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Abstract Characterization and isolation of a large population of cells are indispensable proce-
dures in biological sciences. Flow cytometry is one of the standards that offers a method to charac-
terize and isolate cells at high throughput. When performing flow cytometry, cells are molecularly 
stained with fluorescent labels to adopt biomolecular specificity which is essential for characterizing 
cells. However, molecular staining is costly and its chemical toxicity can cause side effects to the 
cells which becomes a critical issue when the cells are used downstream as medical products or 
for further analysis. Here, we introduce a high-throughput stain-free flow cytometry called in silico-
labeled ghost cytometry which characterizes and sorts cells using machine-predicted labels. Instead 
of detecting molecular stains, we use machine learning to derive the molecular labels from compres-
sive data obtained with diffractive and scattering imaging methods. By directly using the compres-
sive ‘imaging’ data, our system can accurately assign the designated label to each cell in real time 
and perform sorting based on this judgment. With this method, we were able to distinguish different 
cell states, cell types derived from human induced pluripotent stem (iPS) cells, and subtypes of 
peripheral white blood cells using only stain-free modalities. Our method will find applications in cell 
manufacturing for regenerative medicine as well as in cell-based medical diagnostic assays in which 
fluorescence labeling of the cells is undesirable.

Editor's evaluation
This paper explores a novel approve to sorting cells without the use of fluorescent labeling using a 
light diffraction method called ghost cytometry. This paper first demonstrates this capability with 
commercial cell lines and then sorting hematopoietic cells from a patient sample.

Introduction
Characterization and isolation of a large number of single live cells are of critical importance in life 
sciences and medicine (Dean et al., 2005; Dudley et al., 2002; Fraietta et al., 2018; Knoepfler, 
2009; Reya et al., 2001). During qualitative or quantitative characterization of cells, it is most popular 
to use molecular staining such as those adopting antibody-antigen binding, where fluorescent markers 
are physically added (Brown and Wittwer, 2000). Combined with a magnetic or flow-based sorting 
system, this enables selective isolation of the cells of interest at high throughput (Herzenberg et al., 
1976; Miltenyi et al., 1990; Shapiro, 2005). However, molecular staining has numerous disadvan-
tages: the staining process is costly in terms of both time and money; number of detectable markers 
with fluorescence detection are limited by the spectral overlap of fluorophores (Perfetto et al., 2004); 
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multiple spectral compensation is complex and time consuming (Roederer, 2001); immunocytochem-
istry staining is inconsistent due to the wide variability of antibodies (Burry, 2011; Weigert et al., 
1970); and molecular staining potentially causes side effects to the cells by chemical toxicity (Fried 
et al., 1982; Patil et al., 2018; Progatzky et al., 2013). These disadvantages become an issue in 
medical applications. For instance, when producing cell therapy products, the chemical toxicity of 
molecular staining may affect the final product. Another example is that, during medical diagnosis, the 
labor and financial cost limits the tests to be used in only large hospitals that can afford them.

On the other hand, microscopic image-based cell classification of unstained cells is free from such 
limitations of molecular labeling and is a promising approach for evaluating cell functions or potentials 
in fields such as cell manufacturing (Buggenthin et al., 2017; Chang et al., 2017; Niioka et al., 2018). 
Although unstained cell images were thought to lack specific biomolecular information, recent studies 
(Christiansen et al., 2018; Ounkomol et al., 2018) revealed the potentiality of bridging between 
images and molecular labels: prediction of labels from imaging information or ‘in silico labeling.’ 
However, these approaches utilizing conventional microscopes sacrifice the high throughput and 
sorting capability which exist in molecular labeling methods (Han et al., 2016; Lindström, 2012). This 
restriction arises from the fact that the acquisition of microscopy images is slow, and the processing 
of high-content images is even slower (Pepperkok and Ellenberg, 2006). Especially, to achieve real-
time image-based cell analysis and isolation at high throughput, the processing speed becomes one 
of the substantial bottlenecks (Han et al., 2016; Nitta et al., 2018). In contrast, conventional flow-
based cell sorting systems that process simple cell information such as total fluorescence intensity fast 
enough to operate at around 10,000 cells/s (Sutermaster and Darling, 2019).

To achieve in silico-labeling-based cell classification at high throughput, we hypothesized that we 
do not need to construct the two-dimensional (2D) or three-dimensional ‘images’ for computationally 
predicting the labels. Previously, we have demonstrated ghost cytometry, an ‘imaging’ cytometry 
that is able to predict cell types based on fluorescence signals encoded with morphological infor-
mation of cells (Ota et al., 2018). However, the usage of fluorescence staining was inevitable and, 
therefore, could not suffice applications where cell staining is unfavorable. In this work, we devel-
oped a biologically supervised imaging cytometry method free from fluorescence labels called in 
silico-labeled ghost cytometry (iSGC) while we do not intend to produce any full 2D images in this 
work to prioritize the speed, we use terms of image or imaging for simplicity. This method performs 
ultrafast real-time prediction of biological labels by machine learning-based analysis of compressively 
measured image information of cells in a processing time of down to the order of microseconds 
on a field-programmable gate array (FPGA). Herein, the machine learning models are pre-trained 
by the stain-free imaging data and biological labels obtained by fluorescence staining; afterward, it 
becomes able to predict the biological labels without the measurement of fluorescence labeling. In 
other words, iSGC performs high-throughput flow cytometry without fluorescence stains but as if cells 
are fluorescently stained.

Results
Principle of iSGC and cell sorting
In iSGC, morphological information of the cells is obtained with a stain-free compressive ghost imaging 
technique which we call diffractive ghost motion imaging (dGMI). Similar to previously reported fluo-
rescence ghost cytometry (Ota et al., 2018), an imaging waveform is obtained from cells passing 
through a structured illumination at a speed where the signal width is shorter than 100 µs (Figure 1—
figure supplement 1E). However, instead of collecting the whole photons with a bucket detector, to 
perform stain-free imaging, one to several fringe patterns in the diffractive speckle pattern from the 
transmitted light are acquired with a single-pixel detector (Figure 1—figure supplement 1). While 
full image reconstruction was demonstrated either with iterative acquisition using different structured 
illuminations or structured masks with a single-pixel detector (Horisaki et al., 2017a; Horisaki et al., 
2017b), iSGC adopts a reduced acquisition for performing high-speed cell classification (Figure 1—
figure supplement 1 and Figure 1—figure supplement 2).

