD activity of the GXM-TT 
conjugate induced greater donal proliferation relative to that 
induced by CNPS during cryptococcal infection. 

Restriction with regard to antibody binding site structure 
was observed at several levels, including utilization of the same 
Ig heavy and light chain gene elements (the same germline 
V~7183 family member, J.2/J.4, V,5.1, and JA), joining of 
these particular genes at the same nucleotides, and a CDK3 
with a highly conserved size and pattern of charge and polarity. 
The need for an antibody molecule with a conserved spatial 
arrangement of structural elements was emphasized by the 
finding that mAb 8H3 utilized a J.4 gene that had a dele- 
tion of two 5' codons, resulting in a J. region that encoded 

the same number of amino acids as that encoded by the J,2 
gene utilized by all the other mAbs. 

Although compared with antiprotein responses antipolysac- 
charide responses are typically characterized as being "re- 
stricted" with regard both to isotype and clonotype (57-64), 
restriction is a relative term. For example, although mAbs 
specific for c~-(1-*6)-dextran have been shown to use a limited 
subset of V. genes, there is considerable junctional diversity 
and variation in the combinations of V. and VL genes uti- 
lized (60, 65, 66). Likewise, the response to group A strep- 
tococcal polysaccharide has been shown to be characterized 
by a heterogeneous population of antibodies (59). Similarly, 
the TI response to NP-Ficoll is characterized by utilization 
of a variety of V., D, and J. genes and their combinations 
(67). In contrast, the response to bacterial levan is somewhat 
more restricted, as indicated by a recently characterized set 
of mAbs that utilize gene elements from only three or four 
V. families (57). The response to 3-fucosyllactosamine is 
even more restricted and characterized by mAbs composed 
of V.441 and V,24B (61, 62). However, with its preferen- 
tial V, and VL gene usage, lack of junctional diversity, and 
conserved CDR3 sequences, the anticryptococcal response 
appears to be among the most highly restricted antibody re- 
sponses described to date (18). The finding that all the anti- 
CNPS mAbs (except 8H3) utilize the same V region elements 
suggests very few antigen binding sites are available that will 
suffice for recognition of cryptococcal polysaccharide and/or 
that the response was directed by structural features of the 
antigen. In vivo, a single dominant immunogenic epitope 
of cryptococcal polysaccharide may be recognized. This epi- 
tope may also be structurally simple, however, structural sim- 
plicity is not sufficient to mediate restriction of Ig gene usage 
for highly defined epitopes that can be recognized by a di- 
verse set of V. and VL regions (68). In fact, even though 
polysaccharides are composed of fewer types of chemical 
subunits than proteins, they have greater conformational and 
rotational freedom than proteins and can thus assume a greater 
multiplicity of structures (69, 70). Alternatively, only a subset 
of B cells, defined by their Ig gene usage, may be capable 
of responding to cryptococcal polysaccharide. Indeed, CNPS 
may mimic a self-antigen, and the responder B cells may be 
those that either do not produce a self-reactive antibody or 
can easily escape clonal deletion or anergy. 

Somatic mutations were observed within the Ig V. and 
VL sequences of all the anti-CNPS hybridomas isolated from 
both infected and conjugate-immunized mice. In particular, 
V. CDK2 exhibited a relatively high rate of somatic muta- 
tion. This region could be a somatic mutational "hot spot" 
(71, 72). Alternatively, a selective advantage may be conferred 
to B cells expressing surface Igs with such mutations since 
CDKs encode amino acids that contact the antigen (73) and 
could confer increased affinity and/or changes in epitope 
specificity (74-77). Indeed, although the Ig gene elements 
utilized by the anti-CNPS mAbs were the same, differences 
in both mAb's apparent affinity and fine spedficity were ob- 
served. The IgM mAbs isolated from the infected mouse all 
exhibited akas between 1.5 x 109 and 2 x 101~ M, whereas 
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the IgM mAbs isolated from the GXM-TT conjugate-im- 
munized mouse exhibited a broader range of akas even within 
a single clone (Table 1). Selection of high affinity clones in 
response to conjugate immunization is likely since only a small 
amount (5 #g) of the antigen was present (38). Conversely, 
during infection, affinity maturation may not occur simply 
because there are very large amounts of antigen in circula- 
tion, and thus a high affinity Ig receptor may not provide 
a selective advantage. 