Figure 1 depicts an overall workflow that enables biologically supervised in silico labeling of ultra-
fast dGMI signals without image production. We first prepare a training data set by simultaneously 
acquiring the dGMI waveform and the fluorescence label from each cell. We then train the machine 
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classifier using this data set of biologically labeled waveforms. Once the classifier is trained, in turn, it 
is able to predict the fluorescence label from the stain-free imaging waveform. As a proof-of-concept 
demonstration, we here performed iSGC with two cell-line samples of HeLa S3 cells and MIA PaCa-2 
cells (Figure 2). The two cell lines are similar in size (Figure 2A) and mixed at equal concentration 
with only one of them stained with green fluorescence using LIVE/DEAD Fixable Green Dead Cell 
Stain (Invitrogen) (Figure 2B). This mixture was hydrodynamically focused and flowed through the 
structured illumination within a microfluidic channel, where the dGMI waveform and green fluores-
cence of the cells were obtained simultaneously. Using the training data set comprised of the stain-
free dGMI waveforms and the fluorescence labels, we trained a classifier based on support vector 
machine (SVM) (Boser et al., 1992). SVMs are stable in terms of optimization, and their generalization 
abilities are sufficiently analyzed on the basis of statistical learning theory. When the trained classifier 
was implemented on a FPGA, it judged the cells in real time using only the stain-free dGMI wave-
forms and then enabled subsequent sorting of the cells according to the judgment (Figure 1B). The 
actual time lapsed during the judgment for a single cell with the FPGA was 6.0 µs. In iSGC, using a 
high-content modality, the classifier can find a decision boundary in a higher-dimensional space and 
is able to make decisions based on the complex information. As a result, iSGC was able to infer the 
fluorescence label corresponding to the cell type in this first case from a fluorescence-free measure-
ment at a high area under the receiver operating characteristic curve (AUC) of 0.963 for cells flowed 
after training (Figure 2C and D). In the actual sorting process, iSGC classified the cells at an accuracy 
of 0.917 according to the FPGA classifier (Figure 2—figure supplement 1C), and the purity of the 
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Figure 1. Schematic of iSGC to analyze and sort cells based on machine-predicted labels. (A) First, the training 
data set is prepared by simultaneously acquiring the stain-free waveform and the fluorescence signal from each 
cell. Using the fluorescence intensity obtained from the fluorescence signal, each cell is labeled as positive or 
negative according to a defined threshold of the fluorescence intensity. The machine classifier is trained using this 
data set comprised of stain-free waveforms and fluorescence labels. (B) Once trained, in turn, the classifier can 
predict the fluorescence label in silico from the stain-free waveforms and sort the cells upon this prediction in real 
time. iSGC, in silico-labeled ghost cytometry.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Principle of dGMI and ssGMI.

Figure supplement 2. Principle of BSC, bsGMI, and fsGMI.

Figure supplement 3. Optical system for iSGC.

https://doi.org/10.7554/eLife.67660
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actual sorted cells was  97.3% (Figure 2E). In contrast, such accurate and high-speed classification and 
selection are challenging using existing flow cytometers that rely on low-content stain-free data such 
as forward scatter (FSC), side scatter (SSC), or back scatter (BSC), which is SSC’s analogy and can be 
used interchangeably with SSC (Figure 1—figure supplement 2). Using only FSC and SSC, the SVM-
based classifier can only draw a decision boundary in 2D space, and the classification had an AUC of 
only 0.936±0.005 (gray dashed line in Figure 2—figure supplement 1B).

Classification of induced pluripotent stem cell (iPSC)-derived cells
iSGC exhibits its significant potential in cell manufacturing processes in applications including regen-
erative medicine and cell therapy, wherein the quality of cells has to be monitored and controlled from 
various aspects including viability, purity, and identity based on cell type and differentiation states 
(Kolkundkar, 2014; Morgan et al., 2006; Segers and Lee, 2008; Yoshihara et al., 2017). We here 
demonstrate the iSGC-based cell analysis in a cell production line using human iPSCs. The production 
line starts from thawing frozen-preserved iPSCs which are then passed through multiple differenti-
ation steps, leading to the final cell product. Throughout this production line, monitoring viability, 
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Figure 2. Label prediction and cell sorting with iSGC using cell line samples. (A) Histogram of FSC for HeLa S3 
(blue) and MIA PaCa-2 (red) cells. The intensity of FSC reflects the size of cells. There is a large overlap of the two 
cell-line populations, showing that the two cell lines are similar in size. (B) Fluorescence intensity evaluation of 
HeLa S3 and MIA PaCa-2 cells before sorting. The population with lower green fluorescence intensity corresponds 
to HeLa S3 cells while the population with higher fluorescence intensity corresponds to MIA PaCa-2 cells. (C) SVM 
score histogram for the classification of HeLa S3 and MIA PaCa-2 cells obtained by iSGC as in silico-predicted 
labels during sorting. Blue and red colors assigned in the histogram correspond to the cells labeled as HeLa S3 
and MIA PaCa-2 cells, respectively, derived from the green fluorescence obtained simultaneously for validation. 
The dashed line shows the decision boundary by the SVM. (D) A receiver operating characteristic curve for the 
classification of HeLa S3 and MIA PaCa-2 cells using dGMI during sorting. The AUC for the classification with 
dGMI was 0.963, showing a high classification ability. (E) Fluorescence intensity evaluation of HeLa S3 and MIA 
PaCa-2 cells after sorting. The concentration of MIA PaCa-2 cells was enriched from  60.3% (B) to  97.3% (E). dGMI, 
diffractive ghost motion imaging; FSC, forward scatter; iSGC, in silico-labeled ghost cytometry; SVM, support 
vector machine.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison with FSC and SSC and confusion matrix for the sorting of HeLa S3 and 
MIAPaCa-2 cells with iSGC.

Figure supplement 2. Gating for the flow cytometry analysis in the classification and sorting of HeLa S3 cells and 
MIA PaCa-2 cells.

https://doi.org/10.7554/eLife.67660
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liveliness, expressions states, and purity of the cell population, and often their selective enrichment 
are of critical importance. Up to now, these examinations have required molecular staining, which 
is often toxic to cells and, if not toxic, the cells can be affected, for instance, by immune response 
(Progatzky et al., 2013). Thereby, we introduce iSGC as a promising method for stain-free analysis 
and purification in future cell manufacturing.