The incidence of base changes and the relatively high ratio 
of replacement mutations in the heavy chain CDK2 suggest 
the response to CNPS is antigen driven and antigen selected. 
Since some of the mAbs within each of the clones have higher 
akas than others of the same isotype (Table 1), somatic muta- 
tion must be responsible for the differences in affinity. How- 
ever, accumulation of somatic mutations did not necessarily 
lead to higher affinity mAbs, i.e., affinity maturation. For 
example, one of the highest binding (4.1 x 101~ M) mAbs, 
7G7, from clone 4a, contains relatively few somatic muta- 
tions and replacement substitutions (V,: 50, thr-~ileu, 84, 
ser~thr, 95, tyr~phe; V~: 90, val~ileu, 95, gln~leu). 
7G7 also lacks the asparagine and aspartic acid substitutions 
at codons 54 and 56, respectively, which are present in most 
of the mAbs, including mAbs with high akas such as 2D10. 
Using somatic mutations present in the heavy and light chain 
sequences, we organized the members of clone 4a into a pos- 
sible genealogy (Fig. 3). We have tried to compare other 
members of the 4a genealogy that are of the same isotype 
but differ with respect to aka. The IgM mAbs 15E8 and 12A1 
differ by sixfold in aka (Table 1) and by 14 heavy and light 
chain amino acid substitutions, five of which are in CDRs 
(Fig. 1). Similarly, 16E4 and 13F1 differ by 40-fold in aka 
and by 11 amino acid substitutions, seven of which are in 
CDRs. In addition, relative to the monomeric IgG1 mAbs, 
the dimeric IgA mAbs of clones 3 and 4a have unexpectedly 
low akas (Table 1). Since a single amino acid substitution can 
result in a 10-fold increase in affinity or complete loss of an- 
tigen binding (77, 78), it is difficult to identify specific amino 
acid substitutions responsible for differences in antigen binding 
in the absence of a three-dimensional antigen binding site 
model. These hybridomas almost certainly represent a "snap- 
shot" of a single point during the ongoing process of the 
immune response in which Igs with a spectrum of affinities 
are produced. Thus, using hybridomas, it may be difficult 
to demonstrate that accumulated mutations lead to an in- 
crease in affinity. Indeed, as long as a particular threshold 
affinity is maintained, it may not matter in the response to 
CNPS whether very high affinities are attained, since lower 
affinity antibodies may be sufficient to trigger proliferation 
in response to this polymeric antigen. Apparent affinities may 
also not accurately reflect the efficacy of antigen-antibody in- 
teractions in triggering B cell proliferation (79). 

A change in fine specificity was observed with respect to 
the IgM mAb, 13F1, isolated from the GXM-TT conjugate- 
immunized mouse, mAb 13F1 is a member of clone 4a, and 
all the anti-CNPS mAbs, including those of this family, have 
a fine specificity pattern for the four CNPS serotypes of A 

@ 

@@ 

Figure 3. Schematic representation of one possible genealogy for the 
members of clone 4a. The progenitor B cell is represented by the large 
circle. Individual hybridomas are indicated by smaller circles designated 
with the respective mAb name, isotype, and apparent affinity ( x 109/M). 

> B > D > C. However, the fine specificity pattern of 13F1 
is A > B > C > D (38). Since the gene utilization and com- 
binatorial joining of these elements is identical among the 
members of clone 4a, somatic mutation must be responsible 
for the difference in fine specificity, supporting a similar ob- 
servation by Clarke et al. (80). A unique three-base change 
at V, residue 38, which results in an arginine to threonine 
substitution, may contribute to the change in fine specificity 
exhibited by mAb 13F1. 

Molecular analysis of the antibody response to infection 
and GXM-TT immunization revealed that both responses are 
very similar, mAbs from both responses have the same epi- 
tope specificity (38), use the same V. and V~ genes, and have 
somatic mutations. The most striking difference between the 
two sets of hybridomas is the isotype distribution. IgM mAbs 
dominated the response to infection, and IgG mAbs domi- 
nated the response to GXM-TT conjugate immunization. The 
finding that specific mAbs isolated from both responses uti- 
lize a highly restricted repertoire of Ig gene elements sug- 
gests both infection and conjugate immunization stimulate 
the same discrete subpopulation of B cells, and moreover in- 
dicates preservation of biologically relevant epitopes within 
the GXM-TT conjugate. Since the response was both oligo- 
clonal and highly restricted, it is likely that only a few pro- 
genitor B cells in each mouse exhibited the particular VHDJ. 
combination needed to respond to the cryptococcal antigens 
presented in association with the appropriate light chain. Since 
a response was elicited by all mice immunized with the 
GXM-TT conjugate (38), each mouse must have B cells with 
the required VHDJH rearrangement capable of associating 
with the necessary VJL gene combination. This strongly 
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suggests that the absence of an antibody response observed 
for the majority of infected mice (18, 38) is not due to lack 
of the necessary B cell but rather to immune paralysis in- 
duced by the large amounts of CNPS present (81). We have 
previously proposed that the '~5% of mice that do respond 
to cryptococcal infection are those that had had prior exposure 
to a crossreactive TD antigen and that infection stimulated 
residual memory B cells (18, 38). The finding that the inci- 
dence and nature of somatic mutations in CDR2 of the anti- 
bodies from the infected mouse were comparable to those 
isolated from the GXMoTT conjugate-immunized mouse 
(Fig. 1 and Table 3) is indeed consistent with the view that 
infection stimulated a secondary response (18). 

The results of the study presented here are of fundamental 
importance not only with regard to understanding the phys- 
iology of the B cell populations involved in the humoral re- 
sponse against C. neoformans, but also with respect to vac- 
cine design and passive mAb therapy. The GXMoTT conjugate 

(or a similar derivative) is a potential vaccine for individuals 
at risk for cryptococcosis (27). Since individuals with serum 
anticryptococcal antibodies have a more favorable prognosis 
(25), the finding that GXM-TT conjugate immunization and 
cryptococcal infection stimulate the same subpopulation of 
B cells is important for it implies GXM-TT vaccination will 
elicit the same type of antibodies occasionally present in in- 
fected individuals. Moreover, each B cell clone stimulated by 
the GXM-TT conjugate produced protective antibodies, as 
demonstrated by our previous finding that IgM, IgG1, and 
IgA mAbs from clone 3 (31), as well as the IgG1 mAbs 18B7, 
10F10, and 17E12 isolated from clones 4a, 4b, and 4d, respec- 
tively, prolong survival of lethally infected mice. This is an 
important observation, for not all mAbs prolong survival (31, 
36). The mAbs described here are potentially useful reagents 
for cryptococcal polysaccharide detection (82), structural anal- 
ysis of capsular epitopes (12, 83), and passive immunotherapy 
of cryptococcosis (30, 31, 35, 36). 
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