As a start, we demonstrated that iSGC can distinguish dead and apoptotic cells from live cells at 
high accuracy. This is essential in monitoring the population for quality control; checking if the cells 
under production are healthy (Campbell et al., 2015; Kolkundkar, 2014). It is known that using FSC 
and SSC (or FSC and BSC), dead cells are distinguishable but apoptotic cells are difficult to distin-
guish from live cells at high accuracy (Darzynkiewicz et al., 1992; Dive et al., 1992; Shapiro, 2005; 
Zamai et al., 1993). In this experiment, we performed a viability and apoptosis analysis of cultured 
human iPSCs. As shown in Figure 3A, the training label was created using the fluorescence intensity of 
propidium iodide (PI) and Annexin V, indicators of dead and apoptotic cells, respectively. With these 
labels, the training data set of pairs of a waveform and label was prepared. To enable effective classi-
fication of cells, especially in dead cell discrimination, here, we introduce other stain-free modalities 
called side scatter GMI (ssGMI) and back scatter GMI (bsGMI) (Figure 1—figure supplement 1 and 
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Figure 3. Classification of live, dead, and apoptotic iPSCs with iSGC. (A). Scatter plot of PI and Annexin V for 
iPSCs. The population within the blue, red, and orange regions were labeled as live, dead, and apoptotic cells, 
respectively. (B). Scatter plot of FSC and BSC for iPSCs without exclusion of debris and doublets. (C). Scatter plot 
of FSC and BSC for each labeled iPSC populations. The blue, red, and orange dots each correspond to live, dead, 
and apoptotic cells, respectively. All populations, which are previously shown in (B), are gated prior to labeling for 
removing debris and doublets (Figure 3—figure supplement 1A and Figure 3—figure supplement 2). In the 
plot, the live and dead populations have distinct separation, but the live and apoptotic populations overlap. (D–F) 
SVM score histograms for the iSGC-based classification of dead cells from live cells (D), apoptotic cells from live 
cells (E), and apoptotic cells from live cells within the red region in the scatter plot (B, F). The colors correspond to 
the labels in (A). All histograms are the best result of 10 times random sampling. The AUCs for each classification 
were 0.999 (D), 0.885 (E), and 0.904 (F). The mean and standard deviation of AUCs for the 10 trials in each condition 
were 0.998±0.002, 0.877±0.007, and 0.891±0.012, respectively (Figure 3—figure supplement 1, D, E, and F). BSC, 
back scatter; FSC, forward scatter; iPSC, induced pluripotent stem cell; iSGC, in silico-labeled ghost cytometry; PI, 
propidium iodide; SVM, support vector machine.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Scatter plot, confusion matrices, and SVM score histograms for the classification of live, 
dead, and apoptotic cells using iPSCs with iSGC.

Figure supplement 2. Gating for the iSGC analysis in the classification of live, dead, and apoptotic iPSCs.

https://doi.org/10.7554/eLife.67660
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Figure 1—figure supplement 2), which are SSC and BSC variants, respectively, of their fluorescence 
waveform counterpart in ghost cytometry. Using dGMI and bsGMI modalities for iSGC, it was able 
to distinguish dead and apoptotic cells from live cells with an AUC of 0.998±0.002 and 0.877±0.007 
(Figure 3D,E blue solid lines in Figure 3—figure supplement 1D and E). In contrast, using the FSC 
and BSC data with the same labels for SVM-based classification, conventional flow cytometry can only 
achieve a limited performance of 0.973±0.007 and 0.779±0.011 (gray dashed lines in Figure 3—figure 
supplement 1D and E). Especially, between apoptotic and live cells, both populations overlap in the 
FSC-BSC scatter plot (Figure 3C), and with conventional gating in the FSC-BSC scatter plot (Hawley 
and Hawley, 2004) (region within the red line in Figure 3B), apoptotic cells cannot be excluded from 
live cells. Using iSGC, we can distinguish apoptotic cells from live cells within this gate with an AUC of 
0.891±0.012 (Figure 3F, blue solid line in Figure 3—figure supplement 1F). Therefore, we show that 
iSGC can classify cells that conventional stain-free scattering intensity-based methods fail to distin-
guish, proving its significant potentials in monitoring cell viability.

Next, we demonstrated that the iSGC can classify undifferentiated cells from differentiated ones, 
an important process in the cell production line. This is critical because remaining undifferentiated 
cells can eventually cause the tumor formation after their transplantation (Ben-David and Benvenisty, 
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Figure 4. Actual fluorescence labels and predicted labels by iSGC for the classification of undifferentiated and 
cancer cells from iPSC-derived cells. (A–C). Histograms of rBC2LCN-635 fluorescence intensity for a mixture of 
NECs (orange) and iPSCs (violet) (A), a mixture of HECs (red) and iPSCs (violet) (B), and a histogram of CellMask 
Green intensity for a mixture of RPE cells (light green) and retinoblastoma (green) (C). These markers were used 
for discriminating cells in a training data set. (D–F). SVM score histogram for the iSGC-based classification of 
NECs and iPSCs (D), HECs and iPSCs (E), and RPE cells and retinoblastoma (F) with dGMI and ssGMI. The colors 
correspond to the labels in (A), (B), and (C) used for validation. All histograms are the best result of 10 times 
random sampling. The AUCs for each classification were 0.943 (D), 0.951 (E), and 0.998 (F). The mean and standard 
deviation of AUCs for the 10 trials in each condition were 0.929±0.008, 0.942±0.007, and 0.994±0.002, respectively 
(Figure 4—figure supplement 1, D, E, and F). dGMI, diffractive ghost motion imaging; HEC, hepatic endodermal 
cell; iPSC, induced pluripotent stem cell; iSGC, in silico-labeled ghost cytometry; NEC, neuroectodermal cell; RPE, 
retinal pigment epithelium; ssGMI, side scatter ghost motion imaging; SVM, support vector machine.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Scatter plot gating and ROC curves for the classification of undifferentiated or cancer cells 
and iPSC-derived cells.

Figure supplement 2. Gating for the iSGC analysis in the classification of iPSCs and NECs.

Figure supplement 3. Gating for the iSGC analysis in the classification of iPSCs and HECs.

Figure supplement 4. Gating for the iSGC analysis in the classification of RPE cells and retinoblastomas.

https://doi.org/10.7554/eLife.67660
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2011; Knoepfler, 2009). Here, we compared undifferentiated human iPSCs with differentiated 
cells—neuroectodermal cells (NECs) and hepatic endodermal cells (HECs), both derived from the 
same iPSCs. In the training process, the cells were labeled with an undifferentiation marker which 
only stains the iPSCs that are undifferentiated. The training label was created by staining the cells 
with rBC2LCN-635, a fluorescent probe for indicating undifferentiated cells (Onuma et  al., 2013; 
Figure 4A and B and Figure 4—figure supplement 1, A and B). Using dGMI and ssGMI waveforms 
of each cell type labeled by the undifferentiation marker as training data set, the classifier distin-
guished iPSCs and NECs with an AUC of 0.929±0.008 (Figure 4D and Figure 4—figure supplement 
1D), and iPSCs and HECs with an AUC of 0.942±0.007 (Figure 4E and Figure 4—figure supplement 
1E), showing its high classification capability. In contrast, using only both FSC and SSC information, 
the AUCs for the SVM-based classification of each pair of cell types were limited to 0.856±0.009 and 
0.697±0.016 (Figure 4—figure supplement 1, D and E), respectively.

In addition, we also demonstrated that iSGC can be used to further purify cells of final products 
by distinguishing contaminating cancer cells. In the final stage of production, the discrimination of 
contaminants at high accuracy is necessary to remove potentially cancerous cells, which may lead 
to tumors after their transplantation. We chose retinal pigment epithelium (RPE) cells, the first iPSC-
derived cells tested clinically, as a product of regenerative medicine (Cyranoski, 2017; Cyranoski, 
2014; Garber, 2015; Mandai et al., 2017). We applied our method for classifying a mixed popu-
lation of RPE cells and Y-79 retinoblastoma cells, model epithelial cancer cells that can potentially 
remain in the RPE cells (Reid et  al., 1974). Only the retinoblastoma cells were stained with Cell-
Mask Green Plasma Membrane Stain (Invitrogen) prior to mixing the two cell populations. Using 
dGMI and ssGMI waveforms labeled based on the intensity of CellMask Green as training data set 
(Figure 4C and Figure 4—figure supplement 1C), the AUC for classification of RPE cells with Y-79 
cells was 0.994±0.002 (Figure 4F and Figure 4—figure supplement 1F). In contrast, simultaneously 
using FSC and SSC information for the SVM-based classification, the AUC was limited to 0.966±0.004 
(Figure 4—figure supplement 1F). This difference becomes substantial when purifying RPE cells at 
a low false positive rate, or low number of overlooked cancer cells. For instance, to achieve a false 
positive rate of less than 1%,  92% of the RPE cells can be recovered with iSGC but only  52% of the 
RPE cells can be recovered with FSC and SSC (see Materials and methods). Therefore, iSGC can be 
used to distinguish and remove cancerous cells from the final products of cell manufacturing at high 
sensitivity and specificity compared to conventional stain-free methods.

White blood cell differentiation
Other than cell manufacturing, iSGC can be used for medical diagnosis based on cell classification. 
For example, peripheral white blood cell (WBC) differential count is necessary for the diagnosis of 
diseases such as inflammatory states, sepsis, allergy, and hematologic malignancies (Blumenreich, 
1990; Roussel et al., 2012). The current reference method is a 400 cell count performed manually 
under a microscope (Cherian et al., 2010; Hubl et al., 1997; Roussel et al., 2012; Roussel et al., 
2010). However, not only is this labor-intensive and does require skilled technicians, but may also 
limit accuracy and precision because of the examination of small number of cells and the subjective 
distinction of cells (Cherian et al., 2010; Hubl et al., 1997; Roussel et al., 2012; Roussel et al., 
2010). Recently, studies have been ongoing to replace the reference method with flow cytometry 
(Cherian et al., 2010; Hubl et al., 1997; Roussel et al., 2012; Roussel et al., 2010). Still, because one 
CD marker can differentiate only one cell type at the most, using antibodies for multiple CD markers 
expands the cost of diagnostic tests to be performed as a routine basis. With iSGC, peripheral WBC 
differential counting can be performed based on the morphology of the cells without CD markers, but 
objectively and with thousands of cells.

Here, we demonstrate stain-free peripheral WBC differential classification with iSGC using healthy 
blood samples spiked with model CD45+ hematopoietic  stem cells (HSCs). To train and validate 
our system, the WBCs were stained with five fluorochrome-conjugated monoclonal antibodies that 
each bind to one of these types of CD markers; CD45, CD123, CD14, CD16, and CD34. Using these 
markers, the cells were labeled as neutrophils, lymphocytes, monocytes, eosinophils, basophils, or 
HSCs (Figure 5A), corresponding to a widely performed, five-part peripheral WBC differential (Hubl 
et al., 1997; Roussel et al., 2010) and HSC enumeration (Brocklebank and Sparrow, 2001; Venditti 
et  al., 1999). Here, we additionally utilized two other stain-free modalities which we call forward 
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scatter GMI (fsGMI) and bright field GMI (bfGMI), which are analogs to forward scattering in flow 
cytometry and bright field images in microscopy, respectively, to improve classification performance 
(Figure 1—figure supplement 2). Also, convolutional neural network (CNN) was adopted to build a 
classifier for this sorting-free task. After training the iSGC classifier with the CD-marker-based labels, 
we predicted the peripheral WBCs as one of the cell types using dGMI, bsGMI, fsGMI, bfGMI, FSC, 
and BSC modalities. When we performed the classification for two donors in an intra-donor manner 
by training a model using data from one donor and applying it to data from the same donor, macro-
average F1-scores of 0.906±0.003  and 0.906±0.002 were obtained, respectively (Figure  5B and 
Figure 5—figure supplement 1A). Moreover, when we performed the classification for the same two 
donors in an inter-donor manner by training a model using a data set from one donor and applying 
it to a data set from another donor, and vice versa, macro-average F1-scores of 0.901±0.002 and 
0.884±0.004 were obtained, respectively (Figure 5C and Figure 5—figure supplement 1B). Slight 
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Figure 5. Peripheral WBC differential classification with iSGC. (A) Flow-cytometry scatter plots used for gating and labeling WBCs. (B, C) Confusion 
matrix for the classification of peripheral WBCs. The training and classification were performed using a sample from the same donor (intra-donor) 
for (B) and samples from different donors (inter-donor) for (C). The macro-average F1-scores were 0.911 and 0.904 for (B) and (C), respectively. (D, E) 
Proportion of each cell type by CD-marker-based labels, iSGC-predicted labels for cells that were gated and given the ground truth labels in (A), and 
iSGC-predicted labels for all cells including those that were not gated in (A). Similar to (B) and (C), the training and classification were performed in 
an intra-donor manner for (D) and an inter-donor manner for (E). (F–H). Scatter plot of CD45 and BSC for all WBC. The colors in each plot correspond 
to CD-marker-based labels (F), iSGC-predicted labels trained, and predicted in an intra-donor manner (G), and iSGC-predicted labels trained and 
predicted in an inter-donor manner (H). The colors in (G) and (H) correspond to the same labels as (F). BSC, back scatter; iSGC, in silico-labeled ghost 
cytometry; WBC, white blood cell.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Confusion matrix and proportion of cell types for WBC differential classification performed for a different donor sample.

Figure supplement 2. Gating for a single run of blood cells obtained from a single donor used for providing the ground truth and performing intra-
donor learning for the iSGC analysis in WBC differential classification.

Figure supplement 3. Gating for a single run of blood cells obtained from a different donor used for performing inter-donor learning for the iSGC 
analysis in WBC differential classification.
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false negatives can be seen for basophils, which can be thought to be due to their limited number 
in the population used for training and testing the model. In the proportion of each cell in the popu-
lation (Figure 5D and E) and the flow cytometry scatter plot (Figure 5F,G and H) compared to the 
CD-marker-based labeling, the predictions made by iSGC performed well across samples. The class 
ratio by CD marker and prediction were in good agreement for both intra- and inter-donor predic-
tions, even if the predictions included cells that were not gated and were difficult to clearly label 
(Figure 5). Therefore, we demonstrate that iSGC has the potential to replace CD markers for typical 
five-part peripheral WBC differential classification.

Discussion
The advantage of iSGC over conventional label-free flow cytometry modalities with a scalar quantity is 
that it measures more detailed information of cells for a more accurate cell selection. For instance, with 
conventional FSC and SSC, each modality yields a single scaler value, and therefore, even combined, 
the gating is only in a 2D space. However, iSGC utilizes a waveform containing over 100 points and 
performs classification in this high-dimensional space. While it is difficult for humans to perceive such 
high-dimensional data, employing machine learning allows us to directly interpret them and perform 
classification fast enough to enable high-throughput sorting.

Because iSGC utilizes ‘image’ information, which is a generic indicator of cell morphology just as 
the 2D cell images, it shares the limitations and advantages with other image-based cell classifica-
tion methods. For example, iSGC often shows poor classification performances when morphological 
differences are not easily visually recognizable between cells to be classified. From our experiences, 
differentiation of CD4 and CD8 T cells are one example which have been challenging to both ghost 
cytometry and our eyes. On the other hand, transferability of a model can be advantageous: a model 
developed using different data can be applied to a new sample or application in general, just as 
those using 2D images can be applied to a new sample or application. Moreover, the iSGC machine 
is currently equipped with a self-calibration system for controlling the position of flow streams of 
cells relative to the illumination pattern, which is analogous to a situation where objects come to the 
same position in the 2D images, consequently enhancing the robustness of models over a long time 
or between experiments. This is evidenced by the good results of inter-donor classification of the six 
cell types.

In addition to the modalities of conventional FSC and SSC, dGMI, fsGMI, bsGMI, ssGMI, and 
bfGMI, we used in this work, the concept of iSGC is not limited to those—other label-free modalities 
with high dimensions can also be used and combined. For example, imaging techniques such as 
holography may be able to be adapted for iSGC. What is critical is that such modalities are acquired so 
that the data can be processed quickly for classification. In the case of holography, the reconstruction 
of the object image from compressive measurements have been demonstrated (Brady et al., 2009; 
Lim et al., 2011; Marim et al., 2010), These holographic measurements may be further compressed 
for classifying the cells based on iSGC.

The potential applications of this method are similar to those of other image-based cell classifi-
cation, including purification and quality control of cell manufacturing products and diagnostic tests 
using blood cells, as we demonstrated in this work. These include image-based classification of cell 
types (Yoon et al., 2017), differentiated cells (Zhang et al., 2018), cancer cells (Teramoto et al., 
2019), and WBCs (Lippeveld et al., 2019). The advantage over conventional image-based cell clas-
sification is that iSGC is able to perform cell classification at higher throughputs which is necessary 
for analyzing large populations of cells in manufacturing (Sutermaster and Darling, 2019) and in 
diagnostic tests where rare cell detection is often required. Furthermore, in contrast to microscopy 
image-based cell classification, iSGC-based high-throughput enrichment of the desired cells allows us 
to use them for their downstream uses in manufacturing as well as molecular assays in further detailed 
analysis (Grün and van Oudenaarden, 2015).

Finally, the concept of iSGC can be used with a variety of ground truth labels. Depending on the 
characteristics of cell populations and the purpose of classifications, ground truth labels in training 
data sets can be prepared with various surface markers, genetic reporters (Zhang et al., 2014), and 
functional assays (Barros et al., 2009). Furthermore, if we have separated cell populations showing 
characteristics such as responder versus non-responder cells (Belzeaux et al., 2012), or disease versus 
healthy cells, they can be used as a label training a model to classify and selectively sort the unknown 
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cells. In addition, it is often the case that molecular labels suitable as ground truth labels are unavail-
able or less-biased clustering of the morphological information is preferred. One approach for this 
issue is to use the same high-dimensional modalities for clustering cells based on morphological infor-
mation via dimension reduction and then adopt these visualized clusters as new labels for training the 
supervised learning model in iSGC.

In conclusion, we have developed a high-speed, stain-free cytometry that predicts labels based 
on compressive imaging information without image reconstruction. This staining-free technology will 
find its applications in a wide range of medical fields such as cell manufacturing in regenerative cell 
therapy and blood cell enumeration and differentiation in clinical diagnosis. The key to this technology 
is in turning imaging modalities that are incomprehensible to humans practical for cell characterization 
by using machine learning to correlate them to biological labels. In the current era where machines 
can outperform humans, we believe in the potential of utilizing modalities that are machine suitable, 
rather than human suitable, and that such concept will accelerate not only the field of flow cytometry, 
but also other areas of science.

Materials and methods
Electronics
All photomultiplier tubes (PMTs) used in this work were purchased from Hamamatsu Photonics Inc 
PMTs of 10 MHz with built-in amplifier (H10723-210 MOD, MOD2, H10723-Y2, A2, MOD2) were 
used for detecting the dGMI, ssGMI, bsGMI, and fsGMI signals, while PMTs of 200 kHz (H10723-20 
Y1, H10723-20 MOD, H10723-210 Y1), 1MHz (H10723-210 MOD3, H10723-20 MOD3), or 10MHz 
(H10723-210 MOD2) were used to detect fluorescence signals, SSC, and BSC signals. FSC signals 
were obtained using either a photodetector (PDA100A or PDA100A2, Thorlabs) or a PMT of 200 kHz 
(H10723-20 MOD, H10723-20-01). Multi-pixel photon counter (MPPC, S13360-6075CS) from Hama-
matsu photonics Inc was used to detect the bfGMI. The direct current of dGMI, fsGMI, bfGMI, ssGMI, 
and FSC signals were cut with an electronic high-pass filter. The PMT signals were recorded with 
electronic filters using a digitizer (M2i.4932-Exp, Spectrum, Germany) or an FPGA development 
board (TR4, Terasic) with a homemade analog/digital converter. The digitizer and/or FPGA continually 
collected a fixed length of signal segments from each color channel at the same time, with a fixed 
trigger condition applied to the FSC signals.

Reagents
All reagents were purchased from either FUJIFILM Wako Pure Chemical Corporation, Sigma-Aldrich, 
or Invitrogen unless otherwise specified. D-PBS (-) (Wako) was used for phosphate-buffered saline 
(PBS) solution. LIVE/DEAD Fixable Green Dead Cell Stain (Invitrogen) was used by dissolving the solid 
product in a single vial for 40 assays in 50 µl of dimethyl sulfoxide (DMSO). Pierce  16% Formaldehyde 
(w/v), Methanol-free (Thermo Fisher Scientific) was used as a fixation reagent.

D-MEM (High Glucose) with L-Glutamine, Phenol Red, and Sodium Pyruvate (Wako) with  10% 
fetal bovine serum (FBS, Biowest) and  1% Penicillin-Streptomycin (Wako) was used as the HeLa S3 
and MIA PaCa-2 cell culture medium. RPMI 1640 medium (Gibco) with  20% FBS (Biowest) and  1% 
Penicillin-Streptomycin (Wako) was used as the Y-79 cell culture medium. Stem Fit AK02N (Ajino-
moto) with all supplements and with 10 µM Y-27632 (Wako) and 0.25 µg/cm2 iMatrix-511 silk (Nippi) 
or iMatrix-511 (Nippi), and  1% Penicillin-Streptomycin (Wako) was used as the iPSC culture medium. 
Stem Fit AK02N without supplement C and with 10 µM SB431542 (Wako) and 10 µM DMH1 (Wako) 
was used as the NEC differentiation medium. Stem Fit AK02N without supplement C and with 10 ng/
ml Activin A (Wako) and 3 µM CHIR99021 (Wako) was used as endodermal differentiation medium. 
StemSure DMEM (Wako) with  20% StemSure Serum Replacement (Wako),  1% L-alanyl L-glutamine 
solution (Nacalai Tesque),   1% Monothioglycerol solution (Wako),   1% MEM non-essential amino 
acids solution (Nacalai Tesque), and  1% DMSO (Sigma-Aldrich) was used as the HEC differentia-
tion medium. RPMI1640 (FUJIFILM Wako) with  10% FBS (HyClone) and  1% Penicillin-Streptomycin 
(Wako) was used for thawing the frozen mobilized peripheral blood (MPB) CD34+ stem/progenitor 
cells.

https://doi.org/10.7554/eLife.67660
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Cell preparations
MIA PaCa-2 cells were purchased from RIKEN BRC CELL BANK. HeLa S3 cells, Y-79 retinoblastoma 
cells were purchased from JCRB Cell Bank. The human iPSCs used were GM25256 iPSCs (Hayashi 
et al., 2016) either obtained from Dr. Bruce Conklin at Gladstone Institutes or purchased from Coriell 
Institute. Informed consent for the usage of these cells for research was obtained from the cell line 
donor. RPE cells were provided from HEALIOS K.K. upon permission of use. The usage of iPSCs for the 
derivation of RPE cells was approved by the ethics committee of HEALIOS. Informed consent for the 
usage of these iPSCs was obtained by Lonza. MIA PaCa-2 cells, HeLa S3 cells, and both iPSCs were 
authenticated with short tandem repeat tests and confirmed mycoplasma negative. Y-79 was authenti-
cated and confirmed mycoplasma negative by the supplier. The collection of peripheral blood samples 
from healthy donors was conducted in accordance with the Declaration of Helsinki and approved by 
the ethics committee of Juntendo University School of Medicine (IRB#2019091). Mobilized Periph-
eral Blood CD34+ Stem/Progenitor cells (HSCs) (M34C-1) were purchased from HemaCare. Written 
informed consent was obtained prior to the collection of samples.

The GM25256 iPSCs were seeded at 2500 cells/cm2 in the iPSC culture medium after each passage. 
The medium was changed to the same medium without Y-27632 or iMatrix-511 on days 1, 3, and 5. 
On day 7, the cell samples were collected to be analyzed by flow cytometry.

NECs were differentiated from the above iPSCs with the following procedures. iPSCs were seeded 
at 2500 cells/cm2 in iPS culture medium (day 0). On day 1, the medium was exchanged to NEC differ-
entiation medium. The medium was changed to the same medium on days 3 and 5. On day 7, the cell 
samples were collected to be analyzed with iSGC.

HECs were differentiated from the above iPSCs with the following procedures. iPSCs were seeded 
at 2500 cells/cm2 in iPS culture medium (day 0). On day 1, the medium was exchanged to endoderm 
differentiation medium. On day 3, the medium was changed to the same medium. On day 5, the 
medium was exchanged to HEC differentiation medium. On day 7, the cell samples were collected to 
be analyzed with iSGC.

RPE cells were differentiated from feeder-free hiPSCs established at Lonza, Walkersville according 
to published protocols (Baghbaderani et  al., 2015). The hiPSCs were maintained on iMatix-511 
(Nippi) with TeSR-E8 medium (StemCell Technologies). To differentiate into neural ectoderm lineage, 
hiPSCs were cultured with GMEM (Thermo Fisher Scientific) supplemented 20% KnockOut Serum 
Replacement (Thermo Fisher Scientific), SB431542 and LDN193189 (Surmacz et al., 2012). SB431542 
and LDN193189 were purchased from FUJIFILM Wako chemical. Then neural ectodermal progenitor 
cells were differentiated into RPE cells (Kuroda et al., 2019). After differentiation, RPE cells were 
cultured on a laminin-coated 12-well plate. 43.2 µl of 0.5 mg/ml iMatrix-511 (Nippi) was added to 
12 ml of PBS, and 1 ml of the solution was added to each well. The well plate was incubated at  37°C 
under  5% CO2 for 2 hr, and the PBS was removed before use. The thawed RPE cells were seeded 
onto this laminin-coated well plate and were cultured using an RPE culture medium provided by 
HEALIOS. The medium was changed every 2 days. The RPE cells were cultured for 8 weeks after 
thawing before the analysis with iSGC.

Experimental conditions for iSGC
The cells were flowed through either a quartz flow cell (Hamamatsu) or a polydimethylsiloxane 
(PDMS)-based microfluidic device using a customized pressure pump and/or a syringe pump (KD 
Scientific). The quartz flow cell had a channel cross-section dimension of either 250×500, 250×250, or 
150×150 µm2 at the measurement position, and when using this, the sheath fluid (IsoFlow, Beckman 
Coulter) was driven at a pressure of about 25, 85, or 305 kPa, respectively. The PDMS device had a 
channel with a cross-section dimension of 37×50 µm2 at the measurement position, and when using 
this, the sheath flow was driven at a pressure of about 185 kPa. The sample fluid was driven at a flow 
rate between 10 and 40 µl/min.

For the binary classification of the cells, an SVM algorithm using either linear or radial basis func-
tion kernel was used. The regularization coefficient and kernel coefficient in the SVM were tuned by 
grid search. Except for the classification and sorting of HeLa S3 and MIA PaCa-2 cells in Figure 2, all 
trainings and validations of the algorithms were performed using equal amounts of samples for each 
class label, and the accuracies, receiver operating characteristic (ROC) curves, AUCs, and the macro-
average F1-scores were validated with 10 times random sampling and presented with the mean and 
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standard deviation of the 10 trials. The number of samples was determined as sufficient amount to 
perform learning and evaluation of the SVM model. SVM score histograms in Figures 3 and 4 were 
derived from the trials with the best AUC. The mean and standard deviation of AUCs in the caption 
of Figure 3 in the main text were derived from the 10 AUCs, whereas the means and standard devia-
tions of AUCs in Figure 3—figure supplement 1 and Figure 4—figure supplement 1 were derived 
from the mean ROC curve. Therefore, the AUCs will slightly alter. All data and codes are available on 
Zenodo (Ugawa et al., 2021).

For the multiclass classification of six subtypes of WBC, we created a CNN model with two types 
of feature inputs. For input, we used both waveforms and scalar features derived from GMI (fsGMI, 
bsGMI, dGMI, and bfGMI) and FSC, BSC features, respectively. bfGMI was obtained by focusing the 
image plane on the detector. Our model includes five convolutional layers, one fully connected layer, 
and one softmax layer. Each convolutional layer is followed by batch normalization, rectified linear 
unit (ReLU), and max pooling layers. Waveforms were used as inputs for the convolutional layer. Scalar 
features were concatenated to the previous outputs of the fully connected layer. For training, cate-
gorical cross-entropy was used as a loss function. The model was trained for 500 epochs with Adam 
optimizer with a learning rate of 0.00001 and batch size of 1024. If the validation loss did not improve 
in 30 epochs, we stopped training and adopted the weights with the best validation loss. The macro-
average F1-scores were validated with 10-fold stratified splitting of training data and presented with 
the mean and standard deviation of 10 folds. Confusion matrices and predictive labels for quanti-
fying the in-sample class ratios were derived from the folds with the best macro-average F1-scores. 
Detailed information such as number of cells from donors are available in the data and codes on 
Zenodo (Ugawa et al., 2021). The number of cells was determined as sufficient amount to perform 
learning and evaluation of the CNN model.

The throughput of iSGC was deduced with the following procedures. Assuming that cells are evenly 
spaced with a distance equal to the length of the structured illumination (Figure 1—figure supple-
ment 1), resulting in consecutive acquisition of the waveforms, the throughput of iSGC in this ideal 
condition can be estimated as the inverse of the acquisition time. For instance, if the acquisition time 
is 100 µs per cell, the throughput can be estimated as 10,000 cells/s. Such estimation of throughput 
based on acquisition time is often adopted in imaging cytometry (Diebold et al., 2013; Han et al., 
2016; Han and Lo, 2015).

Classification and sorting of HeLa S3 cells and MIA PaCa-2 cells
HeLa S3 and MIA PaCa-2 cells were detached from the culture flask using trypsin. After washing with 
PBS solution, cells in each suspension were fixed with  1% formaldehyde in PBS for 15 min. The cells 
were subsequently washed with PBS solution. To the MIA PaCa-2 cells, a combined solution with 4 µl 
of Fixable Green DMSO solution and 200 µl of  1% Tween 20 (Sigma-Aldrich) in PBS was added. To 
the HeLa S3 cells, a combined solution with 4 µl of DMSO and 200 µl of  1% Tween 20 in PBS was 
added. Both cells were incubated for 60 min at room temperature and subsequently washed with PBS 
solution. Each cell suspension was then mixed to be allowed to flow through the iSGC sorter system 
comprised of a cell-sorting microfluidic device similar to one previously reported (Ota et al., 2018). 
The SVM used for sorting was trained with 300 cells of each cell type. The training data was created 
with consecutive waveforms obtained from the mixed sample.

A portion of this mixed cell suspension was used to measure the FSC, SSC, and fluorescence 
intensity of the presort mixture by using JSAN (Bay bioscience) to obtain Figure 2A and B and 
dashed line of Figure 2—figure supplement 1B. Total of 6000 events were measured, from which 
5558 cells were gated with FSC-SSC. Within this population, a threshold was drawn for the green 
fluorescence intensity to obtain 3350 positive cells and 2208 negative cells. After collecting the 
sorted suspension from the iSGC sorter, the FSC, SSC, and green fluorescence intensity were 
measured using JSAN to confirm the purity and obtain Figure  2E. Total of 6000 events were 
measured, from which 5193 cells were gated with FSC-SSC. Within this population, a threshold 
was drawn for the green fluorescence intensity to obtain 5054 positive cells and 139 negative 
cells. The SVM scores in Figure 2C, the blue solid line in Figure 2D, and the confusion matrix in 
Figure 2—figure supplement 1C were reproduced from the saved SVM parameters of the FPGA 
and the obtained waveform during sorting. Full gating procedures are available in Figure  2—
figure supplement 2.
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Classification of live, dead, and apoptotic iPSCs
For dissociating iPSCs, the culture medium for the iPSCs was changed to 0.5  mM ethylenedi-
aminetetraacetic acid (EDTA) in PBS solution and incubated for 3–5 min. Then medium was changed 
back to iPSC culture medium, and the cells were detached using a cell scraper. After washing with 
binding buffer, the cells were stained with PI (Medical & Biological Laboratories) and Annexin V-FITC 
(Medical & Biological Laboratories) for 15 min and then allowed to flow through the iSGC system 
without washing. The cells were first gated using the FSC-BSC scatter plot to remove debris (Figure 3—
figure supplement 1A) and then gated using the FSC height versus width scatter plot to remove 
doublets. The gated cells were further gated and labeled as live, dead, or apoptotic cells (Figure 3A) 
according to the fluorescence intensity of PI and Annexin V-FITC. Within this data, 1000 cells selected 
randomly (without overlap) with equal number of cells for each label were used as training and testing 
data. Full gating procedures are available in Figure 3—figure supplement 2.

Classification of undifferentiated and differentiated cells
For dissociating iPSCs, NECs, and HECs, the culture medium for these cells was changed to 0.5 mM 
EDTA in PBS solution and incubated for 3 min. Then, the cells were detached from the culture flask 
using a cell scraper. After washing with buffer solution ( 0.1% FBS, 0.5 mM EDTA in D-PBS), each 
was stained with Calcein AM (Dojindo) and rBC2LCN-635 (Wako), both at a concentration of 1 µg/
ml, for 60 min on ice and then washed with buffer solution. For the classification of undifferentiated 
cells (iPSCs) and differentiated cells (NECs or HECs), each of the cells was mixed at equal concentra-
tion. The mixed suspension was allowed to flow through the iSGC system. The cells were first gated 
using FSC-SSC scatter plot to remove dead cells and debris, then gated using the FSC height versus 
width scatter plot to remove doublets, and again gated using FSC-Calcein AM scatter plot to remove 
remaining dead cells. The gated cells were further gated and labeled as undifferentiated or differenti-
ated cells according to the fluorescence intensity of rBC2LCN-635 and Calcein AM (Figure 4—figure 
supplement 1A and B). Within this data, 5000 and 1000 cells selected randomly (without overlap) 
with equal number of undifferentiated and differentiated cells were used as training and testing data, 
respectively. Full gating procedures are available in Figure 4—figure supplement 2 and Figure 4—
figure supplement 3.

Classification of RPE and retinoblastoma cells
RPE cells were detached from the well plate using trypsin (provided by HEALIOS). Y-79 retinoblastoma 
cells were taken out from the culture flask by pipetting. After washing each cell with PBS solution, 
1 ml of PBS with 1 µl of CellMask Green Plasma Membrane Stain (Invitrogen) was added to the pellet 
of Y-79 cells and was incubated at  37°C for 15 min. After staining, the cells were washed with PBS 
solution and PI was added. The RPE cells and Y-79 cells were mixed before being allowed to flow 
through the iSGC system. The cells were first gated using FSC-SSC scatter plot to remove dead cells 
and debris, then gated using the FSC height versus width scatter plot to remove doublets. The gated 
cells were further gated and labeled as RPE cells or retinoblastomas according to the fluorescence 
intensity of CellMask Green and PI (Figure 4—figure supplement 1C). Within this data, 5000 and 
1000 cells selected randomly (without overlap) with equal numbers of RPE cells and retinoblastomas 
were used as training and testing data, respectively. Full gating procedures are available in Figure 4—
figure supplement 4.

The recovery rate, which is equivalent to the true positive rate, of RPE cells was determined from 
the mean ROC curve obtained from 10 times random sampling (Figure 4—figure supplement 1C). 
At a false positive rate of 0.01, the true positive rate was 0.92 and 0.52 for the classification with iSGC 
and with FSC/SSC, respectively. In actual scenarios, the number of cancer cells will be substantially 
fewer than the number of RPE cells. Still, the true positive rates and false positive rates will be equal 
to the case where the numbers of cells are equal.

Differential classification of WBCs
Fresh peripheral blood samples from two healthy volunteers were drawn into tubes containing EDTA. 
The samples were stained by adding fluorochrome-conjugated monoclonal antibodies and protecting 
them from light for 15 min at room temperature. The antibodies used were: FITC anti-human CD16 
(302006, Lot no. B319858, BioLegend), PE anti-human CD14 (367104, Lot no. B274117, BioLegend), 

https://doi.org/10.7554/eLife.67660
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APC/Cy7 anti-human CD45 (304014, Lot no. B325539, BioLegend), added at  40× dilution and APC 
anti-human CD123 (306012, Lot no. B309938, BioLegend) added at  20× dilution. The frozen mobi-
lized peripheral blood CD34+ hematopoietic stem/progenitor cells (HSCs) were thawed by immedi-
ately placing them into a 37℃ water bath and transferring them into a pre-warmed growth medium 
(RPMI1640 with  10% FBS and  1% Penicillin-Streptomycin). Then the cells were stained by adding 
fluorochrome-conjugated monoclonal antibodies and protecting them from light for 30 min at room 
temperature. The antibodies used here were APC/Cy7 anti-human CD45 (304014, Lot no. B325539, 
BioLegend) added at  13× dilution and PerCP anti-human CD34 (343520, Lot no. B266937, BioLegend) 
added at  10× dilution. Next, all three samples were lysed for 10 min with a freshly prepared working 
solution of Lysing Solution (349202, BD Bioscience). After removing the supernatant, the samples 
were washed with PBS containing  2% bovine serum albumin (BSA).

Each healthy blood sample was spiked with the CD34+ HSCs so that the ratio of HSCs was less 
than  10%. The final concentration of each spiked sample was adjusted to about 5×105 cells/ml in PBS 
containing  2% BSA and allowed to flow through the iSGC analyzer system. The total events were 
gated using FSC-BSC scatter plot to remove dead cells and debris, then gated using the FSC height 
versus width scatter plot to remove doublets. WBC subtypes were subsequently gated in the order 
of basophils, monocytes, HSCs, lymphocytes, neutrophils, and eosinophils based on well-established 
gating schemes (Fujimoto et al., 2000; Han et al., 2008; Hubl et al., 1996; Roussel et al., 2012; 
Roussel et  al., 2010; Venditti et  al., 1999). For validation, a portion of each spiked sample was 
measured with JSAN (Bay bioscience). After gating the cells, each set of cell types were split into  70% 
training data and  30% test data. For training the model, 10-fold stratified cross validation was used. 
Classification was performed on the whole test data. Full gating procedures are available in Figure 5—
figure supplement 2 and Figure 5—figure supplement 3.
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